
Journal of Phonetics 105 (2024) 101338
Contents lists available at ScienceDirect

Journal of Phonetics

journal homepage: www.elsevier .com/locate /Phonet ics
Artificial vocal learning guided by speech recognition: What it may tell us
about how children learn to speak
https://doi.org/10.1016/j.wocn.2024.101338
0095-4470/� 2024 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.

E-mail address: yi.xu@ucl.ac.uk (Y. Xu).
Anqi Xu a, Daniel R. van Niekerk b, Branislav Gerazov c, Paul Konstantin Krug d, Peter Birkholz d,
Santitham Prom-on e, Lorna F. Halliday b,f, Yi Xu b,*

aSchool of Humanities and Social Sciences, Harbin Institute of Technology, Shenzhen 518055, China
bDepartment of Speech, Hearing and Phonetic Sciences, University College London, London WC1E 6BT, United Kingdom
cFaculty of Electrical Engineering and Information Technologies, Ss Cyril and Methodius University in Skopje, Skopje 1000, RN, Macedonia
d Institute of Acoustics and Speech Communication, Technische Universität Dresden, Dresden 01062, Germany
eComputer Engineering Department, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
fCognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 1TN, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 June 2023
Received in revised form 5 May 2024
Accepted 16 May 2024
Available online xxxx

Keywords:
Computational modelling of vocal learning
Phonological perception
Coarticulation
Speech acquisition
Articulatory synthesis
It has long been a mystery how children learn to speak without formal instructions. Previous research has used

computational modelling to help solve the mystery by simulating vocal learning with direct imitation or caregiver

feedback, but has encountered difficulty in overcoming the speaker normalisation problem, namely, discrepancies

between children’s vocalisations and that of adults due to age-related anatomical differences. Here we show that

vocal learning can be successfully simulated via recognition-guided vocal exploration without explicit speaker nor-

malisation. We trained an articulatory synthesiser with three-dimensional vocal tract models of an adult and two

child configurations of different ages to learn monosyllabic English words consisting of CVC syllables, based on

coarticulatory dynamics and two kinds of auditory feedback: (i) acoustic features to simulate universal phonetic

perception (or direct imitation), and (ii) a deep-learning-based speech recogniser to simulate native-language

phonological perception. Native listeners were invited to evaluate the learned synthetic speech with natural speech

as baseline reference. Results show that the English words trained with the speech recogniser were more intelli-

gible than those trained with acoustic features, sometimes close to natural speech. The successful simulation of

vocal learning in this study suggests that a combination of coarticulatory dynamics and native-language phonolog-

ical perception may be critical also for real-life vocal production learning.

� 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Speech is a highly complex cognitive activity that requires
sophisticated control of multiple articulators including the ton-
gue, the lips, the jaw and the larynx. The motor skills involved
in speaking are intricate and hard to learn, as indicated by the
difficulty adults experience when learning a second language.
Yet, children learn to speak despite their inability to receive
explicit instructions or see many of the relevant speech articu-
lators. They seem to mainly learn from what they hear, but it is
still a mystery how they manage to overcome many seemingly
insurmountable barriers. One of the most obvious is that their
vocal tracts are much shorter and smaller compared to adult’s
(Fitch & Giedd, 1999). In fact, an infant vocal tract more closely
resembles that of a non-human primate (Lieberman et al.,
1972). This makes children’s formants consistently higher than
those of adults (Vorperian & Kent, 2007). This is known as the
speaker normalisation problem (Johnson, 2005) for speech
perception or the correspondence problem for sensorimotor
learning (Nehaniv & Dautenhahn, 2002; Brass & Heyes,
2005). Our prior research, however, has already shown that
speaker normalisation may have been an exaggerated prob-
lem both for tone and intonation (Xu & Prom-on, 2014; Chen
et al., 2022) and for segments (Prom-on, Birkholz, & Xu,
2013). One of the aims of this study is therefore to test if vocal
learning can be computationally simulated without explicit
speaker normalisation.
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1.1. Sensorimotor learning in humans and other animals

There have been some clues from research on songbirds
and certain mammals that are also vocal learners. Their vocal
development first undergoes a phase of accumulating auditory
experience and then a later phase of vocal practice. During the
early sensory phase of perception learning, the learners gain
experience of species-specific signals, as observed in song-
birds (Konishi, 1965) and humans (Kuhl, 2000). Then there is
a phase of vocal practice, during which the vocal systems are
calibrated to convert motor commands to sound production, as
found in humans (Oller, 1980), songbirds (Thorpe, 1954), mar-
mosets (Elowson et al., 1998b) and bats (Fernandez et al.,
2021). For both phases of learning, auditory feedback may
play two vital roles: (i) to store auditory experience in long-
term memory (Phan et al., 2006), and (ii) to detect production
errors during vocal practice (Konishi, 1965). Indeed, there is
evidence that for both songbirds (Konishi, 1965) and humans
(Oller & Eilers, 1988), a lack of auditory input can lead to sev-
ere impairment in their vocal development. It has been further
suggested that in humans, production learning can be driven
by perception experience via vocal mimicry (Kuhl, 2000).
Assuming this is the case, infants probably attempt to match
their own vocalisations to the auditory memory of previously
heard speech sounds. But it would still be unclear, however,
what is the nature of the perceptual representation that guides
vocal learning in humans.

The role of perception in vocal learning can be seen in light
of learning sensorimotor associations that map articulatory
movements to sensory goals. Many studies have demon-
strated evidence of sensorimotor coupling (Kuhl et al., 2014;
Bruderer et al., 2015; Choi et al., 2021; Fadiga et al.,
2002). Several learning mechanisms such as error-based
learning and reinforcement learning have been proposed
(Wolpert et al., 2011) to account for such coupling. It has also
been suggested that associative learning of correlated senso-
rimotor experience, such as self-observation of actions, syn-
chronous actions and being imitated by social partners,
forges the linkage between the motor and sensory systems
(Heyes, 2001; Keysers & Perrett, 2004; Cook et al., 2014).
Studies on infant sensorimotor learning such as crawling
(van Elk et al., 2008) and stepping (de Klerk et al., 2015)
have shown support for this assumption, but it has not been
widely used to account for speech motor learning, due to
the lack of visual cues. Despite some theoretical proposals
and behavioural studies, we know remarkably little about
the relative contribution of different kinds of sensorimotor
experience to vocal learning.

Therefore, although there have been extensive observa-
tions and theoretical proposals on vocal learning and sensori-
motor learning, the current picture is still blurry, especially in
terms of the learning mechanisms involved. What is needed
is a way of probing how exactly vocal learning operates rather
than merely observing its various characteristics. This can be
done through computational simulation of the learning process,
which would allow the examination of various hypothetical
components and mechanisms by comparing the end products
of learning, namely, the learned speech utterances.
1.2. Past models of vocal learning

There have been many computational studies of vocal
learning, and a summary chart is shown in Table A1 of Appen-
dix. Several of those studies have probed the neural and cog-
nitive mechanisms at play by modelling the brain network. One
of the earliest and the best-known is the DIVA model
(Guenther, 1994; Tourville & Guenther, 2011), a neurobiologi-
cally motivated framework that simulates the acquisition of
sensorimotor interactions based on babbling. It consists of
two main components: (a) a feedforward control system that
encodes the movement velocities of the articulators, and (b)
a feedback control system that encodes the time-varying
sensory expectations. The model learns speech by finding
appropriate synaptic weights for mapping the phonetic-to-
orosensory space and orosensory-to-articulatory space. As a
complement to the DIVA model, neurocomputational models
(Kröger et al., 2009, 2014) have been proposed to establish
a mapping between speech phonetics and sensory signals
via self-organising maps (Kohonen, 2001). Similar attempts
have been made to simulate the learning of vowels by Hebbian
connections, i.e., the correlation of sensory system and motor
map through activation of units in both receptive fields.
(Westerman & Miranda, 2002, 2004; Heintz et al., 2009).
Although these neurobiological models have tried to simulate
the neural processes of speech production and perception,
they have not demonstrated an ability to generate intelligible
speech.

As vocal mimicry has long been regarded as a crucial
mechanism for speech acquisition (Kuhl & Meltzoff, 1996), a
great deal of research has been carried out to simulate vocal
imitation by the distal learning framework. Distal learning
describes how a dynamic system can learn actions to generate
desired outcomes when supervised by a distal ‘teacher’
(Jordan & Rumelhart, 1992). HABLAR proposed by Bailly
(1997) is perhaps the earliest model that aims to achieve
audio-visual-to-articulatory inversion under this framework.
Later, Howard and Huckvale (2005) have also built an inverse
model between speech acoustics and speech motor control
trained by direct mapping, bypassing the utilisation of articula-
tory data. More recently, Prom-on et al. (2014a, 2014b) suc-
cessfully trained VocalTractLab, a 3D articulatory synthesiser
(Birkholz, 2013) to learn Thai vowels with formant values
(F1, F2 and F3) close to natural speech, judged as highly intel-
ligible in a listening experiment by native speakers. Instead of
speech acoustics, Philippsen et al. (2016) developed a sen-
sory goal space of vectors derived from acoustic features in
order to train the motor space. Nevertheless, the learned
speech was limited to vowels and simple CV sequences
including /ma/ and /ba/ without intelligibility assessment.

The speaker normalisation problem (i.e., the correspon-
dence problem) has long been considered as a hard or even
insurmountable barrier for vocal learners, which has led to a
line of research into caregiver feedback as playing a critical
role (see Asada, 2016 for a review). Huckvale, Howard and
the others have built a virtual infant KLAIR which relies on
caregiver’s reformulation to reinforce the acquisition of speech
(Huckvale et al., 2009; Huckvale, 2011a, 2011b). Following the
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same principle, Howard and Messum also proposed an inter-
active learning model, named Elija (Howard & Messum,
2007; Howard, 2011; Howard & Messum, 2014; Messum &
Howard, 2015), which is aimed at establishing a correspon-
dence between his/her own vocal action and adult speech by
caregiver’s judgement. Other research groups have pursued
similar caregiver-infant interaction models (Yoshikawa,
Asada, et al., 2003; Yoshikawa, Koga, et al., 2003; Miura
et al., 2007; Ishihara et al., 2009; Rasilo et al., 2013; Rasilo
& Räsänen, 2017). Judging from the samples of the learned
speech generated, however, shifting the burden to the care-
giver in these approaches is again not effective in solving the
speaker normalisation problem, as far as consonant acquisi-
tion is concerned.

Beside the models of infant–caregiver interaction that use
reinforcement learning based on extrinsic social rewards, a
number of studies have explored the possibility of using intrin-
sic reinforcement. Warlaumont and her colleagues have pro-
posed a model that produces spontaneous speech with a
self-organising map that controls the muscles of a speech syn-
thesiser (Warlaumont et al., 2013; Warlaumont & Finnegan,
2016). The reinforcement signal comes from the auditory sal-
ience of these randomly generated sounds. Murakami et al.
(2015) has incorporated reinforcement learning with vocal imi-
tation, whereby the agent adjusts motor parameters in an iter-
ative manner to maximise reward signals. The study shows
that the supplementary visual reinforcement signal is advanta-
geous in acquiring rounded vowels. Again, however, the
scopes of these simulations are restricted to vowel acquisition.

There are also models that focus on how children discover
phonological systems. Oudeyer (2005) has proposed a self-
organisation model for speech acquisition, which is able to dis-
cover vowel inventories based on its own subsystems, without
social interactions. A follow-up study compared models of ran-
domexploration, randomgoal reachingandactivegoal reaching
(Moulin-Frier &Oudeyer, 2012). It was found that active learning
led to continuing exploration of auditory and acoustic spaces
(Moulin-Frier et al., 2014). Recently, the same research group
proposed a model for the emergence of phonological systems,
referred to as ‘Communicating about Objects using Sensory–
Motor Operations’ (COSMO) (Moulin-Frier et al., 2015;
Barnaud et al., 2019). Using a Bayesian modelling approach,
motorandauditorysystemswere linkedthrough linguisticobjects
to develop amapping between articulation and acoustics.

Overall, none of the existing simulations has demonstrated
successful learning of intelligible words consisting of CVC syl-
lables. Thus, the speaker normalisation problem remains
unsolved. As will be reviewed next, the bottleneck may lie in
two critical aspects of the speech system: sensory feedback
and articulatory dynamics.
1.3. Simulation of speech sensory and motor systems

With regard to auditory feedback1 (Appendix, Table A1 Sen-
sory control), a vast majority of the studies have used formants
1 Here and throughout the paper, feedback refers only to “offline” feedback which differs
from the kind of “online” feedback as seen in perturbations studies such as Houde & Jordan
(1998), Tremblay et al. (2003) and Xu et al. (2004), whereby corrective manoeuvres are
enacted during the course of an articulatory movement in reaction to continuous sensory
feedback.
(Bailly, 1997; Westermann & Miranda, 2004; Howard &
Huckvale, 2005; Miura et al., 2007; Heintz et al., 2009;
Ishihara et al., 2009; Rasilo & Räsänen, 2017; Forestier &
Oudeyer, 2017; Acevedo-Valle et al., 2020) or normalised for-
mants (de Boer, 2000; Oudeyer, 2005; Kröger et al., 2009;
Moulin-Frier & Oudeyer, 2012; Warlaumont, 2012; Warlaumont
et al., 2013; Moulin-Frier et al., 2014, 2015; Warlaumont &
Finnegan, 2016; Barnaud et al., 2019), while other studies have
incorporated more acoustic details in terms of Bark-scaled
(Kröger et al., 2014) or gammatone spectrograms (Howard &
Messum, 2014; Messum & Howard, 2015). Several studies have
attempted to use Mel-frequency cepstral coefficients (MFCCs)
(Davis & Mermelstein, 1980) to represent auditory feedback (
Kanda et al., 2009; Rasilo et al., 2013; Philippsen et al., 2014;
Prom-on et al., 2014a, 2014b; Najnin & Banerjee, 2017), which
is the most popular parametric acoustic representation in
speech synthesis and recognition (Barry & van Dommelen,
2005). More recently, Plummer et al. (2010) established a map-
ping between children’s vowel production and that of adult pro-
ductions through manifold learning. In this way, a perceptual
space related to language information was simulated.

Only a few computational studies have taken somatosen-
sory information (Guenther, 1994; Kröger et al., 2009;
Tourville & Guenther, 2011; Kröger et al., 2014; Acevedo-
Valle et al., 2020) into consideration despite its reported influ-
ence on speech production in many behaviour studies (Niemi
et al., 2006; Ménard et al., 2023). To date, there have been
no examinations of how auditory and somatosensory feedback
may impact vocal learning through modelling simulations,
including the possibility of language-specific perception as a
relevant form of auditory feedback.

As for articulatory dynamics (Appendix, Table A1 Motor con-
trol & synthesiser), previous models have adopted various
articulatory synthesis systems without principled dynamic con-
trols, including the source-filter model (Yoshikawa, Asada,
et al., 2003; Yoshikawa, Koga, et al., 2003; Miura et al.,
2007), the pipe model (Westerman & Miranda, 2002;
Westermann & Miranda, 2004), Praat synthesis
(Warlaumont, 2012; Warlaumont et al., 2013; Warlaumont &
Finnegan, 2016), the Maeda synthesiser (de Boer, 2000;
Kanda et al., 2009) or its modified versions (Guenther et al.,
2006; Howard & Messum, 2007; Heintz et al., 2009; Tourville
& Guenther, 2011; Moulin-Frier & Oudeyer, 2012; Howard &
Messum, 2014; Moulin-Frier et al., 2014; Messum & Howard,
2015; Najnin & Banerjee, 2017; Acevedo-Valle et al., 2017,
2018, 2020; Barnaud et al., 2019). More recent studies have
used VocalTractLab2.3 (vocaltractlab.de) (Birkholz, 2013), an
articulatory synthesiser with high-dimensional vocal tract
parameter control (Prom-on et al., 2014a, 2014b; Philippsen
et al., 2014, Murakami et al., 2015; Philippsen et al., 2016).
For controlling the dynamics of the synthesiser, the Task
Dynamic model (Saltzman & Munhall, 1989; Fowler &
Saltzman, 1993) has been adopted (Howard & Messum,
2007, Howard, 2011; Howard & Messum, 2014; Messum &
Howard, 2015), which is a second-order dynamical system
for generating contextually varying articulatory kinematics.
Other researchers have used the Dynamic Movement Primi-
tives (DMPs) framework (Schaal, 2006; Ijspeert et al., 2013)
to control a synthesiser (Forestier & Oudeyer, 2017;
Philippsen, 2021), which was developed to plan the

http://vocaltractlab.de
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trajectories for the motor movements of robots with discrete or
rhythmic nonlinear dynamic primitives. Again, however, these
vocal learning models have been mostly restricted to simulat-
ing vowel acquisition. As of now, not a single study prior to
the present one has successfully simulated the learning of
intelligible words consisting of CVC syllables (Appendix,
Table A1 Learning target & Performance). What is missing is
the direct simulation of the motor control mechanism of CV
coarticulation that generates extensive variations in adjacent
consonants and vowels.
1.4. Research questions and major aims

Throughout the animal kingdom, many species show vocal
plasticity to a certain extent. Noticeable similarities can be
seen in the vocal developmental patterns of songbirds and
humans, in which a phase of auditory extraction paves the
way for vocal practice (Doupe & Kuhl, 1999). These observa-
tions have naturally led to the postulation that auditory experi-
ence guides vocal learning in humans and songbirds (Kuhl,
2003). It has been found that child speech perception changes
from language-universal to language-specific perception
(Werker & Lalonde, 1988; Kuhl, 2004) and production learning
follows certain developmental patterns of phoneme acquisi-
tion. Unlike birdsong learning, much uncertainty still exists con-
cerning the nature of the auditory guidance for speech
acquisition in humans, as the approaches of manipulating
auditory feedback in animal studies would be unethical. At
the same time, studies on human sensorimotor learning have
proposed possible learning strategies such as error-based
learning, reinforcement learning, use-dependent learning
(Wolpert et al., 2011) and imitative learning (Cook et al.,
2014). However, vocal learning is essentially dissimilar to
learning other motor movements, because of the lack of visual
information. What is yet unclear is whether these sensorimotor
learning mechanisms also underlie vocal learning.

Despite extensive observations and theoretical perspec-
tives on vocal learning and sensorimotor learning, the emerg-
ing picture is still blurry as questions remain regarding the
learning mechanisms. The computational approach is con-
structive in delineating the underlying cognitive mechanisms
because it provides a platform for the verification of different
assumptions. If we can recreate the learning process by simu-
lation, then it is possible to probe any component of particular
relevance. Nevertheless, so far there has been no clear
demonstration of successful learning of intelligible words
(see Appendix Table A Performance). In consequence, we
are unable to identify which mechanisms are at play, nor can
we examine the key aspects of learning quantitatively using lis-
tening experiments. Many of these unsolved questions can be
investigated if we simulate end-to-end vocal learning that starts
from audible speech and ends with synthetic words or sen-
tences that can be perceptually evaluated for intelligibility.
The developmental stage that we are aiming to simulate is
from canonical babbling to first words so that the learned
speech can be assessed directly by native listeners. Such sim-
ulations would allow quantitative hypothesis testing beyond
observational studies.

In this study, we developed a vocal learning model that can
learn intelligible speech based on both sensory and motor con-
trol mechanisms. A demonstration of the vocal learning model
and the learned speech can be found at https://gitlab.com/
Anqi_Xu/evoc_learn/-/blob/main/Demo/cvc_cvcv_updated.
mp4. The model includes several key innovations. First, unlike
previous studies that adopted simplistic vocal tract models that
controlled only a few articulators and largely neglected articu-
latory dynamics, we explicitly modelled the coarticulatory
dynamics (as defined in Section 2.1.2) in a high-dimensional
vocal tract model (van Niekerk et al., 2023). Second, we sys-
tematically examined the impact of speech sensory control
on vocal learning using (i) acoustic features to simulate univer-
sal phonetic perception that detects any sound differences in
any language (Werker & Lalonde, 1988; Kuhl, 2000), (ii) a
deep-learning-based speech recogniser to simulate native-
language phonological perception that captures key phonetic
properties that distinguish words in a native language
(Werker & Lalonde, 1988; Kuhl, 2000), and (iii) oral constriction
sensing to simulate somatosensory feedback that indicates
whether the oral cavity is open or closed (Choi et al., 2021).
Thirdly, we confronted the speaker-normalisation problem by
training a 3D vocal tract model to learn speech from mis-
matched speech of different age and sex, i.e., training an adult
male and two child vocal tract models to learn from an adult
female’s speech samples, or to learn from a speech recogniser
which is trained by multiple speakers. Finally, unlike most pre-
vious studies, we conducted systematic listening experiments
(i.e., open-vocabulary dictation and multiple choice) to assess
the validity of the model by making direct intelligibility compar-
isons with natural speech (Krug et al., 2023; van Niekerk et al.,
2023). This has set a new benchmark for vocal learning simu-
lations, and potentially for the evaluation of theories and mod-
els of vocal learning in general.

The present study is designed to test the following hypothe-
ses based on the successes and inadequacies of previous
works as reviewed above.

Hypothesis 1: End-to-end vocal learning can be simulated without
explicit speaker normalisation by a combination of auditory guid-
ance and coarticulation dynamics.
Hypothesis 2: Language-specific perception simulated by an auto-
matic speech recogniser provides better auditory guidance than
language-universal phonetic imitation simulated by acoustic
matching.
Hypothesis 3: Vocal learning can be simulated also with a vocal
tract with child anatomical configurations.

2. Methods

2.1. Model structure

The simulation model consists of a motor control compo-
nent and a sensory component, as illustrated in Fig. 1. The
stimuli used in the listening experiments and the code to repro-
duce the results are available at https://gitlab.com/Anqi_Xu/
evoc_learn. The articulatory synthesiser is VocalTractLab
(Birkholz, 2013) with a geometrical three-dimensional vocal
tract model. Within each learning trial, the motor control model
begins with the exploration of a full set of syllabic consonant
and vowel targets within the parameter range (Fig. 1A). In
other words, the model is trained to learn consonant targets fol-
lowed by a specific vowel and vowel targets preceded by a

https://gitlab.com/Anqi_Xu/evoc_learn/-/blob/main/Demo/cvc_cvcv_updated.mp4
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Fig. 1. Schematic overview of the steps involved each time the model tries a new set of articulatory targets (A) The adult vocal tract model is based on the MRI data of an adult male
speaker and the child vocal models are scaled versions of the adult model (Birkholz & Kröger, 2007; Davis & Mermelstein, 1980; Goldstein, 1980). (B) Context-sensitive articulator
kinematic movements are calculated by a synchronised dimension-specific sequential target approximation model (Liu et al., 2022; Xu, 2020). (C) Aero-acoustic simulation is based on
enhanced area functions of time-varying vocal tract shapes to generate speech. (D) Mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1980) of natural and synthetic
words were extracted. (E) A speech recogniser evaluates the probability of the targeted onset consonant, vowel and coda consonant, as represented by International Phonetic Alphabet
(IPA) symbols. (F) Somatosensory information for limiting vocal exploration, provided by the cross-sectional areas to determine whether there is a closure in the vocal tract.

Table 1
Dimensional vocal tract parameters optimised in the vocal learning model. The location of
the tongue body is jointly determined by the tongue body centre position and tongue side
positions.

Parameter Description

HX, HY Horizontal and vertical hyoid positions
JX, JA Jaw position and Jaw angle
LP, LD Lip protrusion and vertical lip distance
VS, VO Velum shape and velum opening
TTX, TTY Horizontal and vertical tongue tip positions
TBX, TBY Horizontal and vertical tongue blade positions
TCX, TCY Horizontal and vertical tongue body center positions
TS1 – TS3 Tongue side elevation from the posterior to the anterior part of

the tongue
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specific consonant (i.e., CV and VC hereafter). The kinematic
trajectories that approach the dimensional targets and their
timing are based on a coarticulation model (Xu, 2020; Liu
et al., 2022), which simulates the realisation of consonants
and vowels in a syllable frame (Fig. 1B). The time-varying
vocal tract shapes are then converted to cross-sectional area
functions for the aerodynamic-acoustic simulation (Fig. 1C).
The synthetic speech is evaluated either by acoustic features
(Fig. 1D), or by a speech recogniser (Fig. 1E), which is a
pre-trained deep learning model that maps acoustic features
to a contrastive auditory space. In addition, somatosensory
feedback is simulated based on the openness of the vocal tract
(Fig. 1F). We trained the adult and the child vocal tract systems
to learn the production of English words, guided by the sensory
feedback options in Fig. 1D–F.
2.1.1. Articulatory synthesis

The articulatory synthesiser (Fig. 1A) calculates enhanced
area functions (Birkholz, 2014) for aerodynamic-acoustic sim-
ulations. The adult vocal tract model is adapted from MRI data
of a German male speaker and the 1-year-old and 3-year-old
boy’s vocal tract models are scaled from the adult model based
on relative anatomy (Birkholz & Kröger, 2007). Instead of sim-
ple linear scaling, the structural modification was based on
Goldstein’s (1980) cephalometric analysis of the head and
the neck from birth to the age of 20. To be compatible with
the vocal tract dimension of the articulatory synthesiser, we
additionally transformed the craniofacial measurements that
were fitted to a growth curve as a function of age and sex
(Birkholz & Kröger, 2007).
The 17 vocal tract parameters define the airway from the
glottis to the lips (Table 1). The vocal tract parameters were
sampled at 5 ms intervals to ensure precision of articulatory
movements. The geometric glottis model accounts for
source-filter interaction during synthesis. The vocal folds were
set to be fully adducted with moderate longitudinal tension for
the CV targets, while the glottis parameters of the CV target
including the distance between vocal cords, glottal gap area
and relative amplitude were optimised during the simulated
learning. The cross-sectional area function of the vocal tract
was converted to a transmission-line model for the
aerodynamic-acoustic simulation in the time domain. The pitch
contours of the synthetic words were generated using pitch tar-
gets learned from the natural speech recordings by PENTAtrai-
ner, an intonation modelling tool (Xu & Prom-on, 2014). The
modelling tool automatically optimised the pitch target



Fig. 2. Illustration of the motor control system. (A) Workflow for controlling the articulatory parameters. (B) Vocal tract parameter trajectories calculated based on the synchronised
dimension-specific sequential target approximation (SDSSTA) in the case of velar stop-vowel sequences. The dashed line represents the articulatory trajectory of the CV target and the
solid lines represent the articulatory trajectories of the CV target.
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parameters based on the pitch contours of natural utterances.
This was done because monotonous intonation may affect lis-
teners’ judgments of segmental quality (Terken & Lemeer,
1988), but we chose to use synthetic f0 contours over natural
ones to make sure that the suprasegmental aspect of the syn-
thetic syllables also came from stochastic-optimisation-based
vocal learning algorithms.2 The audio files were synthesised
with a sampling rate of 44.1 kHz and a quantization of 16 bit.
2.1.2. Coarticulatory dynamics of CV syllables

Akey assumption of the current simulation is that the learning
of articulatory targets starts from theonset of canonical babbling,
whichwepostulate is alreadydriven by the core property of coar-
ticulation dynamics, namely, synchronisation of consonantal,
vocalic and laryngeal movements (Xu & Liu, 2006; Xu, 2020).
In other words, by the time children start to babble canonically
byuttering randomsequences like “bababa. . .”, theyarealready
synchronising their consonantal and vocalic onsets, and the
remaining task is only to learn specific articulatory targets of indi-
vidual segments. These coarticulatory dynamics are what con-
trols the temporal and spatial movements of the articulators
(Fig. 1B), which are simulated by a motor control system that
transforms articulatory targets to vocal tract parameter trajecto-
ries, as illustrated in Fig. 2A. The relative timing of multiple artic-
ulators is controlled by a theoretical coarticulationmechanism—
synchronised dimension-specific sequential target approxima-
tion (SDSSTA) (Xu, 2020; Liu et al., 2022). SDSSTA posits that
2 The PENTAtrainer model was also a learning model, as it extracts the pitch targets
from raw f0 contours via stochastic optimisation (simulated annealing), much like what is
done in the current study. Its development was partly what inspired the current study.
Because pitch target learning is not what is being tested here, no further details are
presented here.
the syllable is a mechanism of synchronising the onset of C
and V articulation at the beginning of the syllable, and that the
ensuing CV co-production is achieved by allowing a specific
articulator dimension, e.g., TCY, to approach theCandV targets
in succession, while the other dimension of the same articulator,
e.g., TCX, approaches the V target from the syllable onset, as
illustrated in Fig. 2B. Such separation of articulator dimensions
thus avoids the need for gestural blending as a core coarticula-
tion mechanism (Saltzman &Munhall, 1989). After the synchro-
nisationmechanismwas applied (step 1 in Fig. 2A), the dynamic
trajectories of the19vocal tract parameterswere thencalculated
by the target approximation model (step 2 in Fig. 2A). The
dynamic trajectorieswere thenpassed to thearticulatory synthe-
sis to generate synthetic sounds (Fig. 1B and C).

After the articulatory movements toward the syllable-initial
consonant and vowel are terminated, all the articulator dimen-
sions begin to approach the next set of articulatory targets in
the same manner. The final coda consonant was implemented
as another hypothetical CV syllable in CVC words (Xu, 2020).
To be more specific, the CV target ensured a closure in the oral
cavity and the CV target allowed the consonant to be released.
The temporal domain of the motor control system is based on
the time alignment of the articulatory targets in the natural
speech. The articulatory dimensions governed by CV targets
are as follows: LD, JX, JA for bilabial stops; TTY, TBY, TS3,
JX, JA for alveolar stops; and TCY, TS2, JX, JA for velar stops.

Next, after the coarticulation model was applied, the
dynamic trajectories of the 19 vocal tract and glottal parame-
ters were calculated by the target approximation model. Quan-
titatively, each articulatory target is defined by its geometrical
position, slope (set to zero in the simulation) and strength
(i.e., the time constant). The movement of the vocal tract
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parameters is modelled by a cascade of several identical first-
order linear systems with the following transfer function:

H sð Þ ¼ Y sð Þ
X sð Þ ¼

1

1þ ssð ÞN

where s and N denote the complex frequency and the order of
the system respectively. s denotes the time constant, which
determines how quickly the target is approached, hence the (in-
verse of the) strength of target approximation. Here, N equals 5,
that is, we use a fifth-order system that reproduces s-shaped
asymptotic movement towards articulatory targets with bell-
shaped velocity profiles. The time-domain representation of
the aforementioned equation can be derived using inverse
Laplace Transform, which results in

y tð Þ ¼ c0 þ c1t þ � � � þ cN�1t
N�1

� �
e

�t
s þ x tð Þ

where x(t) = b is the position of the articulator target (neglecting
here the slope of the target) and t is the time from the beginning
of the target interval. The coefficients are calculated based on
the initial state of y and its derivatives of the articulator at the
onset of the interval (which is equal to the final state of the pre-
vious target approximation movement), as shown in the follow-
ing equation (Birkholz et al., 2011):

ci ¼
y 0ð Þ � bn ¼ 0

y nð Þ oð Þ�
Pn�1

i¼0
ci a

n�1
n

i

� �
i!

n! 0 < n < N

8><
>:
2.1.3. Sensory feedback

The learning of the articulatory targets was supervised by
both auditory feedback and somatosensory feedback. In this
section, we first introduce the two kinds of auditory feedback
(Sections 1.2.3.1–1.2.3.2), followed by a description of the
somatosensory feedback (Section 1.2.3.3).

To examine our second hypothesis regarding which types of
auditory guidance is more advantageous, we included (i)
acoustic features (Fig. 1D) to simulate universal phonetic per-
ception, and (ii) a speech recogniser (Fig. 1E) built for Ameri-
can English to simulate native-language phonological
perception. For (i), we extracted two types of acoustic features
from natural speech as sensory feedback, that is, MFCCs and
Log Mel spectrograms (Davis & Mermelstein, 1980). For (ii),
we trained a speech recogniser using a deep neural network
with convolutional and recurrent layers based on clean speech
of multiple speakers from the LibriSpeech corpus (Panayotov
et al., 2015). The model was trained to learn a mapping from
speech sounds to CVC syllables, which encompasses contex-
tual information of time-series speech signals by combining
spectrotemporal feature processing, temporal feature process-
ing and classification.

Moreover, we implemented somatosensory feedback by
applying two kinds of constraints on the vocal tract parameters
during vocal exploration (Fig. 1F). The vowel constraint
ensured that, for each candidate target set, the opening of
the vocal tract is larger than a minimal cross-sectional area.
The consonant constraint assured a closure over a limited por-
tion of the oral cavity. We implemented the consonant con-
straint according to the uneven distribution of the sensory
receptors on the tongue. Given that the tongue tip is more den-
sely innervated than the tongue dorsum (Marlow et al., 1965),
the closure tube length was set to be shorter in the anterior ton-
gue section than in the posterior tongue section.

2.1.3.1. Acoustic features. As a major goal of the model was to
address the speaker normalisation problem (Hypothesis 1),
we deliberately trained the adult male vocal tract model to learn
from female speech. We recorded the natural speech of a
female native speaker of American English (age: 27) in a
sound-attenuated acoustic laboratory. The sound files were
recorded with a studio-grade microphone and audio interface
at a sampling frequency of 44.1 kHz with 16-bit quantization.
We then extracted MFCCs from the recordings. The Mel-
scale approximates human perception of frequency, which is
more sensitive to low frequencies than high frequencies
(Stevens et al., 1937). We applied high-frequency emphasis
through pre-emphasis (coefficient = 0.97). Frames were then
extracted using 25 ms Hamming windows with 5 ms overlap,
to be consistent with the sampling rate of the vocal tract
parameters during synthesis. We applied 26 Mel filters with a
maximum frequency of 10 kHz and calculated the log-power
of their output to obtain Log Mel spectrograms. We calculated
the DCTof the Mel log power to obtain 22-dimensional MFCCs
(including energy) with sinusoidal cepstral liftering
(coefficient = 2 � number of MFCCs). The acoustic error (E)
was calculated using the Euclidean distance between the 22-
dimensional MFCCs of the target and the synthetic utterances.

We have tested two types of acoustic features in terms of
their proficiency in guiding vocal learning: MFCCs and Log
Mel spectrograms. We trained the model with the two features
to learn and built a word recogniser to evaluate them. The word
recogniser was trained using the Kaldi Speech Recognition
Toolkit and the annotated LibriSpeech corpus (Panayotov
et al., 2015). The corpus contains speech data extracted from
audiobooks recorded by adult male and female speakers of
varied ages. The model is based on Weighted Finite State
Transducers (WFSTs) that use Gaussian mixture models
(GMMs) to model the speech acoustics. The MFCC features
were transformed with Linear Discriminant Analysis (LDA)
and Maximum Likelihood Linear Transform (MLLT). The model
was trained using Speaker Adaptive Training on the 960-hour
LibriSpeech mixed training data. The small pretrained trigram
language model was used in the decoding.

The two types of acoustic features resulted in very similar
word error rates. i.e., no distinction in the intelligibility. We fur-
ther examined the quality of consonants and vowels sepa-
rately. The consonant quality was better when trained by
Log Mel spectrograms, while MFCCs were more advanta-
geous in training the vowels. Detailed analysis of the syn-
thetic speech trained by MFCCs and Log Mel spectrograms
is provided in Appendix Figs. A1–A3. The similarity in the per-
formance of the two acoustic features is consistent with a pre-
vious study which suggests that various feature-metric
combinations impact minimally on the performance of dealing
with the speaker normalisation problem (Gerazov et al.,
2020).

2.1.3.2. Speech recogniser. A speech recogniser was trained to
simulate a phonological perceptual space that discriminate the
phonemes of CVC syllables in American English. To cover the
phonemes in the target word list, speech segments were



Table 2
Speech data for training the speech recogniser.

Number of utterances Size Duration

Training 2,711,615 21 G 116.7 h
Validation 337,109 2.6 G 14.4 h
Test 345,263 2.7 G 15 h

3 We have previously also tried derivative-based algorithms such as gradient descent
but found them to be unviable.
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extractedwith 11onset consonants (/b/, /d/, /g/, /p/, /t/, /k/, /y/, /w/,
/n/, /m/, /l/), 12 vowels and 5 diphthongs (stressed /aɪ/, /aʊ/, /eɪ/,
/i/, /oʊ/, /u/, /æ/, /ɑ/, /ɔ/, /ɔɪ/, /e/, /ɪ/, /ʊ/, /ʌ/ and unstressed /i/, /oʊ/,
/ʌ/) and 6 coda consonants (/b/, /d/, /g/, /n/, /m/, /N/). The speech
data varied in termsof syllable type, including 17 vowels, 187CV
syllables and 1122 CVC words. The details of the speech data
used for the training, validation and testing are shown in Table 2.
26-dimensional Log Mel spectrograms of the recordings were
computed based on the same settings for extracting acoustic
features and pre-padded to a length of 200 frames (spanning
1 s) to be used as the input for the training. The deep neural net-
work is comprised of convolutional layers that extract spec-
trotemporal features, long short-term memory (LSTM) layers
that capture temporal features and finally dense layers for classi-
fication. More details about the architecture are provided in
Appendix Fig. A4.

The trained speech recogniser had a phoneme accuracy of
94% in the onset position, 88% in the vowel position and 98%
in the coda position. We also tested a model trained with 22-
dimensional MFCCs and the accuracy was 93%, 87% and
98% respectively. The Log Mel spectrogram had better overall
performance (93%) than the 22 MFCCs (92%) and thus it was
adopted in the current simulations. The 34-dimensional output
vector of the speech recogniser represents a one-hot encoding
of the onset consonant, the vowel, and the coda consonant of
CVC syllables. The recognition loss of the CVC words is the
Euclidean distance between the target vector and the recog-
nised vector of the synthetic speech, by the following equation:

L ¼ ðpi � qiÞ2; i ¼ 1; � � � ;N
where pi represents the target phoneme vector and qi repre-
sents the recognised phoneme vector. The pi and qi are values
between 0 and 1. The output vector is a 34-dimensional percep-
tual space for a CVC syllable, i.e., N = 34 in the equation.

2.1.3.3. Somatosensory feedback. Somatosensory feedback
refers to different neural signals generated by the sense of
touch that could inform the learner about the state of their artic-
ulators. We implemented it as a type of “offline” feedback sim-
ilar to the auditory feedback. Given the robustness of the touch
sensation of the tongue and the wall of the oral cavity devel-
oped for eating, it is conceivable that such somatosensory
information could be used to guide vocal learning. We imple-
mented somatosensory feedback by applying two kinds of con-
straints on the vocal tract parameters during vocal exploration.
The somatosensory signal indicates whether the oral cavity is
open or closed. The vowel constraint is to ensure that the
opening of the vocal tract is larger than a minimal cross-
sectional area and the consonant constraint is to ensure a clo-
sure over a limited portion of the oral cavity. We implemented
the two constraints by checking the tube area during the
dynamic articulator movements. According to the constriction
settings of VocalTractLab, tube area in the oral cavity larger
than 0.25 cm2 for the adult vocal tract model and 0.15 cm2

for the child vocal tract models is considered as an open vocal
tract. All the CV targets that did not pass the check were filtered
out. With regard to CV target, the number of closed tube areas
varied with the place of articulation of the target consonant.
The total number of tube area sections is 40. A tube area less
than 0.0001 cm2 in VocalTractLab indicates a closed vocal
tract. We allowed up to 4 closed tube sections to ensure closed
lips for bilabial stops. Due to the built-in interdependency
between lip protrusion parameter and lip distance parameter
in the articulatory synthesiser, the threshold of closed tube
area was 0.15 cm2 for bilabial stops preceding rounded vowels
in /booed/. Moreover, we implemented the consonant con-
straint according to the uneven distribution of the sensory
receptors on the tongue. Because the tongue tip is highly
innervated compared to the tongue dorsum (Marlow et al.,
1965; Moayedi et al., 2021), the closure tube length was set
to be shorter in the anterior tongue section and longer in the
posterior tongue section. Specifically, the number of closed
tube area sections were set to be less than 3 for alveolar stops
and less than 9 for velar stops, except for alveolar stops before
high vowels. In English, alveolar stops preceding high front
vowels are likely to be palatalized (Bateman, 2007), which sug-
gests a larger area of contact during the consonant articulation.
The number of closed tube area sections was therefore set to
be less than 9 for /deed/ and 6 for /did/.

2.1.4. Learning algorithms

Based on the hierarchical mechanisms of associative learn-
ing, we simulated the learning process in two stages i.e.,
exploration and refinement (Makino et al., 2016). In the first
stage, the model explores the learning space and selects
motor behaviour with preferred outcome based on the sensory
information. In the second stage, the model exploits the
selected motor behaviour to find the final optimal solution.

As vocal learning is a non-convex optimisation problem
where the goal is to find optimal high-dimensional articulatory
parameters (i.e., targets), metaheuristic gradient-free optimisa-
tion algorithms are appropriate (Larson et al., 2019).3 We
chose simulated annealing (Kirkpatrick et al., 1983) as the opti-
misation algorithm because it has been shown to be effective in
our previous work on modelling tone and intonation (Xu & Prom-
on, 2014), which was also one of the best gradient-free algo-
rithms that we have tested, with small loss values as well as
low computation time (Krug et al., 2023). It is a stochastic algo-
rithm that seeks an optimal solution through a coarse-to-fine cri-
terion. This algorithm can heuristically optimise models with
many degrees of freedom, such as the speech production sys-
tem. The learning process started with a neutral position (schwa)
followed by adjustments of the vocal tract parameters to min-
imise the sensory errors.

During the optimisation, the articulatory targets were itera-
tively adjusted and tested, and whether they get accepted is
determined by a probability p.

p ¼ 1 if DE < 0

e�DE=T otherwise

�
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where DE is the change in the error of the objective function
between the current and the previous attempt. T is the temper-
ature that controls the annealing process, which starts at a high
value and decreases at each step based on the following
equation.

T ¼ 1� k=kmax

where k is the current iteration and kmax is the total number of
iterations. The gradually reducing temperature was additionally
constrained to be higher than 0.1 to ensure a minimal amount of
parameter change in the later optimisation process. A uniformly
distributed random number r between 0 and 1 is generated as a
criterion for deciding whether the current trial is accepted. If the
error is lower than the current error, the current adjustment is
accepted. However, the algorithm also keeps some changes
that are not ideal. If the probability of acceptance p > r, the
new attempt is still accepted. This allows a balance between
exploration and exploitation of optimal parameters. The gradual
decrease of control temperature T throughout the process
therefore means that any new target in the earlier stages is
likely to be accepted but only targets with low errors are
accepted in the later trials.

In the first learning stage, we initiated 10 processes in par-
allel, each with 2k iterations. Each process started with a neu-
tral position (schwa) followed by random adjustments of the
vocal tract parameters and gradually converged to a solution,
as displayed in Appendix Fig. A5. Next, we selected the best
candidate of each of the 10 processes for a more localised
optimisation. In the second stage, the 10 processes randomly
walked around these selected sets of articulatory targets for
200 iterations. More specifically, the model generated a neigh-
bour solution based on the previous trial as follows:

x0
i ¼ xi þ RWi ; i ¼ 1; � � � ;N
in which xi is the 18-dimensional articulatory target, consisting
of 17 vocal tract parameters and 1 time constant (N ¼ 18).
Wi is added to adjust the relative step of the random walk,
based on the range of the vocal tract parameters and the time
constant. R is a uniformly sampled random number between
�1 and 1. x0

i is further constrained by the range of the
parameters.

2.2. Hypothesis testing by listening experiments

To examine the three hypotheses, we conducted listening
experiments to assess the learned synthetic speech under dif-
ferent conditions.

Hypothesis 1: End-to-end vocal learning can be simulated
without explicit speaker normalisation by a combination of
auditory guidance and coarticulatory dynamics.

To test hypothesis 1, we compared the synthetic speech learned by
the adult model with natural speech as the baseline condition. If
synthetic speech can reach the intelligibility of natural speech, then
vocal learning guided by auditory guidance would be deemed
possible.
Hypothesis 2: Language-specific perception simulated by
an automatic speech recogniser provides better auditory guid-
ance than language-universal phonetic imitation simulated by
acoustic matching.
To test Hypothesis 2, we compared the speech learning perfor-
mance guided by acoustic features and by the speech recogniser.
The auditory feedback that generated more intelligible speech
would be deemed as more advantageous.

Hypothesis 3: Vocal learning can be simulated also with a
vocal tract with child anatomical configurations.

To test hypothesis 3, we assessed the speech learned by a 1-year-
old and a 3-year-old model. If the children’s models also learned
intelligible speech, then anatomical structure would be deemed
as not constituting a barrier for vocal learning.

In addition, we used two types of listening experiments to
evaluate the intelligibility of the synthetic speech, i.e., open-
vocabulary dictation and multiple choice. In the open-
vocabulary dictation, listeners were free to write down what
they heard without any prompt. In the multiple choice, listeners
were asked to choose from a fixed set of words. We assured
that the online participants were not allowed to participate in
the listening tasks more than once to avoid practice effects
(Salthouse, 2012).

2.2.1. Speech materials

We trained the adult and the child vocal tract models to
learn the target words guided by the sensory feedback options
in Fig. 1D–F. The learning targets were minimal pairs of real
English words with CVC syllable structures, containing bilabial,
alveolar, and velar stops, as follows: “bead”, “bid”, “bed”, “bad”,
“bod”, “booed”, “bud”, “deed”, “did”, “dead”, “dad”, “god”,
“good”, “body”, “buddy”, “Debbie” and “daddy”. The learned
articulatory parameters were then also used to synthesise
novel CVCV words to verify their generalisability.

2.2.2. Listeners

173 monolingual American English native speakers
between 18 and 50 years old participated in the online listening
experiment. The participants were born and raised in the US,
without any self-reported speech or hearing disorders. Among
them, 47 did not pass the headphone screening; 5 were
excluded from the experiment because of apparently atypical
American accents; and 1 was excluded because of noise in
the submitted recordings that suggested a noisy listening envi-
ronment. We recruited 30 participants separately for four
experimental conditions (120 listeners in total). The procedure
has been approved by the Department of Speech, Hearing and
Phonetic Sciences, University College London and the exper-
iments complied with all relevant ethical regulations. Informed
consent from all the participants was obtained online on
Gorilla.

2.2.3. Procedure

We conducted a between-subject listening experiment with
four conditions to evaluate the acoustic-feature-trained and
recogniser-trained models in a set of open-vocabulary dictation
tasks and a set of multiple-choice tasks. Participants were
recruited and screened on Prolific (prolific.co) and then direc-
ted to Gorilla (gorilla.sc) for the online experiment. The partic-
ipants first filled in a brief questionnaire for demographic and
language background information. To verify their accents, par-
ticipants were asked to read the first two sentences of the story
“The North Wind and the Sun”, a well-established text recom-
mended by the IPA for eliciting English phonetic contrast. Par-

http://prolific.co
http://gorilla.sc


Table 3
Phonemes are labelled using CMU pronunciation dictionary (Carnegie Mellon University,
2022).

Target B AA D

Insertion B L AA D
Correct Incorrect Correct

Deletion AA D
Incorrect Correct Correct
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ticipants were asked to undertake the tasks on a computer in a
quiet environment without noise or other distractions. A head-
phone screening was conducted to ensure that the participants
were wearing headphones. The listeners were asked to
choose the quietest sounds out of three pure tones with one
of the tones presented 180� out of phase across the stereo
channels. The listeners who were wearing headphones were
more likely to discriminate the sounds because a loudspeaker
would have resulted in phase cancellation (Woods et al.,
2017).

The participants who passed the screening were given five
practice trials to get familiarised with the experiment. They
were then randomly presented with the words produced by
the female speaker, the synthetic sounds learned by the adult
male, by the 1-year-old, and by the 3-year-old vocal tract mod-
els. 3 unique tokens of the 17 target words (see speech mate-
rials) were included in each condition. For the open-vocabulary
dictation, the participants were instructed to listen to the audio
carefully and freely write down the word they had heard. For
the multiple-choice task, the participants were asked to choose
the word from a list of 17 words.
2.3. Analysis

After the listening experiments, we analysed the response
from the participants. The response was annotated with phone
labels using the CMU pronunciation dictionary (Carnegie
Mellon University, 2022) by pronouncing package (Parrish,
2022). We then manually added the phone labels for those
responses without automatic annotation. In the case of pho-
neme insertion and deletion, we aligned the recognised pho-
nemes maximally as shown in Table 3. Responses with
reaction time shorter than the length of the stimuli were
excluded in the analysis. The recognition rate was calculated
in terms of how many segments were correctly identified.
Due to the skewed distribution of the data and the small sam-
ple size, non-parametric statistical tests, including Kruskal-
Wallis test, Wilcoxon Signed Rank test and Spearman correla-
tion, were conducted to evaluate reaction time and phoneme
accuracy. We report the W statistics and V statistics for
unpaired and paired Wilcoxon Signed Rank tests respectively.
Post-hoc comparisons were conducted by Wilcoxon Signed
Rank test with Bonferroni correction.
3. Results

In this section, we will first report the results of the simulated
adult vocal learning guided by a speech recogniser in compar-
ison with natural female speech as the baseline condition to
verify whether the perception-guided learning mechanism is
plausible without explicit speaker normalisation (Hypothesis
1). We will subsequently examine how sensory feedback
may impact on the performance of the model. The synthetic
utterances trained by the speech recogniser (simulating
language-specific perception) and acoustic features (simulat-
ing universal perception) will be compared (Hypothesis 2).
Finally, we will report the intelligibility of the children’s vocal
learning along with its comparison with the adult model for
the sake of evaluating the effect of age-related anatomical dif-
ference in the vocal tracts (Hypothesis 3).
3.1. Viability of recognition-guided vocal learning (Hypothesis 1)

To assess whether the model is able to accomplish vocal
learning, we evaluated the learned synthetic speech in terms
of both acoustic matching and perceptual intelligibility. The
vocal tract model started with a broad search in the motor
space and gradually converged to an optimal solution
(Fig. 3A). The learned synthetic male speech trained by the
speech recogniser shows a momentary burst of the onset con-
sonant followed by clear vowel formants and high energy aspi-
ration of the coda consonant, similar to the natural speech of a
female speaker (Fig. 3B). In the open-vocabulary dictation
task, the mean accuracy was 76% for the adult synthetic
speech and 95% for the natural speech. Wilcoxon signed-
rank tests showed that the natural female speech was more
intelligible than the synthetic male speech in the open-
vocabulary dictation task (W = 877, p < .001) and the
multiple-choice task (W = 893, p < .001). CVC words learned
by the adult vocal tract model were highly intelligible, with a
median accuracy of 87%, 60%, 82% for the onset, vowel and
coda, respectively, although this was short of the near perfect
recognition of the reference natural speech (Onset: 95%,
Vowel: 97%, Coda: 100%). It is worth noting that some listen-
ers were able to identify the synthetic speech with accuracy
close to natural speech (Fig. 3C).

The recogniser-guided adult vocal tract model learned intel-
ligible consonants in both the onset and coda positions,
although the vowels in the synthetic speech were not always
correctly identified (Fig. 4A). Bilabial stops in ‘bed’, ‘bid’ and
‘bod’ and alveolar stops in ‘deed’ and ‘did’ were perfectly iden-
tified with identification rates being greater than or equal to the
natural female speech in the open-vocabulary task (Fig. 4B).
Wilcoxon Signed Rank tests showed that the natural speech
had higher phoneme accuracies in all the syllable positions
in the open-vocabulary dictation task (Onset: V = 368.5,
p < .001, Vowel: V = 465, p < .001, Coda: V = 426.5,
p < .001) and the multiple-choice task (Onset: V = 431,
p < .001, Vowel: V = 465, p < .001). Wilcoxon Signed Rank
tests showed that the phoneme accuracy of CV syllables did
not differ significantly between the two types of task conditions
(W = 1548, p = .186). The identification rate of phoneme accu-
racy in each target word is provided in Appendix Additional
Analysis: Adult model.

We further analysed the learned articulatory targets of the
model. The results show that consonant configurations varied
depending on the vowel context (Fig. 3E). The bilabial stops /
b/, for example, were articulated with closed lips in both
instances but the tongue shape at the consonant closure is



Fig. 3. Performance of vocal learning model. (A) Illustration of vocal learning progress. In the exploration stage, the model was allowed to randomly search around the vocal tract
space, while in the refinement stage, solutions around the previous stage were exploited despite a small amount of exploration. Yellow: accepted trials; Orange: converged solution. (B)
Waveform and Mel-spectrograms of ‘bad’ produced by a native speaker and an adult male vocal tract model. (C) Histograms and Kernel density estimates of mean phoneme accuracy
of CVC words produced by a female native speaker and learned by an adult male vocal tract model in listening experiments. (D) First formant (F1) and Second formant (F2) of vowels in
CVC words with bilabial stops learned by the adult vocal tract model (represented by International Phonetic Alphabet). The best 20 instances per target word were selected based on
recognition error. (E) Midsagittal sections of the learned vocal tract shapes. The solid and dashed lines represent the tongue side positions in the front and back respectively. Arrows
point at the constrictions formed by the CV targets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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already partially controlled by the vowel. In the case of /d/, the
tongue body during the closure was higher in ‘deed’ than in
‘did’. For /g/, the tongue body was more advanced in ‘good’
than in ‘god’ because the vowel in ‘good’ is a front vowel.
Despite the context-sensitive consonant articulation, acoustic
characteristics of the learned vowels in the same category
form consistent clusters (Fig. 3D). Furthermore, to verify
whether the acquired motor repertoire generalises to novel
words, we reused the learned vocal tract parameters to synthe-
sise CVCV syllables. The synthetic words achieved a similar
identification rate as the natural female speech in the
multiple-choice task (Appendix Fig. A7). The mean phoneme
accuracy was 88% for the synthetic male speech and 95%
for the natural female speech in the open-vocabulary task.
The natural speech had significantly higher identification accu-
racies than the synthetic speech (Wilcoxon signed-rank,
p < .001). With respect to the multiple-choice task, the mean
identification rate was 96% for the synthetic words and 97%
for the natural words. The synthetic speech and natural speech
did not differ significantly (Wilcoxon signed-rank, p = .442).
There were some confusions between ‘body’ and ‘buddy’,
while ‘Debbie’ and ‘daddy’ were almost perfectly identified.



Fig. 4. Comparison between natural female speech and synthetic male speech in the listening experiment. (A) Phoneme accuracy of natural and synthetic speech in different syllable
positions, evaluated by open-vocabulary dictation and multiple-choice tasks. Coda accuracy was not evaluated in the multiple-choice task because the coda consonant remains
constant in the word list. **** p � 10�4. (B) Mean phoneme accuracy of CVC words produced by the female native speaker and the male vocal tract model in different syllable positions,
measured by open-vocabulary dictation.
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The high intelligibility shows that the learned vocal tract param-
eters can generalise to novel multisyllabic words that the
model was not trained on.
3.2. Language-specific perception vs. universal phonetic perception as
learning guide (Hypothesis 2)

Having successfully simulated the learning of intelligible
English words, we can now evaluate the associated influenc-
ing factors. We simulated language-specific perception by a
phonological speech recogniser and universal phonetic per-
ception by acoustic features that captures all the details. The
results indicated that words trained by the speech recogniser
were more intelligible than those trained by acoustic features
in both the open-vocabulary dictation task (Fig. 5A:
W = 52.5, p < .001) and multiple-choice task (Fig. 5B:
W = 790, p < .001, Wilcoxon signed-rank). Post-hoc compar-
isons showed that the tendency was the same for vocal tract
models of adult and children in both the open-vocabulary
(1y: p < .001, 3y: p < .001, Adult: p < .001) and multiple-
choice tasks (1y: p < .001, 3y: p < .001, Adult: p < .001). In
terms of the property of the phoneme, the recogniser-trained
words had higher accuracies in the onset (W = 241,
p < .001), the vowel (W = 1512.5, p < .001) and the coda
(W = 2462, p < .001, Wilcoxon signed-rank) positions than
those trained by MFCCs (Fig. 5C). These results suggest that
native-language phonological perception simulated by the
speech recogniser was more successful than universal pho-
netic perception simulated by acoustic features.

The benefit of perceptual guidance is most clearly seen in
the relationship between the recognition rates by human listen-
ers and the feedback type. Spearman’s correlation shows no
correlation between human accuracy and acoustic error
(Fig. 5D), whereas there is a significant negative correlation
between human accuracy and recognition error (Fig. 5E), sug-
gesting a commonality between the recogniser evaluation and
human perception. We further compared how target words
were identified by the speech recogniser, MFCCs and native
listeners. The speech recogniser and the listeners had consis-
tent judgement towards almost all the synthetic speech, while



Fig. 5. Effects of sensory feedback on vocal learning. (A, B) Mean phoneme accuracy (39 CVC words) of vocal tract models in the open-vocabulary (A) and multiple-choice (B) tasks.
Error bars show standard errors. (C) Phoneme accuracy in different syllable positions. (D, E) Relationship between open-vocabulary dictation accuracy and types of auditory feedback:
acoustic features (D) and the recogniser (E). (F) Effect of somatosensory feedback in recognition error of words learned by an adult vocal tract model, evaluated by the recogniser. The
best 10 instances per CVC word are included. ** p � 10�2, **** p � 10�4.
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the normalised identification scores of MFCCs and the listen-
ers were fairly discrepant (Fig. 6). Moreover, listeners spent
more time on identifying words trained by acoustic features
in both the open-vocabulary dictation and multiple-choice
tasks (Fig. 7). Wilcoxon Signed Rank tests showed that reac-
tion time was significantly longer for MFCC-trained speech
Fig. 6. Comparison of human identification with the speech recogniser and MFCCs by targe
listeners and the speech recogniser (A) or MFCCs (B). Phoneme accuracy judged by native lis
were also normalised to have the same range but in a reversed order.
regardless of the task type (Open-vocabulary: W = 8455108,
p < .001, Multiple-choice: W = 8294666, p < .001).

In addition, we simulated somatosensory feedback by a
constraint on the degree of oral opening for each generated
vocal tract configuration during vocal exploration. The con-
straint ensured an open vocal tract for vowels and a narrow
t words. (A, B) Normalised identification scores of the target words judged by the native
teners were normalised to values between 0 and 1. Recognition errors and MFCC errors



Fig. 7. Effects of type of auditory feedback on simulated vocal learning. (A, B) Reaction
time of American English listeners in the open-vocabulary dictation task (A) and in the
multiple-choice task (B). The vertical lines represent the median reaction time for the two
types of auditory feedback. The listeners were asked to identify CVC and CVCV words
learned by vocal tract models of different ages.
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vocal tract for consonants. As shown in Fig. 5F, with the same
number of iterations, the model with somatosensory feedback
learned more intelligible words than the baseline (W = 10429,
p = 0.001, Wilcoxon signed-rank test). Note, however, that the
model yielded speech sounds with low recognition error even
without somatosensory feedback.

3.3. Effect of age-related anatomical differences on vocal learning
(Hypothesis 3)

We further examined the speech learned by a 1-year-old
and a 3-year-old model to see if children’s vocal learning can
Fig. 8. Consonant and vowel accuracy of child models. (A, B) Boxplots of phoneme accuracy
boy’s vocal tract models, measured in an open-vocabulary dictation task (A) and a multiple-ch
evaluated in the multiple-choice task was the intelligibility of the initial CV portion of the words.
lines indicate that the 3-year-old model had higher phoneme accuracy than the 1-year-old mo
(C). Mean phoneme accuracy of utterances learned by the 1-year-old boy and a 3-year-old boy
CVC words, measured in an open-vocabulary dictation task. 30 American English listeners f
be simulated. We analysed the by-phoneme position accuracy
rate of the CVC words learned by the two child vocal tract mod-
els. In the open-vocabulary dictation task, the 1-year-old model
had a median of 56% phoneme accuracy rate in the onset
position, compared with 63% for the 3-year-old model. Listen-
ers correctly transcribed 32% of the vowels learned by the 1-
year-old model and 38% with the 3-year-old model. For the
coda position, the median identification was 68% for the 1-
year-old model and 69% for the 3-year-old model. Both models
had higher intelligibility in the consonant positions than the
vowel position.

The two models had similar accuracies for bilabial stops
and alveolar stops. However, the 1-year-old model learned
poorer velar stops in ‘god’ and ‘good’, when compared with
the 3-year-old model. With respect to the learning of vowels,
the two models had comparable performance for most of the
vowels. The 3-year-old model yet again showed better results
in the case of /ʊ/ in ‘good’ and /ɒ/ in ‘god’ than the 1-year-old
model. The vowel groups learned by the 3-year-old model dis-
tributed more concentratedly than the 1-year-old model
(Appendix Fig. A6). Both child models failed to learn intelligible
/ɒ/ in ‘bod’.

Fig. 8A and B compare the identification accuracy of the
phonemes in CVC words learned by the two child models.
Each connected line represents the average phoneme accu-
racy of one listener. Solid lines indicate that the 3-year-old
model has higher phoneme accuracies than the 1-year-old
model and vice versa for the dashed lines. Native listeners
in different syllable positions of CVC words learned by the 1-year-old boy and 3-year-old
oice task (B). Given that the coda consonant remains the same in the word list, what was
Each connected line represents the average phoneme accuracy of one listener. The solid
del and vice versa for the dashed lines. ns p > 0.05, *p < 0.05, **p � 10�2, ****p � 10�4.
’s vocal tract models in the onset position, the vowel position, and the coda position of the
reely transcribed the utterances.
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sometimes had higher identification rates when judging
speech learned by the 1-year-old model than by the 3-year-
old model in the open-vocabulary dictation task (dashed lines).
In contrast, we can rarely see such cases in the multiple-
choice task, that is, there were only a few cases where the
words learned by the 1-year-old model were more intelligible
than the 3-year-old model (Detailed intelligibility analysis of
each target word learned by the two child models is provide
in Appendix Additional Analysis: Child models). Wilcoxon
signed-rank tests showed that the 3-year-old model learned
more intelligible speech in the onset (p = .019) and the coda
position (p = .019), but not in the vowel position (p = .063) in
the open-vocabulary task. In the multiple-choice task, similarly,
the 3-year-old model had higher accuracies than the 1-year-old
model in both the onset and the vowel position (Wilcoxon
signed-rank: p < .001). The increase in the perceptual accu-
racy suggests that the growing child vocal tract has enhanced
capability to learn articulatory targets that yield intelligible
speech.

We also compared the performance of the speech learned
by adult and child vocal tract models. The Kruskal-Wallis tests
showed that the age of the vocal tract model had a significant
effect on the intelligibility of the learned CVC words, as mea-
sured by the open-vocabulary dictation (v2 = 50.381, df = 2,
p < .001) and multiple-choice (v2 = 52.678, df = 2, p < .001)
tasks (Fig. 9A). Post-hoc comparisons showed that the adult
model had higher mean phoneme accuracy than the two child
models (Open-vocabulary: 1y: p < .001 and 3y: p < .001;
Multiple-choice: 1y: p < .001 and 3y: p < .001). Consistent with
the listening results, the models of different ages also yielded
divergent recognition errors with the same number of iterations
(Fig. 9B, v2 = 62.189, df = 2, p < .001, Kruskal-Wallis test).
Post-hoc comparisons showed that the adult male vocal tract
model learned CVC words with lower recognition errors than
the child models (1y: p < .001 and 3y: p < .001). However,
the 3-year-old model had comparable recognition errors to
the 1-year-old model (p = .067). Again, we tested the general-
isability of the learned articulatory targets by resynthesising
CVCV syllables. The identification of the resynthesised CVCV
words was easier than the CVC words in the open-vocabulary
dictation task (Fig. 9C, W = 1626, p < .001, Wilcoxon signed-
rank test). Post-hoc comparisons showed that the accuracy
was higher for CVCV words than for CVC words regardless
Fig. 9. Performance of vocal learning models of different ages. (A) Mean phoneme accuracy o
evaluated by open-vocabulary and multiple-choice tasks. Error bars show standard errors.
Outliers outside 1.5 times the interquartile range are not shown. (C) Overall phoneme accurac
open-vocabulary dictation task. ns p > 0.05, ***p � 10�3, ****p � 10�4.
of the age of the model (1y: p < .001, 3y: p < .001, Adult:
p < .001).
4. Discussion

In this study, we have built a computational model that can
simulate vocal learning guided by either phonetic imitation or
phonological perception. Results of open-vocabulary dictation
and multiple-choice evaluations show that highly intelligible
English words can be learned under perceptual guidance,
while only moderate intelligibility can be achieved when guided
by phonetic imitation. The performance under both guidance
strategies, however, well exceeds those of previous simulation
works. Even the vocal tract model configured with two child
vocal tract dimensions were able to learn fairly intelligible
words, although the quality was not as high as that of the adult
model. These results, therefore, show that the speaker normal-
isation or the correspondence problem previously believed to
be insurmountable is no longer a barrier under the learning
model developed here. In the following we will discuss the
key aspects of the model that have contributed to its learning
efficiency.

4.1. Coarticulatory dynamics

Our results have also shown that words trained with a
speech recogniser was intelligible (76% phoneme accuracy)
and even those trained with acoustic features achieved 48%
phoneme accuracy in the multiple-choice task with 17 choices.
One of the key aspects absent in previous simulation works on
vocal learning is explicit modelling of coarticulation dynamics.
The current modelling work adopted SDSSTA (Xu, 2020; Liu
et al., 2022) as the coarticulation model (Section 2.1.2). The
target approximation (TA) part of SDSSTA assumes that every
articulatory movement is an act of asymptotically approaching
an underlying target (Xu & Emily Wang, 2001; Birkholz et al.,
2011).

This means that the learning process only needs to explore
TA generated movement trajectories, which not only massively
reduces the total number of vocal explorations needed, but
also makes sure that the synthetic utterances generated at
the end of learning are also always articulatorily plausible.
The power of TA was already seen in our previous studies.
Prom-on et al. (2014a, 2014b) found that using VocalTractLab
f CVC words learned by the 1-year-old boy, 3-year-old boy and adult vocal tract models,
(B) Recognition error distributions of 10-best CVC words evaluated by the recogniser.
y of CVC words and CVCV words learned by the adult and child vocal tract models in the
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with built-in TA model and MFCC matching as feedback, Thai
vowels could be learned from natural two-vowel Thai words,
with synthetic intelligibility equal to the original natural speech.
Prom-on et al. (2013) found that syllables with only glide con-
sonants could be learned with high naturalness by informal lis-
tening. But that line of modelling work encountered difficulty
when trying to simulate the learning of syllables with obstruent
consonants. It was not until the expansion of TA into SDSSTA
that we started to see initial success in learning some non-
glide consonants.

SDSSTA is motivated by not only empirical and modelling
studies of tone and segment, but also consideration of the
problem of too many degrees of freedom in motor control
(Bernstein, 1967). The CV synchrony assumed in SDSSTA
removes the need to explore the relative timing of C and V
while learning their targets. In other words, the effective explo-
ration of specific articulatory targets starts only from when chil-
dren are able to synchronise CV onsets, i.e., when they have
started canonical babbling. Whether CV synchrony is indeed
in place in canonical babbling, however, awaits confirmation
from future investigations. Furthermore, additional research is
needed to better understand how the learned C and V targets
can be deployed across various speaking rates. Finally,
SDSSTA solves the conflict of CV co-execution by allowing dif-
ferent articulators involved in a segment and even different
dimensions of the same articulator to be sequentially con-
trolled (i.e., without overlap or blending) by either consonant
or vowel. This allows the learning process to find solutions that
echo existing finding, e.g., variable contact locations in velar
consonants when coproduced with different vowels (Fig. 3E).

There are various alternative models to the target approxi-
mation component of SDSSTA, the general Tau theory (Elie
et al., 2023), the equilibrium point hypothesis (Perrier et al.,
1996), the FACTS mode (Parrell et al., 2019), and the Task
Dynamic model (TD) (Saltzman & Munhall, 1989), but only
TD explicitly models coarticulation, like in SDSSTA. TD never-
theless differs from SDSSTA in some non-trivial ways. First,
instead of stipulated CV synchrony in SDSSTA, TD requires
settling the relative timing of adjacent segments prior to the
articulation of each syllable. Second, instead of strict sequen-
tial articulation at the level of articulatory dimensions, TD
allows articulatory blending for temporally overlapped ges-
tures. Third, in the implementation of TD, the intergestural tim-
ing needed additional models such as Coupled Oscillation
model in TADA system as an extension to the original model
(Nam et al., 2004). Fourth, in the modelling practice of TD, tar-
gets are widely assumed to be virtually reached, because (a)
the magnitude of articulatory trajectories is treated as the
actual size of the gestural scores in a simplified model
(Browman & Goldstein, 1990: 303), and (b) undershoot is inter-
preted to be generally avoided (Tilsen, 2019: 2). This differs
from the simulation work here that assumes that targets are
often not reached (Xu & Prom-on, 2019), but can still be
learned regardless of the undershoot in real production. The
impacts of these differences are unknown, however, and it will
require a systematic comparison of simulated vocal learning to
find out.

The application of SDSSTA in the current modelling work
has also led to an unexpected finding, i.e., the learning process
has generated variability along articulatory dimensions that are
unrestrained by the CV target. It is consistent with the notion of
uncontrolled manifolds in the motor control literature, i.e., low
variability along task-relevant dimensions, but high variability
along task-irrelevant dimensions (Scholz & Schöner, 1999;
Todorov & Jordan, 2002). As shown in Fig. 10, the variability
is low in the tongue positions for the CV target, while the CV tar-
get shows less variance in the articulator dimensions that are
critical for forming constrictions. Thus, desirable task-specific
variability patterns (Scholz & Schöner, 1999; Todorov &
Jordan, 2002) may emerge as a result of vocal learning when
two goals (C and V) are executed at the same time. As the
functional objectives of speech are more clearly defined and
more multifaceted than the artificial tasks often examined in
typical motor control studies (Wolpert et al., 2011), the current
vocal learning model may contribute significantly to theories of
motor control.

A limitation of this study is that the learning model in our cur-
rent work was only trained to articulate specific syllables. It
could be argued that this approach is inconsistent with the
well-accepted notion of segments as being independent of
each other. However, there is no research that can indicate
which is harder: having to learn more syllable-specific targets
or having to work out invariant targets that are applicable to
all syllabic contexts. Given that children may have greater
coarticulation than adults (Zharkova et al., 2011; Zharkova,
2018), i.e., with more vowel-specific consonant articulation, it
is conceivable that adults are just further on their way toward
fully invariant targets. Since there is no existing simulation of
vocal learning that has demonstrated the advantage of invari-
ant over syllable-specific segmental targets, we can only leave
this issue to future modelling works.
4.2. Auditory feedback in vocal learning

Our initial modelling based on acoustic matching soon
encountered difficulty to improve the synthetic quality beyond
a rather moderate level for certain syllables, and to learn some
other syllables at all. The adoption of speech recognition as an
alternative to acoustic matching brought immediate improve-
ment to the learning performance, which led to the systematic
comparison of the two kinds of error signals as auditory feed-
back that guides vocal learning, as reported in this paper.
Acoustic errors are similar to general auditory perception or
universal phonetic perception at the early developmental
stage, whilst the speech recogniser is comparable to native-
language phonological perception at the later stage (Werker
& Lalonde, 1988; Kuhl, 2000). The comparison shows that
speech-recogniser-simulated language specific phonological
perception is far more beneficial than acoustic-matching-
simulated universal phonetic imitation.

This finding is in line with previous suggestions that auditory
experience gained during perception acquisition may guide
vocal learning (Kuhl, 2000), but the nature of such auditory
experience has been unclear. It could be in the form of auditory
templates as suggested for songbirds (Phan et al., 2006; Zhao
et al., 2019). But such templates would take up a lot of neural
resources, especially if they need to represent sufficient cross-
speaker variability as suggested by the exemplar theory
(Goldinger, 1996). The new finding reported here suggests that
a neural network trained for the purpose of speech perception



Fig. 10. Learned vocal tract parameters of syllabic CV and CV targets after the optimisation of the CV sequence in ‘bad’. Histograms show 200 sets of learned targets with lowest
recognition errors for the syllabic CV and CV target separately. For the CV target, tongue tip and tongue body horizontal positions (TCX, TTX), hyoid height (HY), lip protrusion (LP)
exhibit concentrated distribution, while jaw angle (JA), jaw horizontal position (JX) lip distance (LD) seem widely distributed. The CV controlled LD, JA and JX during coarticulation and
these parameters are narrowly distributed after training.

A. Xu et al. / Journal of Phonetics 105 (2024) 101338 17
would be sufficient to guide vocal learning, so that there may
be no need to store any auditory templates or exemplars. Fur-
thermore, the recogniser captures the key acoustic details that
can sufficiently discriminate between different syllables in a
given language, which is precisely what is lacking in the acous-
tic templates.

Note that a speech recogniser trained by multiple speakers,
like the one used in the present study, may represent an audi-
tory space that is distorted by the language specific phonology,
which is reminiscent of the warped auditory map depicted by
the magnet effect (Kuhl, 1991; Kuhl et al., 2008). This would
be exactly what is needed to guide the learners to find articu-
latory targets that would satisfy their perception. That this
seems to be the case can be best seen in the high correlation
between listeners’ perception accuracy patterns with the
recognition errors by the speech recogniser, which is in sharp
contrast to the lack of correlation between acoustic errors and
perception accuracy by the native speakers (Fig. 5D, E, Fig. 6).

4.3. Speaker normalisation: A problem no more

A large amount of efforts have made to tackle the problem
of child–adult anatomical difference through various means
of normalising the acoustic characteristics (Kanda et al.,
2009; Moulin-Frier & Oudeyer, 2012; Warlaumont, 2012;
Rasilo et al., 2013; Kröger et al., 2014; Philippsen et al.,
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2014; Prom-On et al., 2014a, 2014b; Moulin-Frier et al., 2015;
Warlaumont & Finnegan, 2016; Najnin & Banerjee, 2017;
Barnaud et al., 2019) or associating child acoustic vectors with
adult acoustic vectors (Plummer et al., 2010), but these
approaches have not been used to train intelligible speech.
What the present results have shown is that the problem can
be resolved with a combination of coarticulatory dynamics
and a language-specific speech recognition. During the itera-
tive vocal practice cycles, the motor search space is first con-
fined by the coarticulatory mechanism, which limits movement
trajectories to only those that approach specific targets, and
synchronises the onset of consonants and vowels, thus min-
imising the temporal degrees of freedom. With a deep-
learning trained speech recogniser providing feedback, the
intelligibility reached over 75% even in open-vocabulary dicta-
tion. Note that, because the speech recogniser was trained
with the speech of multiple speakers in different linguistic con-
texts, it has learned an auditory space with categorical phono-
logical distributions (Chang et al., 2010). This space is
therefore effectively, though inexplicitly, speaker-normalised
(Sjerps et al., 2019). This multi-speaker perception space,
which is phonologically warped as mentioned in Section 2.1.5,
seems to be also powerful enough to guide the learner’s vocal-
isation gradually toward the language-specific perceptual
norm. Assuming that this is indeed the case, it could even
explain how each language-specific phonological space came
about in the first place.
4.4. Learning mechanisms

The core learningmechanismsimulated in thismodel is vocal
learning guided by speech perception, which is in line with previ-
ous findings of sensorimotor learning in songbirds and humans
(Kuhl, 2000). The model emulated a perceptual learning phase
of ambient language using a pre-trained speech recogniser
and aproduction learning phasewith biologically-plausible artic-
ulatory synthesiser. The two learning phrases share similar attri-
butes with vocal development in other vocal learners including
songbirds (Thorpe, 1954) and marmoset monkeys (Elowson
etal., 1998a,1998b). Interestingly, language-relatedgenessuch
as FoxP2 also show similar expression patterns in the auditory
and motor systems in humans and songbirds (Teramitsu et al.,
2004). The notable resemblance in behavioural and genetic
studies indicates that perception-guided vocal learning can be
a shared cognitive mechanism across species.

Yet another critical component of the present simulation
model is the learning strategy based on trial and error. This strat-
egy combines vocal exploration, feedback-based selection, and
motor refinement, which coincides with the neural mechanisms
of sensorimotor learning (Makino et al., 2016). It requires neither
directional corrections, nor stored articulatory-acoustic match-
ing data accumulated in the babbling phase as proposed in
the DIVA model (Guenther, 1994; Tourville & Guenther, 2011).
The feedback in the current model only assesses how good
each trial is, without tracking or predicting the direction of
improvement. Indeed, from the perspective of child vocal learn-
ing, it is inconceivable that the learner would know how to make
corrections before they have mastered the articulation of a
speech sound. For example, they wouldn’t know how to change
the tongue shape to make a vowel more front or more back. It is
more likely that observed feedback adaptation (Houde &
Jordan, 1998) is a property of maturemotor skills, as young chil-
dren are not capable of modifying articulation effectively based
on auditory feedback (MacDonald et al., 2012).

In other words, learning novel motor repertoires may not
require a fully developed link between articulation and acous-
tics. Rather, the self-learning process may be the very process
that forges the link between speech perception and speech
production during development (Makino et al., 2016). It is likely
that the correction-based learning (Guenther, 1994; Tourville &
Guenther, 2011) modelled by DIVA and offline feedback-based
learning simulated in the current study overlap to a certain
extent (Makino et al., 2016). We also postulate that the rein-
forcement learning of motor patterns (Yoshikawa, Asada,
et al., 2003; Miura et al., 2012; Warlaumont et al., 2013;
Howard & Messum, 2014; Messum & Howard, 2015;
Warlaumont & Finnegan, 2016; Rasilo & Räsänen, 2017)
may accompany trial-and-error-based learning as extra train-
ing signals. There is abundant room for further progress in
examining the interface between these learning mechanisms.
4.5. Anatomical structure and vocal learning

The speech learned by the adult model was more intelligible
than the child vocal tract models. Furthermore, the 1-year-old
model learned speech with lower intelligibility than the 3-
year-old model. The vocal tract anatomy between the adult
and the children differs greatly (Fitch & Giedd, 1999) and the
child’s vocal tract undergoes huge changes in the first three
years of life (Kent & Murray, 1982; Kent, 1992). While these
results may suggest that a mature vocal tract model is more
advantageous for vocal production learning, caution is needed
in the interpretation of these results because the vocal tract
models were all guided by the same mature perceptual sys-
tem, as the purpose of this experiment is merely to test the
effect of the anatomical structure. The speech recogniser
was trained without child speech data, whereas in reality, chil-
dren also hear themselves, and they may hear the speech of
other children, both of which would further improve their
speech-relevant perceptual space. In addition, the child vocal
tract configurations used in this study were based on develop-
mental estimations (Goldstein, 1980; Birkholz & Kröger, 2007),
which may contain aspects that differ critically from real-life
child vocal tract geometry. Future simulation studies may see
improvements with more realistic perceptual representations
and vocal tract models based on child MRI data.

Interestingly, the difficult cases of speech sounds for the
model seem to correspond well with the ones that are normally
acquired later in real life. Children acquire corner vowels before
mid vowels (Stoel-Gammon & Pollock, 2008) and our models
also had higher accuracies for corner vowels. Mid vowel /ɪ/
learned by the models was frequently mistaken as /i/ and /e/,
which are common mistakes in children’s production (Vihman,
1996). However, the corner vowel /u/, which is supposed to be
easy to acquire, was adifficult case for ourmodels. Also interest-
ingly, themodels learned /u/ without lip rounding, which is similar
to what is found from the congenitally blind population (Ménard
etal., 2014).This further confirmsavital roleof visual cues insim-
ulating vocal learning (Murakami et al., 2015).
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Regarding consonants, it has been reported that among the
voiced stops, the production of bilabials occurs before alveo-
lars and velars, which are also fully acquired the earliest
(Crowe & McLeod, 2020). Likewise, both our adult and child
models had higher identification rates for bilabials than for
alveolars and velars. We also found that the CV combinations
with consonants having the place of articulation similar to that
of the following vowel were easier to learn, in line with the
developmental patterns (MacNeilage & Davis, 2000). For
example, CV sequences consisting of alveolar consonants fol-
lowed by high vowels (e.g., ‘deed’, ‘did’) had higher identifica-
tion rates than the other pairs (e.g., ‘dad’ and ‘dead’).

The crucial benefit of native-language phonological percep-
tion for vocal learning seen in the simulation in this study
seems to be relevant to the question of how children’s speech
perception space is developed in the first place. A likely way is
to learn the phonetic categories through their association with
words whose meanings are suggested by the rich context of
social interaction (Kuhl, 2007). Because children’s initial social
interaction is mostly with their caregivers, it is therefore likely
that the role of caregivers is to facilitate the child’s develop-
ment of speech perception by providing not only rich auditory
input (Yoshikawa, Asada, et al., 2003; Yoshikawa, Koga,
et al., 2003; Miura et al., 2012; Messum & Howard, 2015;
Rasilo & Räsänen, 2017), but also semantic contexts that
necessitate the phonological contrasts. If this speculation is
valid, modelling the development of perceptual space through
social interaction would be an interesting topic for future
studies.

4.6. Broader implications and caveats

The findings of the present study do not rule out that alter-
native models (e.g., those based on the Task Dynamic model
or the DIVA model) may achieve similar or even better results,
but they do show the importance of simulating vocal learning
end-to-end, i.e., from audible input speech to audible output
speech, as this is an effective way to reveal hidden weak-
nesses in theoretical assumptions, and to discover unforeseen
alternatives, as happened during the course of this study. In
fact, given the increasing availability of computational models,
theories of not only vocal learning, but also other aspects of
speech should be expected to be scrutinised by modelling sim-
ulations in addition to behaviour experiments and theoretical
validations.

The current results have also demonstrated the benefit of
combining a domain-specific deterministic model (SDSSTA)
with data-driven machine learning algorithms (simulated
annealing and deep learning) that may be analogous to neural
processing in the brain. This finding may be relevant not only
for the understanding of the brain, but also for artificial intelli-
gence (AI) such as large language models. In the latter case,
despite the impressive successes, a massive amount of data
is needed for the training, much more than what a typical
human individual receives when acquiring a language. The
effectiveness of our modelling shows that language learning
can benefit from having deterministic physical laws as a
built-in component of the learning system, which would elimi-
nate the need to explore articulatory trajectories that deviate
from physical laws, thus saving a huge amount of resources
during learning.

The paradigm under which the present study is con-
ducted is still in its early stage of development, however.
The present simulation starts from the developmental stage
when the SDSSTA mechanism is already in place, presum-
ably as the basic properties of canonical babbly as men-
tioned earlier. But it takes a child 6–7 months to reach
that stage, and so the emergence of canonical babbling from
non-canonical babbling (Oller et al., 2019, 2021) needs to be
simulated in future studies. Also, continuous speech involv-
ing fast syllabic succession may require skills beyond those
of isolated syllables (Schiller et al., 1997; Levelt et al., 1999),
which may need new modelling strategies to simulate. Addi-
tional research is also needed to better understand how chil-
dren may become proficient in using somatosensory and
auditory feedback to perform online (Tremblay et al., 2003;
Xu et al., 2004) or offline (Houde & Jordan, 1998) correc-
tions and whether such corrective manoeuvres play any role
in vocal learning.
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Appendix

Table A1
Summary table of human vocal learning models.

Model Motor control Synthesiser Sensory control Learning strategy Learning target Performance

HABLAR (Bailly, 1997) 8 articulator parameters
(lip, jaw, tongue, apex
positions);

Consonant goal imposed
on the vowel goal to
simulate coarticulation

Articulatory-to-acoustic
model (Beautemps et al.,
1996)

F1, F2, F3, F4 + lip area trajectories Speech Maps:audi
o-visual-to-articula
tory inversion
(Abry et al., 1994)

Single vowel,
vowel
sequences,
VCV

NA

(de Boer, 2000) 3 vocal tract parameters:
tongue position, tongue
height, and lip rounding

Maeda synthesiser
(Maeda, 1990)

Bark-scale F1, F2, F3, F4 Self-organisation,
imitation

Vowels NA

(Westerman & Miranda,
2002; Westermann &
Miranda, 2004)

3 glottis parameters + 3
vocal tract parameters

Pipe synthesiser Auditory map: F1 and F2;

Visual information

Sensorimotor
integration, Hebbian
connections

Vowels NA

(Heintz et al., 2009) 12 articulatory parameters VLAM (vocal linear
articulatory model):
modified Maeda
synthesiser (Maeda,
1990)

Vectors derived from F1, F2, F3 Self-organising
maps and Hebbian
connections

Point vowels /
a, i, u/

NA

(Kanda et al., 2009) 7 vocal tract parameters Maeda synthesiser
(Maeda, 1990)

5-dimensional vectors from low-third
to low-seventh dimension out of 12-
dimensional MFCCs;F0 analysis by
STRAIGHT
(Kawahara et al., 1999)

Self-organisation,
recurrent neural
network with
parametric bias
(RNNPB) (Tani,
2002)

Vowels NA

(Huckvale & Howard,
2005)

9 articulatory parameters VTCALCS (Maeda
synthesiser (Maeda,
1990))

F1, F2 Distal supervised
learning

Sentences
containing
vowels and
consonants

The sound spectrogram
shows that the vowel
quality is good but the
consonant quality is poor

KLAIR (Huckvale,
2011b, 2011a;
Huckvale et al.,
2009)

6 vocal tract parameters
(Huckvale et al., 2009);

8 vocal tract parame-
ters + 4 glottis parameters
(Huckvale, 2011a, 2011b)

KLAIR's Synthesiser:
infant-sized Maeda
synthesiser (Maeda,
1990)

Adult reformulations Online infant-
caregiver interaction
(caregiver imitate
infant)

Words
including
vowels and
consonants

NA

(Guenther, 1994;
Guenther et al.,
2006; Tourville &
Guenther, 2011)

8 articulators modified Maeda
synthesiser (Maeda,
1990)

Auditory feedback: F1, F2, F3;

Somatosensory feedback: 22-
dimensional vector

Neurobiological
modelling, neural
networks

CVC
(Guenther,
1994);
VV, CV, CVCV
(Guenther
et al., 2006)

NA
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Table A1 (continued)

Model Motor control Synthesiser Sensory control Learning strategy Learning target Performance

(Yoshikawa, Asada,
et al., 2003;
Yoshikawa, Koga,
et al., 2003)

5 motor controllers Source-filter model Formant vector Caregiver’s imitation
of infant speech

Four vowels: /
a, i, u, e/

NA

(Ishihara et al., 2009;
Miura et al., 2007)

6 vocal tract parameters
(Miura et al., 2007);

NA (Ishihara et al., 2009);

Source-filter model
(Miura et al., 2007);

NA (Ishihara et al., 2009)

Social feedback:
F1 and F2 of caregiver’s imitation of
infant speech

Caregiver’s imitation
of infant speech

Five vowels: /a,
i, u, e,o/(Miura
et al., 2007);

Vowels
(Ishihara et al.,
2009)

NA

(Miura et al., 2012) NA NA Social feedback:
F1 and F2 of caregiver’s imitation of
infant speech

Auto-mirroring bias
(AMB): less imitative
caregiver

Five vowels: /a,
i, u, e, o/

NA

(Lyon et al., 2012) NA eSpeak synthesiser
(Aslin et al., 1996)

Auditory feedback:
Microsoft SAPI 5.4 (Phoneme
recogniser);

Social feedback: Teacher’s positive/
negative feedback

Human-robot
interaction

V, CV, VC and
CVC

NA

(Prom-On et al., 2014a,
2014b)

18 vocal tract parameters VocalTractLab (Birkholz,
2013)

MFCCs Distal learning,
Gradient descent

Thai vowels Good vowel quality

(Kröger et al., 2009) 270 proto-vocalic states Articulatory vectors
generated by
VocalTractLab (Birkholz,
2013)

Auditory feedback: Bark-scale F1,
F2, F3;

Somatosensory feedback:
Vocal tract state

Neurobiological
modelling

V, VC and CV NA

(Kröger et al., 2014) Motor plan states Articulatory vectors
generated by
VocalTractLab (Birkholz,
2013)

Bark-scaled spectrogram

Somatosensory feedback:
Vocal tract state

Self-organising
maps and Hebbian
connections

50 CV syllables 78% transcription by one
phonetician

(continued on next page)
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Table A1 (continued)

Model Motor control Synthesiser Sensory control Learning strategy Learning target Performance

Elija (Howard &
Messum, 2007,
2014; Howard, 2011;
Messum & Howard,
2015)

2 vocal tract parameters
for young infant, 7 vocal
tract parameters for old
child + 2 glottis
parameters (Howard &
Messum, 2007);

7 vocal tract parame-
ters + 2 glottis parameters
(Howard & Messum,
2014, 2011; Messum &
Howard, 2015);
Task dynamics model
(Fowler & Saltzman, 1993;
Saltzman & Munhall,
1989)

VTCALCS (modified
Maeda synthesiser
(Maeda, 1990))

Sensory salience: spectral change
and low frequency power (Howard &
Messum, 2007);

Template-based dynamic time warp-
ing (Howard & Messum, 2011);
Gammatone spectrogram
(Howard & Messum, 2014; Messum
& Howard, 2015);

Social feedback:
Caregiver’s reformulation of infant
speech

Caregiver’s imitation
of infant speech

NA (Howard &
Messum,
2007)
CV, VC, or
CVV
(Howard &
Messum,
2011);

VV, CV, VC
and CVV
(Howard &
Messum, 2014;
Messum &
Howard, 2015)

NA (Howard & Messum,
2007, 2011);

Synthetic samples are
provided. Good vowel
quality;

Consonants are unintel-
ligible (no trace of con-
sonant burst or frication)
(Howard & Messum,
2014; Messum &
Howard, 2015);

(Murakami et al., 2015) 16 vocal tract parameters VocalTractLab (Birkholz,
2013)

Auditory reservoir generated by
BRIAN neural network simulator
(Fontaine et al., 2011; Lopez-Poveda
& Meddis, 2001);

Visual input

Reinforcement
learning

Vowels NA

(Warlaumont et al.,
2013; Warlaumont &
Finnegan, 2016)

Jaw and lips (Warlaumont,
2012);
Lungs, trachea, larynx,
pharynx, oral cavity, and
nasal cavity
(Warlaumont et al., 2013;
Warlaumont & Finnegan,
2016);

Praat synthesis of a
female vocal tract
Muscle activations
controlled by a spiking
neural network
(Maass, 1997);

Caregiver’s judgment as the reward
(Warlaumont, 2012);
Mel-scale F0, F1 and F2
(Warlaumont et al., 2013)
Estimated auditory salience
(Coath et al., 2009) (Warlaumont &
Finnegan, 2016);

Reinforcement
learning

VCV
sequences
(Warlaumont,
2012);
Vowels
(Warlaumont
et al., 2013);
Single conso-
nant and con-
sonant clusters
(Warlaumont &
Finnegan,
2016)

NA (Warlaumont, 2012);
NA
(Warlaumont et al.,
2013);
Synthetic samples are
provided. No trace of
consonants in the spec-
trogram
(Warlaumont &
Finnegan, 2016)

LeVI (Rasilo &
Räsänen, 2017)

9 vocal tract parameters Rasilo’s Articulatory
model

Auditory feedback:11 MFCCs
without energy
(Rasilo et al., 2013);
F1, F2
(Rasilo & Räsänen, 2017);

Social feedback: Phase1: positive/
negative feedback
Phase 2: imitation of infants’ babbles
by caregivers

Caregiver’s imitation
of infant speech

VCVC
sequences
containing all
25 Finnish
phonemes
(Rasilo et al.,
2013);

CVCV se-
quences
(Rasilo &
Räsänen,
2017);

Synthetic samples are
provided (unintelligible)
LeVI (Rasilo et al., 2013);

Synthetic samples are
provided
(Vowels are not clear;
Consonants are unintel-
ligible and no trace of
consonant burst/frica-
tion) (Rasilo & Räsänen,
2017);
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Table A1 (continued)

Model Motor control Synthesiser Sensory control Learning strategy Learning target Performance

(Najnin & Banerjee,
2017)

11 vocal tract
parameters + 2 glottis
parameters

DIVA model (Guenther,
1994; Guenther et al.,
2006; Tourville &
Guenther, 2011)/modified
Maeda synthesiser
(Maeda, 1990)

F1, F2, F3 + phonation level +
12 MFCCs

Self-organisation NN, CN, NC,
VN, NV, VV,
CV, VC, CC
sequences

NA

(Forestier & Oudeyer,
2017)

7 vocal tract parameters DIVA model (Guenther,
1994; Guenther et al.,
2006; Tourville &
Guenther, 2011)/modified
Maeda synthesiser
(Maeda, 1990);
Dynamic Movement
Primitives (DMPs)
(Schaal, 2006) for con-
trolling the articulatory
trajectories

Auditory feedback: F1, F2

Social feedback: Simulated
caregiver’s guidance through objects

Sensory feedback: state of the
environment including the position of
the caregiver, the stick and the toys

Goal-babbling Vowel
sequences
including /o, u,
i, e, y/

NA

(Cohen & Billard, 2018) 10 words NA PerAc (perception/action)
architecture (Boucenna et al., 2010;
Gaussier & Zrehen, 1995)

Caregiver-infant
interaction through
objects

CVCV
sequences

NA

(Oudeyer, 2005) 3 vocal tract parameters de Boer’s synthesiser
(Abstract liner articulatory
synthesiser)

Perceptual representations based on
Bark-scale F1, F2, F3, F4

Sensory motor
interaction

Vowels NA

(Moulin-Frier &
Oudeyer, 2012)

7 vocal tract parameters VLAM (vocal linear
articulatory model):
modified Maeda
synthesiser (Maeda,
1990)

Bark-scale F1, weighted average of
F2 and F3

Goal-babbling
Random motor
exploration
Random goal
selection with
reaching
Curiosity-driven
active goal selection
with reaching

Five vowels: /a,
i, u, e,o/

NA

(Moulin-Frier et al.,
2014)

7 parameters based on
the PCA of the vocal tract
shapes;
over-damped spring-mass
model for dynamic control

DIVA model (Guenther,
1994; Guenther et al.,
2006; Tourville &
Guenther, 2011)/modified
Maeda synthesiser
(Maeda, 1990)

Scaled F1, F2, intensity Goal-babbling VV, VC, CV,
CC

NA

(Moulin-Frier et al.,
2015)

Jaw, tongue body, tongue
dorsum, lip protrusion,
tongue tip, lip separation,
larynx height

VLAM (vocal linear
articulatory model):
modified Maeda
synthesiser (Maeda,
1990)

Bark-scale F1, F2, F3 (Moulin-Frier
et al., 2015);
Bark-scale F1, F2
(Barnaud et al., 2019)

Bayesian modelling VV, VC, CV,
CC (Moulin-
Frier et al.,
2015);
Vowels
(Barnaud et al.,
2019)

NA

(continued on next page)
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Table A1 (continued)

Model Motor control Synthesiser Sensory control Learning strategy Learning target Performance

(Acevedo-Valle et al.,
2018)

NA DIVA model (Guenther,
1994; Guenther et al.,
2006; Tourville &
Guenther, 2011)/modified
Maeda synthesiser
(Maeda, 1990)

Auditory feedback: F1, F2;

Somatosensory feedback:
proprioceptive input

Reinforce learning
through auditory
and somatosensory
feedback GMMs
(Gaussian mixture
models)

NA (Acevedo-
Valle et al.,
2018)

NA

(Acevedo-Valle et al.,
2017, 2020)

7 vocal tract
parameters + 2 glottis
parameters (Acevedo-
Valle et al., 2018);

10 vocal tract parame-
ters + 3 glottis parameters
(Acevedo-Valle et al.,
2020)

DIVA model (Guenther,
1994; Guenther et al.,
2006; Tourville &
Guenther, 2011)/modified
Maeda synthesiser
(Maeda, 1990)

Auditory feedback:
F1, F2;

Somatosensory feedback:
proprioceptive input

Caregiver’s imitation
of infant speech:
GMMs (Gaussian
mixture models)

NA (Acevedo-
Valle et al.,
2018);
Vowel se-
quences con-
taining 17
German vow-
els
(Acevedo-Valle
et al., 2020)

NA

( Philippsen et al.,
2014)

22 vocal tract
parameters + 4 glottis
parameters

VocalTractLab (Birkholz,
2013)

39 MFCCs (energy, 12MFCCs, first
and second derivatives)

Distal supervised
learning by acoustic
imitation (Echo
State Network)

CV sequences
containing 8
vowels and 8
consonants

Perceptual evaluation
was conducted by the
authors

( Philippsen et al.,
2016)

20 vocal tract parameters VocalTractLab (Birkholz,
2013)

F1, F2, F3 + 39 MFCCs (energy,
12MFCCs, first and second
derivatives) projected by Principal
Component Analysis (PCA) and
Linear Discriminant Analysis (LDA)
to 10-D features

Goal babbling
(exploration and
adaptation)

6 vowels NA

(Philippsen, 2021) 18 vocal tract
parameters + 3 glottis
parameters

VocalTractLab (Birkholz,
2013)
Dynamic Movement
Primitives (DMPs)
(Schaal, 2006) for con-
trolling the articulatory
trajectories

Echo State Network (ESN) 10-D
vectors were based on F1, F2,
F3 + 39 MFCCs (energy, 12MFCCs,
first and second derivatives), then
PCA and LDA were applied

Goal babbling 6 vowels, /baa/
and /maa/

Good vowel and
consonant quality
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Fig. A1. Confusion matrices of words learned by adult vocal tract model when guided by MFCCs and Log Mel spectrograms, evaluated by a word
recogniser. The score shows the weighted negative log likelihood loss. The two types of acoustic features resulted in very similar word error rates,
that is, the intelligibility of the trained speech is indistinguishable.
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Fig. A2. Confusion matrices of consonants trained by MFCCs and Log Mel spectrograms, evaluated by a word recogniser. The score shows the
weighted negative log likelihood loss. Higher scores represent higher phoneme probability. The bilabial stops trained by Log Mel spectrograms had
fairly high accuracies, while the alveolar stops trained by MFCCs had higher accuracies. However, the velar stops trained by Log Mel spectrograms
were identified as /n/ or /w/. Overall, the speech trained by Log Mel spectrograms were slightly better identified than that trained by MFCCs.

Fig. A3. Confusion matrices of vowels trained by MFCCs and Log Mel spectrograms, evaluated by a word recogniser. The score shows the
weighted negative log likelihood loss. Higher scores represent higher phoneme probability. The recognition accuracies were higher for vowels
trained by MFCCs than the ones trained by Log Mel spectrograms. Both acoustic features failed to guide the learning of intelligible vowels in
‘booed’ and ‘good’. For the rest of the vowel categories, those trained by MFCCs were identified more correctly than the ones trained by Log
Mel spectrograms. Especially, the vowel in ‘bud’ was less successful when trained by Log Mel spectrograms.



A. Xu et al. / Journal of Phonetics 105 (2024) 101338 27
Fig. A4. Schematic diagram of the speech recogniser. The network contains 8 convolutional layers (conv), 6 long short-term memory (LSTM)
layers and 3 dense layers (Dense). Batch normalisation layers after each conv, LSTM and Dense layers and dropout layers after each LSTM
and Dense layers are not shown in the diagram. The architecture consists of 3 main parts: spectrotemporal feature processing, temporal feature
processing and classification. The first convolutional layer module (in blue) was designed to learn the feature representations that may coexist or
correlate in the spectral and temporal domains. The temporal feature processing module (in green) was designed to learn the temporal dependency
and/or the state-based behaviour of the feature. Lastly, the classification module (in red) was used to learn the relationship between the features for
classifying phonemes.
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Fig. A5. Learning curves showing iterations with a lowering in the recognition error during the first stage of optimisation (random search).

Fig. A6. (A & B) F1 and F2 of twenty vowels with lowest recognition errors learned by 1-year-old model (A) and 3-year-old model (B). The vowel
quadrilateral is formed based on the average F1 and F2 across studies (Vorperian & Kent, 2007).
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Additional analysis

Adult model

Most of the bilabial stops were correctly recognised but alveolar stops were sometimes identified as bilabial stops in the
multiple-choice task (Fig. A7A, B). The velar stops, however, were often identified as alveolar stops. The accuracy of the onset
consonant was sometimes lower before certain vowels. Compared with the high identification rate of ‘bad’ (i.e., 99%), only less
than half of the mid vowels in ‘bed’ and ‘bid’ were correctly identified. Nevertheless, even for the natural speech some vowels were
sometimes misidentified (Fig. A7A, B). In addition to mid vowels, the model had difficulty learning ‘booed’. The coda accuracy was
stable across vowel contexts with only one exception in the word ‘bud’, which was frequently heard as ‘but’.
Fig. A7. Confusion matrix of natural female speech and synthetic male speech in the listening experiment. (A, B) Confusion matrices (%) of CVC
words produced by a female American English speaker (A) and learned by an adult male vocal tract model (B), measured in the multiple-choice
task. 30 American English listeners identified the utterances by selecting words from a fixed set of words. (C, D) Confusion matrices of CVCV words
produced by the native speaker (C) and generated with the vocal tract parameters learned by the adult vocal tract model (D).
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Child models

We analysed the by-phoneme accuracy of the speech learned by the 1-year-old and 3-year-old vocal tract model in the two types of listening
experiments. Fig. A8 shows the mean phoneme accuracy rate of the CV syllables in the CVC words learned by the two child vocal tract models. As
can be seen from the plot, the distribution of the two child vocal tract models overlaps greatly in the open-vocabulary dictation. Still, the 3-year-old
vocal tract model had an overall higher mean accuracy rate than the 1-year-old model. The 3-year-old model had a mean phoneme accuracy rate of
49% for the target CV syllables in the open-vocabulary task, while the 1-year-old model had a mean accuracy rate of 44%. The mean phoneme
accuracies in the multiple-choice task were 65% and 55% for the 3-year-old and 1-year-old models, respectively. Wilcoxon signed-rank tests
showed that the 3-year-old vocal tract model had higher phoneme accuracy rate than the 1-year-old model in the multiple-choice task
(p < .001), but not in the open-vocabulary task (p = 0.120). The type of tasks did not influence the phoneme accuracies for either of the child vocal
tract models (Wilcoxon signed-rank: p = 1.000).

Fig. A8. Distribution of by-listener mean phoneme identification accuracy of CVC words learned by the 1-year-old and 3-year-old vocal tract models,
obtained from the listening experiment. Kernel density estimate and histogram show the distribution of the performance of the listeners.

When the word list was given, listeners could identify the words learned by both models more easily. There were less variances in the phoneme
accuracy of the multiple-choice task than the open-vocabulary dictation task. The median phoneme accuracies increased in the onset consonant
position (Wilcoxon signed-rank: 1y: p < .001, 3y: p < .001), which was 85% and 72% for the 1-year-old model and 3-year-old model respectively.
There was improvement in the vowel accuracy as well (Wilcoxon signed-rank: 1y: p = 0.017, 3y: p = 0.003). The median vowel accuracy was 44%
and 38% for the 3-year-old model and 1-year-old model respectively.

The confusion matrices of the CVC words of the two child vocal tract models in the multiple-choice task are shown in Figs. A9A, B. The child
vocal tract model learned relatively intelligible vowels in ‘bad’ (1y: 71%; 3y: 68%), ‘bed’ (1y: 60%; 3y: 59%), and ‘bid’ (1y: 64%; 3y: 64%). The bil-
abial stops were rarely mistaken as other types of consonants except for the one in ‘bod’, which was sometimes mistaken as an alveolar stop. The
place of articulation of alveolar stops was almost always correctly identified for both child vocal tract models. The learning of velar stops was rel-
atively successful for the 3-year-old vocal tract model but not for the 1-year-old model. The velar stops learned by the 1-year-old model were often
identified as alveolar stops and bilabial stops. Only a very small proportion of velar stops was correctly identified (4% in ‘good’ and 22% in ‘god’) for
the 1-year-old model. In contrast, the velar stops learned by the 3-year-old model had fairly high accuracy, which was 89% in ‘god’ and 93% in
‘good’.

Both models had difficulty in learning vowels with similar openness and tongue height. For instance, ‘bead’ was often mistaken as ‘bid’, and
‘bud’ as ‘bod’. The learning of the vowel /ɒ/ in ‘bod’ was unsuccessful for both child models, which was heard as /ɪ/ in ‘bid’. The rounded vowel
/u/ was difficult for both child vocal tract models. Compared with the 3-year-old model, the 1-year-old model learned much less intelligible vowels
following velar stops in ‘god’ and ‘good’. Only 7% was correctly identified for the 1-year-old model and 9% for the 3-year-old model.
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Fig. A9. Comparison between the two child models. (A, B) Confusion matrices (%) of CVC words learned by the 1-year-old child (A) and 3-year-old
child’s (B) vocal tract models, measured in a multiple-choice task. 30 American English listeners identified utterances by selecting words from a
fixed set of words. (C, D) Confusion matrices of CVCV words regenerated by learned vocal tract parameters of the 1-year-old child (C) and 3-year-
old boy’s (D) vocal tract models, measured in a multiple-choice task.
In the open-vocabulary dictation task, the mean identification accuracy of CVCV words was 64% for the 1-year-old vocal tract model and 78%
for the 3-year-old model. The 3-year-old model achieved a significantly higher identification rate than the 1-year-old model in the open-vocabulary
dictation task (Wilcoxon signed-rank: p < .001). Furthermore, the mean accuracy of CVCV words was 76% for the 1-year-old model and 86% for the
3-year-old model in the multiple-choice task. The learning performance of the two child vocal tract models was significantly different in the multiple-
choice task as well (Figs. A9C, D, Wilcoxon signed-rank: p < .001).

Task types

We have also explored how task types can influence the intelligibility of the synthetic speech. The identification accuracy was higher in the
multiple-choice task than in the open-vocabulary task (W = 2534, p < .001, Wilcoxon signed-rank test), as shown in Fig. 9A. Post-hoc comparisons
showed that the type of listening task influenced the perception of words learned by the child models but not by the adult model (1y: p < .001, 3y:
p = .002, adult: p = .570).
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