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ABSTRACT 

The nature of English diphthongs has been much 
disputed. By now, the most influential account argues 
that diphthongs are phoneme entities rather than 
vowel combinations. However, mixed results have 
been reported regarding whether the rate of formant 
transition is the most reliable attribute in the 
perception and production of diphthongs. Here, we 
used computational simulation of vocal learning to 
explore the nature of diphthongs. We tested whether 
diphthongs have a single dynamic target or two static 
targets by training an articulatory synthesiser with a 
three-dimensional (3D) vocal tract model to learn 
English words. An automatic phoneme recogniser 
was constructed to guide the learning of the 
diphthongs. Listening results by native listeners 
showed that diphthongs learned with dynamic targets 
were more intelligible and generalisable across 
variable duration than those learned with static 
targets. The learning-oriented modelling approach 
also paves a new way for validating hypotheses of 
speech perception and production. 
Keywords: diphthongs, computational modelling, 
articulatory synthesis, vocal learning, American 
English 

1. INTRODUCTION 

Diphthongs, a special class of vowels, are 
characterised by transitional formant movements 
along a path between spectral spaces belonging to two 
different vowels [1], [2]. Early accounts have treated 
diphthongs as combinations of two vowels, or 
sometimes as vowel-semivowel sequences [3]. 
However, empirical evidence from a comprehensive 
study by Gay [4] suggests that English diphthongs are 
more likely to be distinct phonetic units, based on the 
observation that listeners were more sensitive to the 
second formant (F2) movement of the synthetic 
diphthongs than the formant onset and offset. These 
results are consistent with more recent findings that 
the most salient perceptual cue of synthetic 

diphthongs in noise or reverberation is the intensity 
of F2 transitions [5]. On the other hand, some studies 
suggest that the crucial cue in the identification of 
manipulated diphthongs is the endpoint rather than 
the transitional trajectories [6]. Another line of 
studies sought to use a classifier to investigate 
perceptual cues of diphthongs in a speech corpus, and 
found that instead of F1-F2 onsets and slopes, 
classification accuracy was the highest when both F1-
F2 onsets and offsets were included [7]. A similar 
approach was adopted in [8], which reported that 
incorporating F1–F3 onset, offset and transition rates 
led to the best classification results. 

Not only does the debate about the auditorily 
relevant formant cues of diphthongs continue, 
contradictory observations have been made regarding 
the production of diphthongs. Gay [9] investigated 
the acoustic properties of five American English 
diphthongs spoken in three different speech rates 
from slow to fast. The beginning and terminating 
vowel formants as well as the rate of F2 movement 
remained the same across different speaking rates. 
Further, the final portion of the vowel could be 
eliminated in fast speech. The unfluctuating formant 
slopes also accords with more recent acoustic 
evidence from careful and conversational speech  
[10], as well as loud speech [11]. As far as articulation 
is concerned, the tongue body exhibits invariant 
velocity during the production of diphthongs [12]. 
Recent X-ray data also show that the tongue flesh 
points undergo minimal changes in different speaking 
rates [10]. More importantly, the tongue movements 
and formant transitions of diphthongs are highly 
correlated, despite some exceptions  [13]. In contrast, 
some researchers found that spectral changes of 
diphthongs were lowered in clear speech with 
prosodic prominence [14].  

If gliding movements rather than onsets and 
offsets are a most reliable feature of diphthongs, then 
diphthongs can be considered distinct phonemes. 
However, to date no evidence from either perception 
or production studies has been conclusive. Here, we 
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used computational simulation of vocal learning to 
explore whether diphthongs have either unitary 
dynamic targets or consecutive static targets. We 
trained an articulatory synthesiser with a 3D vocal 
tract model to learn American English words 
containing diphthongs, following the approach in 
[15]–[17]. The learning is guided by a phoneme 
recogniser, pre-trained by a deep learning model to 
encode a speaker-normalised perceptual space. After 
the training, we synthesised speech using the learned 
articulatory targets with varying duration to further 
verify their generalisability over different speaking 
rates. The performance of the two types of 
articulatory targets is evaluated by the intelligibility 
of the learned speech in a listening experiment and 
the plausibility of the learned articulatory kinematics. 

2. METHOD 

2.1. Speech material 

Five diphthongs, /aɪ, eɪ, əʊ, aʊ, ɔɪ/, were embedded in 
English words with bilabial stops, as follows: ‘buy’, 
‘bay’, ‘boy’, ‘bow (and arrows)’ and ‘(to) bow’. 
Because the two target words ‘bow’ are homographs, 
we added hints to distinguish the two words, as 
indicated in brackets. The use of these minimal pairs 
is to ensure that perception experiments can be 
carried out naturally by native speakers. The same 
hints were also given to the participants during the 
listening experiment. 

2.2. Model overview 

We trained a vocal tract model to learn the speech 
material as illustrated in Fig. 1. The learning model 
consists of a production and a perception system. The 
model begins with exploration of a set of articulatory 
targets (Fig. 1A). The kinematic trajectories that 
approach the articulatory targets are based on the 
assumption of static or dynamic targets (Fig. 1B). The 
time-varying vocal tract shapes are then converted to 
cross-sectional area functions for acoustic simulation 
(Fig. 1C). The model explores the articulatory 
parameters iteratively, guided by the perception 
system. (Fig. 1D). 

 

Figure 1: Overview of the learning process. 

2.3. Vocal tract model 

The articulatory synthesiser used in the study is 
VocalTractLab 2.3 (www.vocaltractlab.de), with a 
geometrical 3D vocal tract model (Fig. 1A). The 
vocal tract model was adapted from MRI data of a 
German male speaker, involving sixteen free vocal 
tract parameters (Table 1).  
Parameter Description 
HX, HY Horiz. and vert. hyoid positions  
JX, JA Horiz. jaw position and jaw angle 
LP, LD Lip protrusion and vert. lip distance 
TTX, TTY Horiz. and vert. tongue tip positions 
TBX, TBY Horiz. and vert. tongue blade 

positions 
TCX, TCY Horiz. and vert. tongue body centre 

positions 
Table 1: Free vocal tract parameters in the simulation. 

2.4. Articulatory targets 

The temporal and spatial movements of the 
articulators were simulated by a coarticulation model, 
synchronised dimension-specific sequential target 
approximation model [15]–[17], which generates 
dynamic trajectories of vocal tract parameters. 
Quantitatively, each articulatory target is represented 
by height (i.e., positions of the articulators), slope and 
strength. As illustrated in Fig. 1B, the same 
asymptotic articulatory curves of diphthongs can be 
the result of two static targets or one dynamic target. 
The two static targets have a slope of zero but the 
target height and the duration ratio need to be 
optimised. In contrast, the dynamic target requires the 
optimisation of both height and slope. 

2.5. Automatic phoneme recogniser 

We trained a deep learning-based phoneme 
recognition system to guide the optimisation process. 
We extracted speech with 11 onset consonants, 17 
vowels (stressed and unstressed) and 6 coda 
consonants from the LibriSpeech corpus [23]. The 
training, validation and test set contains 116.7, 14.4 
and 15 hours of speech, respectively. We applied pre-
emphasis (coefficient = 0.97) and calculated the log 
Mel spectrogram (25 ms Hamming window, 5ms 
overlap) with 26 Mel filters. The log Mel 
spectrograms were used as the input for the training 
with a length of 200 frames (spanning 1 s). The model 
was trained to learn a mapping from the Log Mel 
spectrograms to a 34-dimensional vector one-hot 
encoding the phonemes listed in Fig. 1D.  

2.6. Optimisation 
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We use simulated annealing [22] to optimise the 
vocal tract parameters, which is a stochastic 
algorithm that seeks an optimal solution through a 
coarse-to-fine criterion, suitable for problems with 
many degrees of freedom, such as the speech 
production system. The learning process started from 
a neutral position (schwa) followed by adjustments of 
the vocal tract parameters and gradually converged to 
a solution. We initiated 10 processes in parallel for 
each target word, each with 4k iterations.  

2.7. Listening experiment and statistical analysis 

After optimisation, we selected five items with the 
lowest recognition errors for both the static and 
dynamic articulatory targets. In addition to the 
original duration of 400ms, we synthesised the target 
words with longer (450ms and 500ms) and shorter 
(350ms and 300ms) durations to examine the 
generalisability over speaking rates. For the static 
targets, the duration ratio of the two targets was kept 
the same as the learned ratio. 

The listeners were 20 American English native 
speakers (male: 12; mean age: 36), invited and 
screened via Prolific. The stimuli were randomised 
and presented to the participants via Gorilla. Before 
the experiment, the participants filled a brief 
questionnaire for demographic and language 
background. Listeners were asked to undertake the 
experiment on a computer in a quiet environment. A 
headphone screening was conducted [23] and five 
practice trials were presented. In the experiment, 
participants were instructed to listen to the audio 
carefully up to five times and choose the word that 
they heard from the word list. The experiment lasted 
around 20 minutes.  

After the experiment, non-parametric statistical 
analysis, Wilcoxon rank sum tests with Bonferroni 
corrections were chosen for statistical analysis, due to 
the skewed distribution of the data.  

3. RESULTS 

The simulation learned intelligible English words 
containing diphthongs. A demonstration video and 
learned synthetic samples can be found in 
https://gitlab.com/Anqi_Xu/dynamic_diphthongs.  

The identification accuracy of the learned 
diphthongs across target words judged by native 
listeners is shown in Fig. 2. Error bars show standard 
errors. The average accuracy was 34.36% and 
64.92% for diphthongs synthesised with two static 
targets and one dynamic target, respectively. The 
single dynamic target yielded diphthongs that were 
significantly more intelligible than those synthesised 
with two static targets (W = 7514, p < .001) with only 
except for /aɪ/. The difference was significant for /aɪ, 

eɪ , ɔɪ/ (p < .05) but not for /aʊ/ and /əʊ/. /eɪ/ and /ɔɪ/ 
with dynamic targets had fairly high accuracy, both 
over 90%, whereas the two static targets had the 
highest accuracy for /aɪ/.  

 
Figure 2: Identification accuracy of words with diphthongs 
modelled with two static targets or one dynamic target. 
 

The identification accuracy of the diphthongs with 
different duration is shown in Fig. 3. Again, across all 
the temporal modulations, not only did the 
diphthongs with the dynamic target have higher 
accuracy than those with two static targets for the 
original duration (p < .001), but also for the longer 
and shorter durations (p < . 001). 

 
Figure 3: Identification accuracy of words with diphthongs 
modelled with two static targets or one dynamic target. 
 

Fig. 4 shows the dynamic changes of the learned 
vocal tract shapes with the lowest recognition error 
for the target words. The first and second graphs in 
each row show the starting and ending vocal tract 
shapes of the CV syllables containing diphthongs. 
Take /aɪ/ for example, for both the static and dynamic 
targets, the initial tongue position is relatively low, 
which later moves towards a higher position. The 
initial tongue shapes of /eɪ/ seem to be a mid vowel 
and the terminating tongue position is high for both 
conditions, whereas the changes in tongue shapes are 
larger for the dynamic target. /aʊ/ have nearly 
identical terminating tongue shapes in the two 
conditions, but the initial tongue position is rather 
different. The dynamic and static targets both involve 
little tongue movements for /əʊ/. Finally, in the case 
of /ɔɪ/, the tongue shapes are retracted in the 
beginning for both conditions but the dynamic target 
ends at a higher and more front position. Overall, both 
the learned articulatory targets based on the static and 
dynamic targets exhibited beginning and ending 
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vocal tract shapes that resembled two different 
vowels, whereas the dynamic target showed slightly 
more plausible vocal tract shapes than the static 
targets. 

 

 
Figure 4: Midsagittal sections of the learned vocal tract 
shapes with the lowest recognition error. 

4. DISCUSSION 

We have adopted a new approach to probe the nature 
of diphthongs via computational simulation of vocal 
learning. We tested the hypothesis that diphthongs are 
either a single dynamic articulatory target or two 
static targets by training a vocal tract model to learn 
English diphthongs embedded in real words under the 
guidance of a phoneme recogniser. The results show 
that unitary dynamic targets can generate more 
intelligible speech than consecutive static targets. 
When synthesising words with longer and shorter 
durations, the dynamic targets also showed more 
advantage. The learning simulation thus offers new 
evidence that diphthongs are likely to be independent 
phonetic entities with unitary dynamic targets. 

The theoretical account of diphthongs as unit 
phonemes was originally proposed on the basis that 
formant transition stayed constant in varying speech 
rates [9], but counterevidence emerged subsequently 

[14]. We have used a new methodology to address the 
controversy by emulating the dynamic movement of 
diphthongs under different temporal modulations. 
The dynamic targets generated more intelligible 
speech than the static targets, except for /aɪ/. The 
benefit of having a dynamic target held true even 
when the speaking rate was modified, which is 
consistent with the unfluctuating formant slopes 
observed in [4], [9], [10], [12]. These findings show 
that diphthongs may have underlying dynamic 
targets, supporting the proposal of Gay [9].  

A main novelty of this study is to investigate 
diphthongs by simulating its articulatory learning. 
Previous research has identified various auditory 
signatures of diphthongs, such as F2 transition rates 
[4], [5], diphthong endpoints [6] , F1-F2 onset and 
offset [7] and all of the above [8]. But the lack of 
consensus suggests that different studies may have 
observed different manifestations of the diphthongs 
due to not only differences in methodology, but also 
cross-speaker variations. During the acquisition of 
diphthongs, learners necessarily have to deal with 
cross-speaker variations. A successful learning 
strategy is likely one that has focused on the most 
critical property of diphthongs. Thus, learning 
simulation may be an effective way of discovering the 
core property of diphthongs. The power of learning 
simulation as a means of discovering the core 
mechanisms of speech has been previously 
demonstrated [15]–[17]. The present study is a further 
confirmation of its effectiveness.  

One source of weakness of this study is that the 
speech data for training the phoneme recogniser is not 
balanced across all the speech sequences. This 
imbalance may have led to varied identification 
accuracy of the recogniser which was a possible 
source of the uneven learning performance of the 
diphthongs. Also, the scope of this study is limited to 
English. Given that there are noticeable cross-
linguistic differences in both the perception and 
production of diphthongs [18], [19], further research 
can explore how diphthongs in other languages 
should be modelled. These limitations 
notwithstanding, the present study contributes 
insights into the dynamic nature of English 
diphthongs. The computational approach opens a new 
path towards examining theoretical constructs in 
speech production and perception. 
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