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riability has been one of the major challenges for both theoretical understanding and computer synthesis of speech prosody. In this
we show that economical representation of variability is the key to effective modeling of prosody. Specifically, we report the devel-
nt of PENTAtrainer—A trainable yet deterministic prosody synthesizer based on an articulatory–functional view of speech. We
with testing results on Thai, Mandarin and English that it is possible to achieve high-accuracy predictive synthesis of fundamental
ncy contours with very small sets of parameters obtained through stochastic learning from real speech data. The first key compo-
f this system is syllable-synchronized sequential target approximation—implemented as the qTA model, which is designed to sim-
for each tonal unit, a wide range of contextual variability with a single invariant target. The second key component is the automatic
ng of function-specific targets through stochastic global optimization, guided by a layered pseudo-hierarchical functional annota-
cheme, which requires the manual labeling of only the temporal domains of the functional units. The results in terms of synthesis
cy demonstrate that effective modeling of the contextual variability is the key also to effective modeling of function-related var-
y. Additionally, we show that, being both theory-based and trainable (hence data-driven), computational systems like PENTAtra-
n serve as an effective modeling tool in basic research, with which the level of falsifiability in theory testing can be raised, and also a
link between basic and applied research in speech science can be developed.
3 Elsevier B.V. All rights reserved.

rds: Prosody modeling; Target approximation; Parallel encoding; Analysis-by-synthesis; Simulated annealing
1. Introduction

Like the segmental aspects of speech (Perkell and Klatt,
1986), and perhaps to an even greater extent, speech pros-
ody exhibits extensive variability and uncertainty, which
makes its computational modeling extremely difficult.
393/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
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Prom-on).
Among the various aspects of prosody, fundamental fre-
quency (F0) is by far the most challenging, and has
attracted most of the research effort. Many theories and
computational models of F0 patterns have been proposed
over the years (Anderson et al., 1984; Bailly and Holm,
2005; Black and Hunt, 1996; Fujisaki et al., 2005; Grabe
et al., 2007; Hirst, 2005, 2011; Jilka et al., 1999; Kochanski
and Shih, 2003; Mixdorff et al., 2003; Pierrehumbert, 1980,
1981; Prom-on et al., 2009; Taylor, 2000; van Santen and
MÎbius, 2000; Xu and Wang, 2001; Xu, 2005), and a large
number of empirical studies have been conducted (as
reviewed by Wagner and Watson, 2010; Shattuck-Hufnagel
and Turk, 1996; Xu, 2011). Despite the extensive effort,
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however, most of the critical issues still remain unresolved
and some are still under heated debate (Arvaniti and Ladd,
2009; Ladd, 2008; Wagner and Watson, 2010; Wightman,
2002; Xu, 2011). This lack of consensus has been an obsta-
cle to linking basic prosody research to applied areas,
resulting in slow advances in developing applications with
capabilities for processing prosody.

One way to foster significant advances in prosody
research is to develop computational models that can be
used for theory testing. Such models would allow the trans-
lation of theories and empirical findings into algorithms
that can predict fully continuous prosodic patterns, which
can be directly compared to real speech data. Furthermore,
and perhaps more importantly, such computational models
would enable theories to predict phonetic details beyond
the specific phenomena for which they were originally pro-
posed. Testing such predictive powers would not only help
demonstrate theories’ generalizability, but also make them
readily applicable to speech technology once the test results
are positive. The present study is part of our continued

effort in this direction, with a significant extension from
our previous work (Prom-on et al., 2009), and with partic-
ular focus on the problem of variability. Before describing
our current work, however, we will first discuss the main
sources of prosodic variability and review how they have
been addressed so far.

1.1. Two types of prosodic variability

Like in the case of segmental aspect of speech (Ladefoged,
1967; Peterson and Barney, 1952), the nature of prosodic
variability is best highlighted by controlled comparisons.
Fig. 1 displays two very different types of F0 variability with
previously reported empirical data (Liu and Xu, 2005; Xu,
1997). The first type is contextual variability, defined as the
varying F0 manifestation of a tonal category as a function
of its adjacent tones. As shown in Fig. 1A, contextual vari-
ability is mostly assimilatory: when the same tone in the sec-
ond syllable of each graph is preceded by four different tones
in the first syllable, its F0 contour varies extensively, espe-
Fig. 1. (A) Mean F0 contours of Mandarin tones in disyllabic sequences (mama) spoken by eight male speakers (data from Xu, 1997). In each plot the tone
of the second syllable is held constant while that of the first syllable alternates across four tones. (B) Mean F0 contours of Mandarin sentence (Zhangwei
danxin Xiaoying kaiche fayun [Zhangwei is concerned that Xiaoying may get dizzy when driving]), spoken by eight speakers (four females and four males)
as statement or question and with focus on the first or third disyllabic word (data from Liu and Xu, 2005).



cially in the early portion. Despite the extensive variability,
however, all the contours gradually converge over time to
a trajectory that is appropriate for the underlying tone:
high-level for the High (H) tone, rising for the Rising (R)
tone, low-level for the Low (L) tone and falling for the Fall-
ing (F) tone. As shown in Xu and Sun (2002), such carryover
contextual variation is articulatorily inevitable given the
physiological limit on the maximum speed of pitch change
that applies to both Mandarin and English speakers and
across genders. Fig. 1A also demonstrates that contextual
variability is anything but trivial. In fact, much effort has
been devoted to the understanding andmodeling of this var-
iability in terms of tonal coarticulation (Gu et al., 2007;
Kochanski and Shih, 2003; Ni et al., 2006; Prom-on et al.,
2009; Shen, 1990; Shih, 1987; Wu, 1984). However, theories
and models of intonation rarely address the issue of contex-
tual tonal variations explicitly in their original frameworks
(Beckman andPierrehumbert, 1986; Ladd, 2008; Pierrehum-
bert, 1980; Taylor, 2000; ‘t Hart et al., 1990). But given its
extent as evident from an example in Fig. 1A, two questions
are relevant to any theories or models of intonation: (a)
Should the contextual variability be explicitly modeled? (b)
Should each tonal category have a single underlying repre-
sentation, or should it have multiple representations, each
associated with a particular context?

The second type of variability is non-contextual and
non-assimilatory, of which one subtype is shown in
Fig. 1B. Here Mandarin sentences consisting of only H-
tone syllables are spoken as either a statement or a ques-
tion, and with either sentence-initial or sentence-medial
focus. The F0 contour of a tone again varies extensively,
but not due to assimilation with adjacent tones, but as a
result of different focus and sentence type conditions. The
same tone has higher F0 when it is in a question than when
it is in a statement, and the difference is larger at the end
than at the beginning of a sentence. Also the F0 height of
the same tone differs extensively depending on whether it
is directly under focus, preceding a focus or after a focus.
There are also many other factors that trigger this type
of variability, including additional intonational functions,
emotional and attitudinal functions, speaking style, etc.,
as reviewed in Xu (2011). Critically, these factors are all
fundamentally different from the contextual factor in that
they involve genuine modification of the articulatory tar-
gets, i.e. the surface F0 contours reach different articulatory
state depending on the factors, as opposed to the purely
mechanical process of articulatorily realizing the targets
in the case of contextual variability (Xu, 2005; Xu and
Wang, 2001). For modeling purposes, several questions
therefore need to be addressed if this type of variability is
to be adequately processed: (a) How can non-contextual
variability be modeled together with contextual variability?
(b) How can multiple prosodic functions be represented
and modeled? (c) Should the variation patterns be anno-
tated only in terms of their functional identity, or should
they also be annotated in terms of acoustic forms, such
as high or low pitch?

1.2. Previous modeling approaches to contextual variations

Given the extent of the two types of variability as shown
in Fig. 1, there is a need for strategies to handle both of
them, and importantly, to handle each of them in a way
that directly addresses the underlying mechanisms. Most
theories and models of prosody, however, do not explicitly
separate contextual from non-contextual variability.
Instead, efforts have been focused only on finding direct
representations of observed F0 contours without differenti-
ating the sources of the variability. The IPO model of into-
nation (‘t Hart et al., 1990), which defines intonation as
composed of concatenated linear sections, assumes that
many fine details of F0 contours are perceptually irrelevant
and therefore can be ignored in stylized linear representa-
tions of intonation. The autosegmental-metrical (AM) the-
ory defines intonation as a phonological structure
composed of sequentially arranged pitch accents, phrase
accents and boundary tones, each manifesting as an F0

event such as a peak or valley (Beckman and Pierrehum-
bert, 1986; Ladd, 2008; Pierrehumbert, 1980). The F0 con-
tours between these events are treated as due to linear or
curved interpolation (Pierrehumbert, 1980, 1981). In this
way, contextual variations are intermixed with non-contex-
tual variations rather than being separately recognized.
Later works that adopt the AM theory or its ToBI (Tone
and Break Indices) extension (Silverman et al., 1992) as
the underlying framework, though using a variety of other
ways to handle local F0 contours, also do not separately
recognize contextual variability (Anderson et al., 1984;
Grabe et al., 2007; Jilka et al., 1999; Taylor, 2000). Proba-
bly the only exception is Black and Hunt (1996), who used
regression trees to predict three target points for each syl-
lable. Among the regressors used in the training process
are some (e.g., accent type and endtone of two preceding
syllables) that carry certain contextual information. In this
way, they attempted to develop multiple representations of
variant tonal contexts. None of these approaches, however,
recognizes the role of articulatory mechanisms in prosody
production, with the only exception of Anderson et al.
(1984), who have taken into consideration the physiologi-
cal sluggishness of the articulatory system as a possible
source of local smoothness of the F0 contours.

One model that takes articulatory mechanism of F0 pro-
duction much more seriously is the command-response
model, also known as the Fujisaki model (Fujisaki et al.,
1990, 2005; Gu et al., 2006; Mixdorff et al., 2003). It repre-
sents F0 as a superpositional sum of phrase and accent/
tone components, each as a second-order critically-damped
response to the phrase and accent/tone commands, respec-
tively. The second-order system is based on a spring-mass
model, which has also been used in characterizing articula-
tory movements of segmental production (Saltzman and
Munhall, 1989; Perrier et al., 1996). The Fujisaki model
has been shown to be able to accurately resynthesize F0

contours of tonal variations (Fujisaki et al., 2005; Gu
et al., 2007) and sentence modality (Gu et al., 2006), but
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whether it can generate contextual variant F0 contours as
shown in Fig. 1 with invariant tone commands has not yet
been tested. Its basic assumptions about the form and tim-
ing of commands may in theory have made this task diffi-
cult for the model. First, the response to each command
consists of an on-ramp as well as an off-ramp, whereas
all the variants of a tone in Fig. 1A exhibits only unidirec-
tional movements toward an underlying linear trajectory,
with no observable return movements. Second, there are
only static-step or impulse commands in the Fujisaki
model, whereas the F0 contours of the R and F tones in
the right two plots of Fig. 1A evidently converge to a
dynamic rising or falling trajectory, respectively. This sug-
gests that the underlying targets of these tones could be
dynamic rather than static. The issue of dynamic targets
has been addressed in Fujisaki et al. (2005) by adding to
the model negative commands. But this creates a need to
optimize for the amplitudes and timings of the additional
commands. Third, unlike the syllable-synchronized tonal
variation shown in Fig. 1, the timings of all commands,
in terms of both onset and offset, are free parameters that
need to be estimated during modeling, which also increases
of the difficulty of establishing invariant tonal commands.

Thus to the questions of whether contextual variability
should be explicitly modeled, the answer by most of the
above-mentioned models is negative, because they have
either ignored it or handled it indirectly. As for whether
each tone should have a single or multiple underlying rep-
resentations, the answer by those models that do address
contextual variability in some way is that there need to
be multiple representations, each corresponding to a partic-
ular tonal context (Black and Hunt, 1996; Fujisaki et al.,
2005). Hence the best conceivable mapping so far between
surface tonal realizations and the underlying representa-
tions is many-to-many.

1.3. Previous modeling approaches to non-contextual

variations

Probably because non-contextual variations often
involve larger temporal domains than contextual varia-
tions, they have been the main focus of most of the theories
and models. The strategies for handling non-contextual
variability differ extensively, however. Many models do
not explicitly separate the non-contextual from the contex-
tual variability, as mentioned earlier. So, of how to model
non-contextual variability together with contextual vari-
ability is irrelevant to them. A number of models, known
as superpositional models, envision surface F0 as composed
of different layers of prosodic elements added on top of
each other. Among them, the command-response model,
also known as the Fujisaki model, distinguishes two such
layers: accent commands that correspond to local patterns,
and phrase commands that correspond to global patterns
(Fujisaki et al., 2005), with the accent commands having
smaller time constant (hence faster changes) than the
phrase commands. The accent and phrase commands

generate two sequences of F0 contours, which are then
summed up on a logarithmic scale. The allowance of only
two explicit levels is an apparent limit of this model, as it
makes it difficult to model more than one non-contextual
functions (Gu et al., 2006), which is needed even for the
F0 contours in Fig. 1B. The Superposition of Functional
Contours (SFC) model alleviates this difficulty by allowing
any arbitrary number of layers, referred to as metalinguis-
tic functions (Bailly and Holm, 2005). On the other hand,
the fact that SFC represents prototypical contours summa-
rized from training data means that it avoids direct model-
ing of any articulatory constraints. This limits its ability to
efficiently model contextual variability. So, with regard to
the question of how multiple prosodic functions can be rep-
resented and modeled, the most explicit answer so far is
superposition.

Finally, regarding the question as to how variable pro-
sodic patterns should be annotated, the AM/ToBI answer
is to use a representation that is at once phonological
and quasi-phonetic, because it directly represents the rela-
tive pitch of the tone types, i.e., H for high pitch and L
for low pitch. Similar quasi-phonetic is also used in INT-
SINT (Hirst, 2005, 2011) and RaP (Breen et al., 2012).
Note that such annotations are even “narrower” than a
narrow transcription of the segments by the International
Phonetic Alphabet (IPA), because in IPA, symbols like
[a], [i] and [u] do not directly represent acoustic or articula-
tory features such as formant frequency or tongue position.
In contrast to these modeling-by-transcription approaches
are a number of models that allow the learning of func-
tional forms directly from data (Bailly and Holm, 2005;
Black and Hunt, 1996; Fujisaki et al., 2005; Kochanski
and Shih, 2003; Vainio et al., 2009). To the extent that they
are able to achieve prosody synthesis with the directly
learned forms, we can see that it is possible that a quasi-
phonetic transcription of prosodic forms may not be
necessary.

1.4. The need for clearer separations of the two types of

variability

To summarize the above discussion, the general lack of
clear separation of contextual and non-contextual varia-
tions has been a major source of difficulty in prosodic mod-
eling. Ignoring the distinction between the two entirely
would severely obscure the identity and underlying form
of true functional categories in prosody, making it hard
to model meaningful prosody. Representing contextual
variants separately in a many-to-many manner, each asso-
ciated with a triggering context, could lead to improve-
ments. But it would take up additional modeling
resources (storage space, computing time, complexity of
the algorithm, etc.), and yet still unable to fully resolve
the confounding between the two very different types of
variability. A solution is therefore needed that cannot only
clearly separate the two types of variability, but also handle
both in a coherent framework.
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2. An articulatory–functional approach

The approach we have been developing is the quantita-
tive implementation of the parallel encoding and target
approximation (PENTA) framework (Xu, 2005), which is
based on the recognition of the fact that speech is a com-
municative system that uses the articulators—a mechani-
cal-physiological system—to encode information. Target
approximation is a simulation of the articulatory dynam-
ics, which gives rise to the contextual variability (Xu and
Wang, 2001), while parallel encoding is a simulation of
how communicative meanings are encoded with the articu-
latory dynamics, which gives rise to the non-contextual
variability.

2.1. Target approximation

Fig. 2 is an illustration of the basic concept of target
approximation (Xu and Wang, 2001). F0 contour (black
solid curve) is the response of the target approximation
process to the underlying pitch targets (gray dashed line).
Pitch targets represent the goals of F0 control and are local-
ized to the host syllables (demarcated by the boundaries
represented by the vertical gray lines).

This conceptual model has been mathematically imple-
mented as the quantitative Target Approximation (qTA)
model (Prom-on et al., 2009). In qTA, for each syllable,
F0 is represented by the solution equation of the third-
order critically damped linear system driven by a pitch tar-
get, as shown in the following equation,

f0ðtÞ ¼ ðmt þ bÞ þ ðc1 þ c2t þ c3t2Þe�kt ð1Þ
where m and b denote the slope and height of the pitch tar-
get, respectively, and k represents the strength of the target
approximation movement. The first term, a linear equa-
tion, is the forced response which is the pitch target, and
the second term, a polynomial and exponential, is the nat-
ural response of the system. The transient coefficients, c1,
c2, and c3, are calculated based on the initial F0 dynamic

state and the pitch target of the specified syllable. The ini-
tial dynamic state consists of initial F0 level, f0(0), velocity,
f 0
0ð0Þ, and acceleration, f 00

0 ð0Þ. The dynamic state is trans-
ferred from one syllable to the next at the syllable bound-
ary to ensure continuity of F0. Using the first and second
differentiations, F0 velocity and acceleration are directly
estimated from the synthesized F0 values at the offset of
the previous syllable, with the only exception for the first
syllable of an utterance, for which these values are obtained
directly from the original utterance. The three transient
coefficients are computed from the following formulae.

c1 ¼ f0ð0Þ � b ð2Þ
c2 ¼ f 0

0ð0Þ þ c1k� m ð3Þ
c3 ¼ ðf 00

0 ð0Þ þ 2c2k� c1k
2Þ=2 ð4Þ

qTA has three model parameters controlling the F0 trajec-
tory of each syllable: target slope (m), target height (b), and
the rate or strength of target approximation (k). m and b

specify the form of the pitch target. Positive and negative
values of m indicate rising and falling targets, respectively,
while positive and negative values of b indicate raising and
lowering of pitch targets relative to the speaker average F0

level. For example, the Mandarin rising and falling tones
are found to have positive and negative m values, respec-
tively (Prom-on et al., 2009, 2011). k indicates how rapidly
a pitch target is approached. The higher the value of k the
faster F0 approaches the target. For example, k of the
Mandarin neutral tone has been found to be smaller than
those of other tones (Prom-on et al., 2011, 2012), reflecting
the slow F0 movement toward the target of the neutral
tone.

With qTA, given a particular pitch target, as those
shown in Fig. 2, the surface F0 contour is the result of
approaching this pitch target, starting from the initial state
transferred from the preceding target approximation move-
ment. Thus the model would exhibit carryover contextual
influences not unlike those shown in Fig. 1A. Furthermore,
since the target approximation movement is directly calcu-
lated from its target and initial state, there is no need for

Fig. 2. An illustration of target approximation process. The thick solid line represents the F0 contour that asymptotically approach two successive pitch
targets represented by the dashed lines. The middle vertical gray line represents the syllable boundary through which the final F0 dynamic state is
transferred from one syllable to the next. The gray block arrow indicates the direction of the F0 dynamic state transfer.
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the system to “know” what exactly the previous target is
during synthesis, or to keep track of the preceding context
during training (as done in Black and Hunt, 1995, Fujisaki
et al., 2005, Gu and Lee, 2007). Hence, to the two questions
about contextual variability raised earlier, the answers by
PENTA are, (a) each tone needs only a single underlying
target in different tonal contexts, because the variant sur-
face F0 trajectories due to context can be automatically
generated given the initial states (represented by f0(0),
f 0
0ð0Þ, and f 00

0 ð0Þ) used for calculating the transient coeffi-
cients and syllable durations (which are the original dura-
tion in this study and independent of the targets),1 and
(b) there is no need to treat tonal contexts as associated
properties of the corresponding tonal variants, since the
initial state can be estimated online, without knowing the
identity of the preceding context.

2.2. Parallel encoding

Fig. 3 displays a schematic of the PENTA framework.
The stacked boxes on the far left represent individual com-
municative functions as the driving force of the model.
These functions are realized by distinct encoding schemes
(the second stack of boxes from the left) that specify the
parameters (middle block) of target approximation. The
parameters are then used to control the target approxima-
tion process to generate the acoustic output (right). The
PENTA framework thus describes speech prosody as a
process of encoding communicative functions based on tar-
get approximation. This allows for a clear separation as
well as smooth integration of the contextual and non-con-
textual variability, and specifies a continuous link between
the two. In this way it provides a framework in which a full
repertoire of communicative functions can be simulta-
neously realized in prosody, with all the details of the sur-
face prosody still linked to their proper sources.

PENTA is not, however, a theory about the exact forms
of individual encoding schemes, and so it is not a direct
alternative to, e.g., the AM theory. Rather, it assumes that
how and even whether a communicative function is pro-
sodically encoded is language specific, and that the exact

details of each encoding scheme in a particular language
have to be discovered through systematic empirical investi-
gations (e.g., Lee and Xu, 2010; Liu et al., 2013; Liu and
Xu, 2005; Wu and Xu, 2010; Xu, 1999; Xu and Wang,
2009; Xu and Xu, 2005). A further implication of this
assumption for prosody modeling is that there is no need
for quasi-phonetic transcription systems like ToBI, INT-
SINT or RaP, because the exact underlying form of the
functional coding can be learned in a data-driven manner,
as long as the functional categories and their temporal
domains are adequately annotated.

Hence, to the questions raised earlier about non-contex-
tual variability, the answers by PENTA would be, (a,b)
Non-contextual variability can be modeled as targets mod-
ified by all the participating functions, but the modified
targets are always realized the same way, i.e., via syllable-
synchronized target approximation, which automatically
generates all the contextual variability; and (c) Targets
need to be annotated only in terms of their functional com-
binations, as their parameter values can be extracted from
natural speech in a data-driven manner.

3. Modeling with PENTAtrainer2

The goal of the present study is to test the idea of auto-
matic learning of underlying melodic representations of
communicative functions from real speech data, with which
F0 contours closely matching those of the original can be
predictively synthesized. More specifically, we try to
achieve a number of goals that are related to the questions
raised earlier about both contextual and non-contextual
variations. First, we try to find unique and singular invari-
ant representations that can generate a wide range of con-
textual variants. In other words, we seek many-to-one as
opposed to many-to-many (Bailly and Holm, 2005; Chen
et al., 2004; Gu et al., 2007; Jokisch et al., 2000; Ni et al.,
2006; Taylor, 2009) mappings between contextually vari-
able surface acoustics and underlying phonetic representa-
tions. Second, we try to achieve predictive synthesis, in
which model parameters extracted from one set of sen-
tences are used to predict F0 of other sentences, as done
in only some of the modeling studies (e.g., Raidt et al.,
2004; Sakurai et al., 2003; Sun, 2002), rather than just re-
synthesis of F0 contours with parameters derived from
the same utterance. Third, we try to minimize the total

Fig. 3. A schematic sketch of the PENTA framework. This figure is adapted from Xu (2005).

1 Note that here the invariance in tonal targets is only relative to
contexts. Variant targets are required for modeling the second type of
variability, as will be discussed next.
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number of parameters by allowing as few degrees of free-
dom as possible.

This modeling effort is a significant extension of our pre-
vious modeling work, including Prom-on et al. (2009) and
the subsequently developed PENTAtrainer1 (Xu and
Prom-on, 2010–2013). In the following two subsections
we will describe the new components added to the previous
system. In Section 4, we will explain how the newly devel-
oped PENTAtrainer2 is tested and report the results of
modeling experiments on Thai, Mandarin and English. In
Section 5 we will demonstrate the capability of PENTAtra-
iner2 to be used as a tool for theoretical hypothesis testing.

3.1. Functional annotation

PENTAtrainer2 is a data-driven system in the sense that
all the specific values of the model parameters are learned
from natural speech used as the training material. But it
is critical for the system to know what to learn. This is done
with three strategies: (a) layered functional annotation, (b)
pseudo-hierarchical combination and (c) edge-synchroniza-
tion. Fig. 4 illustrates the annotation of three communica-
tive functions of English intonation: Stress, Focus, and
Modality. Each layer was annotated independently and
the function-internal categories are defined by the investi-
gator, in this case by ourselves based on our previous
empirical data (Liu et al., 2013). Boundaries on each layer
were marked according to the time span of that prosodic
event, again defined by the investigator. For example, in
Fig. 4, the Stress function is associated with the syllable
and can have two values: Stressed (S) and Unstressed
(U). Note that the names here carry no meaning to PEN-
TAtrainer2 other than informing it which are of the same
categories and so should be given a common set of target

parameters. This differs from annotation schemes in which
the names are meaningful (e.g., ToBI: Silverman et al.,
1992, INTSINT: Hirst, 2011, RaP: Breen et al., 2012).

Pseudo-hierarchical combination means that boundaries
from the layer with the smallest temporal unit (i.e., largest
number of intervals) project to other layers to form func-
tional combinations. Thus each of the smallest temporal
domains is a full combination of all the functions present
in the sentence. As can be seen from Fig. 4, a sequence
of functional combinations after boundary projection rep-
resents the prosodic variation of that utterance. Functional
combinations that occur more than once are combined, so
that there is no redundancy of functional representation.
Note that such functional combination and boundary pro-
jection is an alternative to the superposition approach
which requires F0-contour decomposition before parame-
ter extraction, extracting two separate sets of parameters
during trainings, and algorithmic summation during syn-
thesis (Bailly and Holm, 2005; Fujisaki et al., 2005; Mix-
dorff et al., 2003). Here for each functional combination
at the smallest temporal unit, only a single set of parame-
ters need to be learned directly from the original (i.e.,
non-decomposed) F0 contours during training and used
during synthesis. Finally, edge-synchronization means that
all the layers, regardless of their own temporal scope, have
fully synchronized edges with the smallest units. This is
similar to the approaches of Bailly and Holm (2005) and
Black and Hunt (1996), but differs from the Fujisaki model
for which phrase commands and accent commands each
have their own free onsets and offsets, and so both have
to be learned separately (thus with additional degrees of
freedom).

The functional annotation concept implemented in PEN-
TAtrainer2 requires the annotation of only the temporal

Fig. 4. An example of conversion process from the parallel functional annotation to the essential functional combinations. For a “Stress” layer, S denotes
stressed syllables and U denotes unstressed syllables. For a “Focus” layer, PRE, ON, POS denote pre-focus, on-focus, and post-focus regions, respectively.
For a “Modality” layer, Q denotes question.
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intervals of components of hypothetical prosodic func-
tions, while the discovery of the function-specific parame-
ters is left to the training process. Compared to
annotation systems like ToBI, this frees the investigator
of the responsibility to make detailed and quasi-phonetic
transcriptions based on careful F0 inspection and listening.
It also potentially enhances annotation consistency, as true
communicative functions, by definition, are commonly
shared by native speakers, thus alleviating the well-known
problem of low cross-labeler consistency in ToBI type
annotations (Breen et al., 2012; Syrdal and McGory,
2000; Wightman and Rose, 1999).

3.2. Analysis-by-synthesis with stochastic optimization

In the initial implementation of qTA (Prom-on et al.,
2009), target parameters are learned locally syllable-by-syl-
lable through an exhaustive search for the parameter sets

that result in the lowest sum of square errors between ori-
ginal and synthesized F0. This algorithm has been further
implemented as PENTAtrainer1—an interactive Praat
script (Xu and Prom-on, 2010–2013). The local parameter
sets learned from this process are then summarized into
categorical ones by averaging across individual occurrences
of the same functional categories (Prom-on et al., 2009).
Such local search plus categorization-by-averaging is illus-
trated in the left panel of Fig. 5. The synthesis results were
quite good despite the simplicity of the algorithm, which
demonstrates the effectiveness of the qTA model in captur-
ing contextual variability. The disadvantages, however, are
that (a) the estimated parameters are optimal for the local
syllable but not necessarily for the functional categories
and (b) the estimation of k is often not satisfactory because
it may fall into a local minimum due to the complexity of
its error landscape, as shown in Fig. 6. Solving this prob-
lem is especially critical for the successful modeling of weak

Fig. 5. Comparisons between local and global optimizations in modeling speech prosody based on communicative functions.

Fig. 6. Changes in error landscapes in the optimization process when target parameters vary. Each landscape was derived by varying m and k of an on-
focus F tone category. The gradient color bar on the right of each panel shows the association of color and error value. The solid mark “�” indicates the
optimal point and the dashed mark indicates the old optimal point. The solid arrow line points to the new optimal coordinate. On the left panel where b of
an on-focus F tone is set to 0, the optimal point indicates the combination of m and k where the error between original and synthesized F0 contours is at
minimum. When b is changed to 5, the new optimal point also moves to the new combination. Such interactions between parameters suggest a need to
optimize the parameters of all functional categories together.
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prosodic components such as the neural tone in Mandarin
and the unstressed syllable in English.

In PENTAtrainer2, local optimization is replaced by
stochastic global optimization that can directly estimate
parameters of functional categories from an entire corpus.
The general idea is illustrated in the right panel of Fig. 5.
The list of functional combinations is used to initialize
the categorical parameters. These parameters are then
repeatedly evaluated for every utterance in the corpus, by
synthesis and comparison, and randomly adjusted. Since
a pseudo-hierarchical structure of communicative func-
tions (see Section 3.3) is incorporated into the parameter
estimation process, at the end of the optimization, the
learned parameters would be close to optimal for the given
set of functional combinations.

Fig. 7 shows a block diagram of the global parameter esti-
mation through analysis-by-synthesis and simulated anneal-
ing (Kirkpatrick et al., 1983). At the initial stage, the
algorithm randomly generates parameters of all functional
categories. The number of initialized parameter sets is equal
to the number of essential functional combinations obtained
from the procedure to be discussed in the next section. These
parameters are randomly adjusted and used in qTA to syn-
thesize F0 contours that are to be compared to the original
data. The total sumof square error between original and syn-
thesized F0 contours calculated from the whole corpus is
then used to determine whether the proposed adjustment is
acceptable. The decision to accept or reject the proposed
adjustment depends on the acceptance probability calcu-
lated from the change in error incurred from parameter
adjustment and the annealing temperature, as follows,

paccept ¼ e�ðEcurrent�EpreviousÞ=T ð5Þ

where Ecurrent and Eprevious are the total sum of square er-
rors calculated from the whole corpus. The difference be-
tween these two errors indicates the change in the total
error incurred from the parameter adjustment. T is the
annealing temperature that controls the degree at which a
bad solution is allowed. In the decision process, a random
testing probability (ptest) is generated and compared to
paccept. If ptest < paccept, the parameter adjustment is ac-
cepted; otherwise it is rejected. T is initially set to a high va-
lue and then gradually reduced as the procedure is
repeated. In other words, this way of adjusting temperature
allows the bad solutions to have opportunities to be ac-
cepted at the initial stages and, as the procedure is re-
peated, the decision is gradually shifted towards
accepting only good solutions. This allows the solution to
converge close to the global optimum over iterations.

For different simulation runs, the final optimized param-
eters may differ slightly due to the randomness built into
the optimization process. The parameter learning process
should be therefore repeated a number of times to obtain
a more stable solution. This process is also known as boot-
strapping in statistics (Efron, 1979; Konishi and Kitagawa,
1996). The medians of the parameters were then calculated
across repetitions for each functional category produced by
each speaker.

3.3. Speaker normalization

To handle the individual differences in pitch range, espe-
cially between female and male speakers, we applied two
strategies found to be effective in our previous work on
PENTAtrainer1 (Prom-on et al., 2009). The first is to

Fig. 7. A diagram illustrating the application of the simulated annealing algorithm used for globally optimizing parameters of essential functional
combinations by means of analysis-by-synthesis.
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always use the initial F0 of each utterance as the reference,
and treat subsequent variations as deviations from it. This
normalizes the cross-speaker and cross-gender F0 height
differences. During resynthesis, however, the speaker mean
can be used as the reference. The second strategy is to pro-
cess F0 on the semitone scale, which is logarithmic. This
normalizes the cross-speaker and cross-gender pitch range
differences. In addition, the target approximation, as simu-
lated by the qTA model, is a powerful normalization pro-
cess in itself, as all speakers of a language, despite their
differences in their normal pitch range, are presumably
doing comparable things in their production of tone and
intonation.

Note however that such speaker normalization is applica-
ble only in the case of group-average modeling, in which
common targets shared by a group of speakers are obtained.
It is also possible to perform speaker-dependentmodeling, in
which the targets learned are unique to individual speakers.
Both types of modeling are performed in the present study,
and their results are compared whenever necessary.

3.4. PENTAtrainer2, the software

PENTAtrainer2 is developed as a semi-automatic
software package written as Praat scripts (Boersma and

Weenink, 2012) integrated with Java programs. Users can
download PENTAtrainer2 and its documentations from:
http://www.phon.ucl.ac.uk/home/yi/PENTAtrainer2/. It
consists of three computational tools: Annotation, Learning
and Synthesis tools, as shown in Fig. 8. The first step in using
PENTAtrainer2 is to annotate the corpus with the Annota-
tion tool. Before the annotation, users need to determine the
number of communicative/linguistic functions that will be
studied, as well as their internal categories. This annotation
step is themost time consuming part for the user. In this step,
users need to mark the boundaries in each layer associating
with a particular factor and name the category in each inter-
val, as illustrated in Fig. 4.

In the second step, parameters are automatically opti-
mized by the Learning tool. This step requires user input
only on a few optimization parameters, including

– Maximum Iteration, indicating the number of rounds
that the procedure is repeated

– Learning Rate, indicating the scaling factor for parame-
ter adjustment

– Starting Temperature, indicating the starting tempera-
ture, T, as shown in Eq. (5)

– Reduction Factor, indicating the scaling factor of the
annealing temperature for each iteration

Fig. 8. Workflow of PENTAtrainer2, which consists of the use of Annotation, Learning, and Synthesis tools. The number on the top-left of each tool
indicates its order of application in the modeling process.
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The speed of the optimization process depends on the
size of the corpus, the number of functional combinations,
and the above-mentioned optimization parameters. In the
last step, i.e., after the optimization process is completed,
users can use the Synthesis tool to synthesize F0 contours
based on the optimized parameters and visually compare
them to the originals. Users can also perceptually inspect
the quality of the synthesized sounds, which are generated
by the PSOLA algorithm implemented in Praat. Both the
acoustic output and the synthetic F0 can be saved for later
evaluation and analysis. The results to be reported in the
following sections are based directly on the saved output
of PENTAtrainer2.

4. Testing

Our goal here is to test whether we can use PENTAtra-
iner2 to learn invariant categorical target parameters from
real speech, with which F0 contours closely matching the
original can be predictively synthesized.

4.1. Corpora

Three corpora, in Thai, Mandarin, and English, were
used, each originally designed for systematic acoustic anal-
ysis of various prosodic factors in the target language. The
Thai corpus was designed for the study of interaction
between contextual tonal variation and vowel length. The
Mandarin corpus was designed for the study of interaction
between tone, focus, and sentence modality (Prom-on
et al., 2011). The English corpus was designed for the study
of interaction between stress, focus, syllable position, and
sentence modality (Liu et al., 2013). Tables 1–3 show the
sentence structure of each corpus.

The Thai corpus consists of 2500 four-syllable utter-
ances recorded by five native Standard Thai speakers (three
males and two females). All speakers were undergraduate
students, aged 20–25, studying at King Mongkut’s Univer-
sity of Technology Thonburi, Bangkok, Thailand. They all
grew up in the Greater Bangkok region and had no self-
reported speech or hearing disorders. Recordings were

done in a sound-treated room at the King Monkut’s Uni-
versity of Technology Thonburi. The utterances were
recorded at the sample rate of 22.05 kHz and 16-bit
resolution.

The Thai lexical tones, including Mid (M, T0), Low (L,
T1), Falling (F, T2), High (H, T3), and Rising (R, T4) and
vowel length, both short and long, were manipulated in a
full factorial design. Each sentence consisted of four sylla-
bles, with the tones of the two middle syllables varying
across all five tones and two vowel lengths. The first and
the last syllables were always M tones to minimize carry-
over and anticipatory influences on the two middle sylla-
bles. Thus there were 100 tone and vowel length
combinations in total. Each utterance was repeated five
times by each speaker.

The Mandarin corpus consists of 1280 eight-syllable
utterances recorded by eight native Mandarin speakers
(four males and four females). They were either students
at Yale University or residents in New Haven, Connecticut,
who were born and raised in the city of Beijing. They were
23–34 years old and had no self-reported speech or hearing
disorders. Recordings were done in a sound-isolated booth
at Haskins Laboratories, New Haven, Connecticut. The
utterances were originally digitized at the sample rate of
44 kHz and 16-bit resolution, and later resampled at
22.05 kHz.

Each target sentence in the Mandarin corpus consists of
eight syllables. The tone of the third syllable varies across
all the full tones, including High (H, T1), Rising (R, T2),
Low (L, T3) and Falling (F, T4). The first syllable is always
H and the second syllable always L. The fourth to sixth syl-
lables are always the Neutral tone (N, T0). The tones of the
final two syllables are either both H or both N. Each sen-
tence was also said as either a statement or a question,
and with focus on either the second or the third syllable.

Table 1
Sentence structure of the Thai corpus.

Syllable 1 Syllable 2 Syllable 3 Syllable 4

khun0
M

ʔaː0/nim0
M

laː0/loN0
M

Naːn0 or maː0a

M
noːj1/mam1
L

ʔaːn1/man1
L

maeː2/nim2
F

waːN2/maj2
F

naː3/miN3
H

neːn3/lom3
H

laːn4/ jiN4
R

haː4/loN4
R

a The word of the forth syllable depends on the preceding vowel: Naːn0 if
it is preceded by a long vowel or maː0 if it is preceded by a short vowel.

Table 2
Sentence structure of the Mandarin corpus.

Syllable 1–2 Syllable 3–4 Syllable 5–6 Syllable 7–8

ta1 mai3
H L/L-S

ma1 ma0
H N

men0 de0
N N

le0 ma0
N N

ye2 ye0
R N
nai3 nai0
L N

mao1 mi1
H H-F

mei4 mei0
F N

Table 3
Sentence structure of the English corpus.

Non-target Words Target word 1 Non-target words Target word 2

You want a job with Microsoft
La Massage

There’s something unmarriable about me
May

You’re going to Bloomingdales with Alan
Elaine
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The intended focus and sentence modality were elicited by
different prompt sentences. There were, thus, 32 combina-
tions in total. For each combination, the utterance was
repeated five times by each speaker.

The English corpus consists of 960 utterances having 8–
10 syllables for each utterance. It was recorded by five
native speakers of American English (two males, three
females), aged 18–30, with no self-reported speech or hear-
ing disorders. They were raised in either California or the
Midwest in the United States, and spoke General American
English. Recordings were done in sound-treated booth in
the Language Labs at the University of Chicago, Chicago,
Illinois. During the recording, the prompt and target sen-
tences were displayed and the subject read aloud both of
them. The utterances were digitized at 22.05 kHz and 16-
bit resolution. There are three sets of sentences, in each
of which the final syllable of the last word was either
stressed or unstressed. Each sentence was said as either a
statement or a question, and with focus on either the mid-
dle or the final target word. Each sentence was repeated
eight times by each speaker.

Note that all these three corpora, due to their experi-
mental nature, may seem more limited than most other cor-
pora used in data-driven modeling, which are typically
much less controlled. But speech corpora are merely sub-
sets of all speech and as such they can never be full exhaus-
tive. What really matters is whether a corpus includes
sufficient samples (preferably by multiple speakers) of the
patterns of interest as well as their triggering contexts. Tra-
ditional corpora, typically consisting of many more unique
sentences than in a controlled corpus, inevitably have very
uneven sample sizes for different patterns. As a result, it is
hard to determine in the end which proportion of the mod-
eling errors should be attributed to the modeling algo-
rithms and which should be attributed to the uneven
sample sizes. A further advantage of controlled corpora
is that they allow special designs for focusing on difficult
problems such as the neutral tone in Mandarin. The use
of long strings of successive neutral tones, such as those
shown in Table 2, has proven to be instrumental for our
previous investigation of the neutral tone in three separate
production studies (Chen and Xu, 2006; Liu and Xu, 2005;
Liu et al., 2013). But it would be very hard to find more
than a few (or any at all) samples of similar neutral tone
sequence in a traditional corpus. Furthermore, controlled
corpora, like those just described, due to their full transpar-
ency, makes it easier for investigators to understand what
may be the source of a particular problem and how damag-
ing it is, as we will see in the case of the Mandarin corpus
used in the present study.

Each corpus was specifically annotated based on its
design. For Thai corpus, two functional layers were anno-
tated for the two middle syllables, including tones (M/L/F/
H/R) and vowel length (Long/Short). For Mandarin cor-
pus, three functional layers were annotated, including
tones (H/H-F/R/L/LS/F/N), focus conditions (Pre-focus/
On-focus/Post-focus) and sentence modality (Statement/

Question). L-S annotates the L tone changed by the tone
sandhi rule, to be discussed later. H-F annotates the sen-
tence-final H tone, which is heavily influenced by the
modality function, also to be discussed later. For English
corpus, four functional layers were annotated, including
stress (Unstressed/Stressed/Stressed-WordFinal), focus
conditions (Pre-focus/On-focus/Post-focus), sentence
modality (Statement/Question) and syllable position in
sentence (Non-final/Penuntimate-final/Final). In each cor-
pus, syllable boundaries were marked and pulse marking
were rectified manually by the authors using the Annota-
tion tool.

Note that there were no layers for annotating the well-
known phonetic patterns like downstep, declination and
final-lowering, because we believe they are not independent
functions that convey communicative meanings, but rather
by-products of tone, focus and sentence modality (Liu and
Xu, 2005; Xu, 1999). As found in Prom-on et al. (2009), the
effects of these phonetic patterns would be fully accounted
for by the annotated functions mentioned above. Note also
that from our previous acoustic studies, what affect the F0

of English and Mandarin the most are tone (including
tonal context), focus and sentence modality, and our cor-
pora have included balanced materials for all these three
factors, except the slightly incomplete balance in tonal con-
text for Mandarin in order to better model the neutral tone,
as mentioned above. In comparison, a corpus like the
widely used Boston Radio Corpus, though consisting of a
great variety of sentences, contains virtually no question
intonation samples, and so is much less balanced for F0

control than our corpora. On the other hand, syntactic
structures other than statement/question contrast, affect
mostly duration rather than F0 (Wagner and Watson,
2010; Xu, 2011; Xu and Wang, 2009; Yang and Yang,
2012). And duration modeling, as explained in the discus-
sion, is what we will investigate in future studies.

4.2. Testing method

The optimization parameters were set as default for all
corpora as follows: Maximum Iteration = 500, Learning
Rate = 0.1, Starting Temperature = 500, Reduction Fac-
tor = 0.95. It should be noted that these values were deter-
mined empirically over a number of pilot runs. They were
selected so that the error would not converge either too fast
or too slow.

Three testing conditions were used, each aiming to test a
specific level of generalizability of the learned parameters:
(a) speaker dependent, (b) group average, and (c) cross-val-
idation. In the speaker dependent condition, parameters
learned from each speaker were used in evaluating the syn-
thesis accuracy for the same speaker. While the generaliz-
ability is relatively low, the parameters learned in this
condition reflect more of the individual characteristics. In
the group average condition, the averaged parameters of
all speakers for each functional combination were used in
evaluating the synthesis of each of the speakers. This con-
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dition was used to determine whether averaged parameters
are generalizable to all speakers. The cross-validation con-
dition offers an even stricter test of generalizability. This
was done through leave-one-out cross-validation, in which
the F0 of each speaker was synthesized with parameters
averaged from all the rest of the speakers.

The primary evaluation criteria include numerical syn-
thesis accuracy, visual comparison of original and synthetic
contours and perceptual appraisal. Synthesis accuracy is
evaluated by calculating root-mean-square error (RMSE)
and Pearson’s correlation coefficient (henceforth, correla-
tion) comparing between original and synthesized F0 con-
tours of each utterance, as shown in the following
equations.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðf0ðtiÞ � yðtiÞÞ2
vuut ð6Þ

Correlation ¼ N
PN

i¼1yðtiÞfoðtiÞ �
PN

i¼1yðtiÞ
PN

i¼1f0ðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN

i¼1ðyðtiÞÞ2 � ðPN
i¼1yðtiÞÞ
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2
q

ð7Þ

where y(ti) denotes the original F0 value at time ti and N is
the total number of sample points of that utterance. RMSE
indicates the average mismatch of the contours while corre-
lation indicates the mismatch between the shape and the
alignment of the contours. These two measurements have
been shown to be effective (Hermes, 1998), and have been
widely used as computational metrics in previous prosody
modeling works (Black and Hunt, 1996; Jilka et al., 1999;
Prom-on et al., 2009, 2011, 2012; Ross and Ostendorf,
1999; Taylor, 2000).

To compare the performances of local and global opti-
mizations, we applied both PENTAtrainer1 (Xu and
Prom-on, 2010–2013) and PENTAtrainer2. In the applica-
tion of PENTAtrainer1, depending on the testing condi-
tion, parameters were averaged for tone/stress, focus,
syllable position and sentence modality. Global optimiza-
tion was performed only in PENTAtrainer2. The annota-
tion schemes in PENTAtrainer2 were designed to parallel
the functional categories used in local optimization, so that
the number of parameters are equal in the global and local
optimizations. The full comparison of global and local
optimizations in all three testing conditions was done only
for the Mandarin and English corpora since they contained
similar factors in the original studies (Liu et al., 2013).

Repeated measures ANOVA were used for multifactor
analysis, while paired t-test was used for the comparisons
of different methods and conditions applied to data of
the same speakers, particularly in the analysis of synthesis
accuracies. The parameter distributions of functional cate-
gories were analyzed using Student’s t-test. For the nature
of the contrastive characteristics of underlying representa-
tions between functional categories, post-hoc analysis was
performed only on the Thai corpus using Scheff�e’s post-
hoc test. This is because the Thai corpus was designed
for primarily studying one main contributing prosodic fac-

tor while the English and Mandarin corpora were designed
for studying interactions between various factors, none of
which could be considered separately without others.

Perceptual appraisal was conducted on native Thai par-
ticipants to test the effectiveness of Thai tone simulation
and the naturalness of synthetic F0 contours. This was
done only on Thai because perceptual evaluations done
on English and Mandarin with an equivalent of PENTA-
trainer1 already achieved satisfactory results. Pitch target
parameters of tone functions estimated earlier were used
to synthesize F0 contours which were imposed onto four
utterance in the form of “ʔaːn1 waː2 X krab3”, which
translates to “(This) reads X”. Here X is the target word
with five alternate tones on two CV and two CVC syllables:
“kaː”, “loː”, “lon”, and “yang”. For creating synthetic
stimuli, the four utterances were recorded by a native Thai
speaker, with the mid-tone on the target syllable. Using the
Synthesis tool, F0 contours of all five tones were synthe-
sized from the learned parameters and imposed onto the
target syllable, thus creating 20 synthetic stimulus utter-
ances. Pitch modification was done using the PSOLA algo-
rithm in Praat (Boersma and Weenink, 2012). As controls,
the natural stimuli of the same utterances of all tonal com-
binations were recorded by the same speaker. There are
thus 40 stimulus utterances in total.

Thirteen native Thai listeners participated in the exper-
iment, which was conducted through the ExperimentMFC
of Praat. The stimulus utterances were randomly presented
to the listeners. For each stimulus, listeners had to select,
on the computer screen, the Thai word they just heard
and select a naturalness score on a 5-level scale from terri-
ble (1) to excellent (5). Listeners were allowed to listen to
the stimuli as many times as they preferred.

4.3. Synthesis accuracy and perception results

Table 4 shows the number of parameters and the overall
synthesis accuracies of all three corpora for different testing
conditions. For the speaker dependent condition, which
directly uses speaker-specific optimized parameters, low
RMSEs and high correlations can be seen across lan-
guages. More generalization of the functional parameters
in the group average condition results in a dramatic reduc-
tion of the number of parameters (five-fold reduction for
English and Thai, and eight-fold reduction for Mandarin)
and synthesis accuracies (Thai: RMSE, t(4) = 3.55,
p = 0.024; Correlation, t(4) = 3.74, p = 0.020; Mandarin,
RMSE, t(7) = 4.57, p = 0.001; Correlation, t(7) = 3.16,
p = 0.008; English, RMSE, t(4) = 3.91, p = 0.009; Correla-
tion, t(4) = 8.16, p < 0.001). This reduction of synthesis
accuracies is expected as the parameters became more gen-
eralized and the speaker dependent characteristics were
averaged out. Nevertheless, synthesis accuracies of group
average condition are still rather high compared to our pre-
vious work (Prom-on et al., 2009, 2011). For the cross val-
idation condition which excludes data of the testing
speaker, relatively low errors and high correlations can still
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be seen for all three languages. This indicates the effective-
ness and generalizability of pitch target parameters as
underlying representations.

The results of perceptual appraisal displayed in Fig. 9
show no significant differences in tone identification (t
(24) = 0.48, p = 0.632), naturalness (t(24) = 1.79,
p = 0.086) or reaction time of response (t(24) = 0.51,
p = 0.612). Comparable tone identification rates, natural-
ness ratings and reaction times for both natural and syn-
thetic stimuli shown in Fig. 9 indicate a high quality of
the simulated Thai tones.

To determine the quantitative improvement of global
over local optimizations, we compared the synthesis accu-
racies of the two methods in all testing conditions, and
the results are shown in Table 5. Using a repeated measures
ANOVA, we found that global optimization has signifi-
cantly higher accuracies than local optimization consis-
tently in both English and Mandarin corpora for all
testing conditions (English: RMSE, F(1,24) = 34.13,
p < 0.001; Correlation, F(1,24) = 18.40, p < 0.001; Manda-
rin: RMSE, F(1,42) = 35.18, p < 0.001; Correlation, F
(1,42) = 51.89, p < 0.001). Even in the case of group
average parameters learned through global optimization,

the synthesis accuracies were significantly higher than those
of speaker dependent parameters learned through local
optimization (English: RMSE, t(4) = 2.34, p = 0.040; Cor-
relation, t(4) = 2.47, p = 0.035; Mandarin: RMSE, t(7)
= 3.81, p = 0.003; Correlation, t(7) = 2.91, p = 0.011). This
indicates the effectiveness of global optimization over local
optimization and also the generalizability of the invariant
underlying representations.

4.4. Graphical comparison

Graphical comparison provides detailed case-by-case
analysis of synthesis accuracy. This section shows the com-
parisons between original and synthesized F0 contours, as
shown in Fig. 10–12. Synthesized F0 contours in each figure
were generated from function-specific (which is also
speaker-independent) parameters shown in Table 6–8.
Both the original and synthesized contours were averaged
across speakers and repetitions. To make the comparisons
more directly, the F0 contours are time-normalize with
regard to the syllable. But time-normalization is done only
for plotting these graphs. No duration manipulation has
been done to either the original or synthetic utterances,

Table 4
Summary of average RMSEs in semitone, correlation coefficients, and the numbers of parameter sets corresponding to essential functional combinations
for Thai, Mandarin and English corpora.

Corpora Synthesis accuracya Speaker dependent Group average Cross validationb

Thai RMSE 0.78 (0.05) 0.90 (0.06) 0.96 (0.07)
Correlation 0.889 (0.012) 0.871 (0.014) 0.861 (0.017)
Number of Parameters 50 10 50

Mandarin RMSE 2.16 (0.22) 2.72 (0.20) 3.01 (0.23)
Correlation 0.903 (0.008) 0.868 (0.012) 0.847 (0.009)
Number of Parameters 224 28 244

English RMSE 2.07 (0.23) 2.77 (0.25) 2.98 (0.24)
Correlation 0.836 (0.019) 0.772 (0.021) 0.757 (0.023)
Number of Parameters 130 26 130

a The RMSE are calculated in semitones in order to make the results comparable across speakers, especially between males and females (Xu, 2011). To
compare with studies that report Hz values, the conversion can be done with the equation: Hz � fref � exp(st � ln(2)/12) � fref, where fref is the reference
F0 in Hz, and st is RMSE in semitones. Note that the conversion can only be an approximation because RMSE calculation in Hz has to be done on
variable reference F0 (i.e., that of the original) rather than speaker average F0.
b The numbers of parameter sets for cross validation equal those of speaker dependent, but they were derived from speakers other than the testing

speaker.

Fig. 9. Means and standard errors of (A) tone identification rate, (B) naturalness rating, and (C) reaction time in the Thai perceptual evaluation. In each
panel, the left bar is for the natural stimuli while the right bar for the synthetic stimuli.
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Table 5
Comparison of synthesis accuracies between local and global optimizations for English and Mandarin corpora. Both local and global optimizations use
the same annotation structure.

Corpora Optimization Method RMSE Correlation

Speaker dependent Group average Cross validation Speaker dependent Group average Cross validation

English Locala 3.25 (0.24) 3.68 (0.14) 3.94 (0.16) 0.737 (0.011) 0.728 (0.013) 0.713 (0.016)
Globalb 2.07 (0.23) 2.77 (0.25) 2.98 (0.24) 0.836 (0.019) 0.772 (0.021) 0.757 (0.023)

Mandarin Local 3.26 (0.22) 3.66 (0.24) 4.24 (0.25) 0.826 (0.017) 0.814 (0.016) 0.745 (0.015)
Global 2.16 (0.22) 2.72 (0.20) 3.01 (0.23) 0.903 (0.008) 0.868 (0.012) 0.847 (0.009)

a via PENTAtrainer1 (Xu and Prom-on, 2010–2013).
b via PENTAtrainer2 (this study).

Fig. 10. Graphical comparisons of original (red dotted line) and synthesized (black solid line) F0 contours of the Thai corpus. Y-axis displays F0 values in
semitone. Vertical lines mark syllable boundaries. In the upper panels both syllables have long vowels, while in the lower panels both syllables have short
vowels.
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and all the syllables in the synthetic contours still have their
original durations.

4.4.1. Thai

Fig. 10 shows the comparison of original and synthe-
sized F0 contours of the Thai corpus. The overall close fit
between the two indicates that PENTAtrainer2 can gener-
ate most of the contextual tonal variations with the learned
tonal targets. Interestingly, there are a few cases where the
predictions deviate from the original. For example, partic-

ularly in short-short vowel combinations, when H tone was
followed by tones that approach a relatively low F0, such as
M, L or R, the synthesized contours are lower than the ori-
ginal. Since the same pitch targets can simulate H tone in
other cases, this error could be attributed to the well-estab-
lished phenomenon of anticipatory raising (Gandour et al.,
1994; Potisuk et al., 1997). Also, consistent mismatches in
the H-H sequence in both long-long and short-short vowel
combinations, but not in other H-tone related cases,
suggest that speakers may have slightly changed the pitch

Fig. 11. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours of the Mandarin corpus, averaged across five
repetitions and eight speakers. The Y-axis displays F0 values in semitone. The vertical lines mark syllable boundaries. Bold-and-underline indicates a focus
placement on that syllable. L-S and H-F are separate categories for L-tone sandhi and sentence-final H tone, respectively. Synthesis was done using
parameters shown in Table 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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target for a second H tone by increasing either slope or
strength. This phenomenon is worth further investigations.

4.4.2. Mandarin

Fig. 11 shows comparisons of the original and synthe-
sized F0 contours of the Mandarin corpus. Similar to the
Thai corpus, in most cases, PENTAtrainer2 can accurately
synthesize F0 contours that are very close to the original,
based on only 26 sets of parameters. The ones that stand
out are when L tone is under focus and followed by a
sequence of N tones. These mismatches are attributable
to an independent articulatory-related phenomenon known
as post-low bouncing (Chen and Xu, 2006). This is an artic-
ulatory mechanism specific to very low F0 and so is differ-
ent from the normal mode of target approximation. A
separate mechanism incorporated into the qTA model
(which does not involve target variation) is needed for this
phenomenon, as is done in Prom-on et al. (2012). Fig. 11
also shows, more importantly, how the Mandarin N tone,
which is known to be severely influenced by the preceding
tone (Chao, 1968), can be accurately simulated with a sin-
gle underlying mid-level pitch target and weak approxima-
tion strength for each sentence modality. This not only

Fig. 12. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours averaged across eight repetitions and five speakers.
The Y-axis displays F0 values in semitone. The vertical lines mark syllable boundaries. Bold-face indicates a focus placement and underline indicates a
stress syllable of that word. All the synthetic contours were generated with parameters shown in Table 8. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 6
Means and standard errors of parameters of Thai tones in different vowel
lengths.

Tone Vowel length m (st/s) b (st) k

0 (Mid) Long 5.5 (1.8) �3.0 (0.4) 15.4 (0.9)
Short 1.9 (2.7) �1.7 (0.2) 14.1 (1.2)

1 (Low) Long �2.3 (3.7) �4.1 (0.4) 16.4 (2.9)
Short 4.8 (2.4) �4.6 (0.3) 19.5 (0.8)

2 (Falling) Long �27.3 (2.5) 1.4 (0.3) 18.9 (1.8)
Short �26.7 (2.3) 1.9 (0.4) 24.3 (3.0)

3 (High) Long 12.1 (2.5) �0.1 (0.6) 14.2 (1.7)
Short 11.8 (6.5) 1.2 (0.9) 13.9 (1.8)

4 (Rising) Long 19.1 (2.8) �3.4 (0.1) 21.4 (2.5)
Short 19.8 (3.6) �2.9 (0.2) 25.8 (1.5)
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effectively eliminates the need to treat weak tones like the
Mandarin N tone as targetless (Shih, 1987) or underspeci-
fied (Myers, 1998), but also demonstrates, more impor-
tantly, how contextual variability as extensive as in this
case can be effectively modeled.

Sentence modality has also been successfully modeled
and simulated as consisting of two functional categories,
as shown in Fig. 11. Observable intonational features dis-
criminating interrogative question from declarative state-
ment as previously reported (Ho, 1977; Liu and Xu,
2005; Ni and Kawai, 2004; Shen, 1990) have been captured
by the underlying categorical pitch targets. This compares
favorably to previous work in modeling Mandarin Chinese
and Cantonese question intonation (Fujisaki et al., 2005;
Gu et al., 2006; Ni and Hirose, 2006; Yuan et al., 2002).
It should be noted that the reason that the pre-focus H tone

which is in the sentence-initial position, appears to be flat
although having a large m value is because this pre-focus
H tone syllable has a very short duration and no other
nearby contextual variation. With such a limited informa-
tion, the optimized m value would reflect only the best fit
but may not conform with the traditional phonological
form of H tone.

4.4.3. English

The overall high synthesis accuracy for the English cor-
pus seen earlier is also confirmed by graphical comparison
of original and synthesized F0 contours shown in Fig. 12.
Worth pointing out in particular here is that there is no
sign of increasing difference toward the end of the sentences
between the synthetic and original F0 contours that would
indicate any declination effect missed by the modeling

Table 7
Means and standard errors of parameters of Mandarin tones in different focus regions and sentence modalities. For focus function, PRE, ON, and POS
stand for pre-focus, on-focus, and post-focus regions, respectively. For modalities, S stands for statement modality and Q stands for question modality.

Focus Tone m (st/s) b (st) k

S Q S Q S Q

PRE H 72.5 (8.1) 75.1 (7.8) �0.9 (0.6) �0.8 (0.6) 53.4 (4.5) 51.6 (3.8)
L �0.4 (4.1) 3.4 (8.5) �11.1 (0.8) �9.3 (0.7) 39.0 (2.9) 42.5 (7.3)
L-Sa 22.6 (13.1) 36.4 (11.1) �3.6 (1.5) �2.2 (1.2) 56.6 (10.1) 51.8 (9.5)

ON H �15.0 (13.1) �2.2 (9.6) 2.8 (0.8) 3.6 (0.7) 27.9 (2.6) 32.1 (4.0)
R 96.8 (2.3) 91.2 (4.1) �5.7 (1.0) �4.6 (0.8) 29.2 (3.7) 30.5 (3.5)
L 70.4 (11.3) 58.5 (10.1) �16.6 (1.3) �13.7 (1.2) 19.7 (1.2) 22.2 (1.8)
L-S 92.5 (3.5) 85.0 (5.9) �4.8 (1.2) �3.4 (1.0) 27.8 (3.2) 27.3 (3.2)
F �78.1 (7.3) �41.1 (10.7) 4.2 (0.5) 4.4 (0.9) 30.5 (2.0) 35.4 (3.8)

POS N �3.7 (10.8) 6.9 (3.7) �11.5 (1.1) �6.4 (0.9) 14.6 (0.3) 14.2 (0.7)
H 11.6 (13.1) 18.9 (7.7) �1.8 (1.2) �0.2 (0.7) 51.9 (12.5) 32.4 (9.9)
H-Fb �3.4 (1.6) 1.7 (5.3) �11.5 (1.0) 3.1 (0.7) 35.3 (9.2) 15.9 (1.9)
R 77.1 (6.9) 75.3 (6.6) �6.3 (1.0) �3.3 (1.9) 41.5 (10.1) 48.3 (9.5)
L 17.8 (14.6) �0.1 (15.3) �11.9 (1.5) �9.1 (1.5) 30.9 (3.5) 33.6 (7.1)
F �24.4 (12.5) �6.2 (7.4) �0.3 (0.7) 1.6 (0.5) 48.2 (8.6) 43.2 (8.2)

a Low tone sandhi.
b High tone at the final syllable of the utterance.

Table 8
Means and standard errors of parameters of English intonation. The four factors considered are (word) stress, focus, syllable position, and sentence
modalities. For stress, U denotes unstressed syllable, S denotes non-final stressed syllable in a multi-syllabic word, and S0 denotes word-final stressed
syllable. For syllable position, N denotes non-final, PF denotes penultimate sentence final, and F denotes sentence final.

Focus Syllable position Stress m (st/s) b (st) k

S Q S Q S Q

PRE N U 2.5 (1.0) �8.1 (3.7) �1.4 (0.5) �1.2 (0.4) 30.1 (3.3) 44.0 (9.3)
S �9.0 (8.0) 6.3 (16.8) 2.2 (0.9) 1.4 (1.1) 38.7 (15.5) 24.3 (5.7)
S0 31.0 (15.7) 6.0 (4.6) �2.6 (1.9) �0.4 (0.8) 48.4 (21.1) 70.1 (18.4)

PF U �30.2 (17.2) 0.9 (21.3) 1.7 (6.5) 1.4 (5.3) 23.2 (19.3) 49.9 (21.3)

ON N S 14.2 (34.5) 32.7 (4.4) �7.8 (7.5) �3.2 (1.9) 10.1 (3.6) 49.0 (21.0)
S0 �69.6 (15.4) 49.6 (10.0) 2.9 (3.2) 1.3 (1.4) 11.3 (4.1) 14.0 (1.4)

PF S �8.2 (31.6) 18.7 (8.2) �3.6 (7.3) �2.8 (0.5) 26.1 (14.6) 25.4 (1.7)
F S0 �68.2 (19.5) 63.0 (4.6) �0.8 (3.7) 5.7 (1.5) 11.7 (4.2) 16.2 (3.2)

POS N U 14.9 (10.3) �1.2 (2.1) �6.9 (1.3) 5.6 (1.2) 30.5 (3.1) 25.3 (6.5)
PF U 8.6 (24.8) 0.1 (5.7) �1.2 (8.1) 8.6 (4.1) 24.7 (10.2) 29.4 (16.4)

S 6.1 (21.1) 26.0 (20.4) �1.7 (7.3) 10.2 (4.6) 47.0 (22.1) 7.0 (3.0)
F U �29.5 (20.1) �5.0 (7.5) �8.9 (1.6) 7.0 (1.3) 14.7 (4.9) 28.5 (2.6)

S0 �71.8 (18.1) 15.0 (6.0) �7.8 (6.4) 6.8 (1.4) 26.1 (18.5) 65.0 (21.5)
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process. This seems to provide support for our choice, as
explained in Section 4.1, that there is no need to explicitly
model declination. The most noticeable mismatches are in
the word “Bloomingdales” when under focus, as seen in the
lowest two rows. This was due to the creaky voice at the
end of the last syllable in the original, whose F0 is known
to be difficult to track smoothly (Sun and Xu, 2002). Previ-
ously observed interaction between focus and sentence
modality in terms of surface F0 contours (Eady and Coo-
per, 1986; Pell, 2001; Xu and Xu, 2005) is successfully sim-
ulated using only 26 sets of categorical parameters
representing four functional layers: stress, focus, syllable
position and sentence modality. Compared to previous
attempts to model English intonation (Jilka et al., 1999;
Grabe et al., 2007; Taylor, 2000), the present results show
both accurate F0 contours and high generalizability, as the
learned parameters are directly related to communicative
functions.

4.5. Parameter analysis

Given that the qTA parameters all have articulatory
meanings, detailed analysis of the parameters learned by
PENTAtrainer2 can reveal various information of both
modeling and theoretical interests.

4.5.1. Thai

Table 6 shows averaged parameters of all Thai tones in
different vowel lengths. All parameters significantly differ
depending on the tonal categories (m: F(4,49) = 56.81,
p < 0.001; b: F(4,49) = 71.07, p < 0.001; k: F(4,49) = 9.23,
p < 0.001). This indicates that the variability of estimated
parameters within tone groups is significantly less than
between groups. It also indicates that despite the variability
in surface acoustics, the learned underlying tonal represen-
tations are consistently distinct from each other. Compared
between different vowel lengths, target slope and strength
are not significantly different, but target height of M tone
is higher in short vowels than in long vowels (F(1,49)
= 5.37, p = 0.026). This difference might suggest that M
has two tonal targets so as to enhance the vowel length
contrast similar to what is found in Finnish (Vainio
et al., 2010). It is also possible that the difference in the
learned target height is due to other factors. For example,
M may have a weak strength, just like the Mandarin neu-
tral tone (Chen and Xu, 2006). But the estimation of such
weak strength requires the presence of consecutive M tones
preceded by different tones, as is the case in the Mandarin
corpus, which is lacking in the current corpus. This issue
therefore has to be resolved by future studies.

Post-hoc analysis of target slope has revealed categorical
tonal patterns. Static tones are generally not significantly
different target slopes from one another, although there
was a marginal difference between H and L. (M-L:
p = 0.968, M-H: p = 0.205, L-H: p = 0.050). Slope of M
and L significantly differ from those of dynamic tones
(M-F: p < 0.001; M-R: p = 0.001; L-F: p < 0.001; L-R:

p < 0.001). Slope of H, however, was not different from
that R (H-R: p = 0.293), but significantly different from
F (H-F: p < 0.001). These results agree with the traditional
classification of Thai tone based on a static-dynamic
dichotomy (Abramson, 1962).

Comparing the parameter distributions of each tone to
the reference values (0 for m and b, total mean for k)
reveals more distinctive properties of each tone. F and R,
traditionally defined as dynamic tones, have slopes signifi-
cantly lower or higher than zero, respectively, regardless
vowel length. (F-Long: t(4) = 10.85, p < 0.001; F-Short: t
(4) = 11.66, p < 0.001; R-Long: t(4) = 6.92, p = 0.002; R-
Short: t(4) = 5.57, p = 0.005). This indicates the distinctive
properties of dynamic tones. On the other hand, slope of L
was not significantly different from zero regardless of vowel
length (L-Long: t(4) = 0.63, p = 0.565; L-Short: t(4)
= 1.98, p = 0.119). Slope of M and H was significantly
higher than zero only in long vowels but not in short vow-
els (M-Long: t(4) = 3.15, p = 0.035; H-Long: t(4) = 4.84;
p = 0.008; M-Short: t(4) = 0.70, p = 0.523; H-Short: t(4)
= 1.83, p = 0.141). Further inspection of the means of tar-
get slope in Table 6 suggests that H should have a shallow
rising target while M a static target. For target height, only
H was found to be not significantly different from zero
regardless of vowel length (H-long t(8) = 1.72, p = 0.123).
M, L and R have height values significantly lower than
the total mean (M-Long: t(4) = 8.57, p = 0.001; M-Short:
t(4) = 7.68, p = 0.002; L-Long: t(4) = 9.27, p = 0.001; L-
Short: t(4) = 17.03; p < 0.001; R-Long: t(4) = 33.89,
p < 0.001; R-Short: t(4) = 16.16, p < 0.001), while only F
tone has height significantly higher than zero (H-Long: t
(4) = 4.74, p = 0.009; H-Short: t(4) = 4.64, p = 0.010).
For strength, only M has significantly lower k compared
to the total mean (M-Long: t(4) = 3.47, p = 0.026; M-
Short: t(4) = 3.67, p = 0.021). These contrastive properties
in target parameters indicate the uniqueness and invariabil-
ity of underlying representations of Thai tones, which can
be also seen in Fig. 13, where the target parameters are dis-
played in a quasi-three-dimensional manner. The clustering
of the five tones by m and b is quite clear, with little cross-
tone overlap. Also can be seen is that the same tones car-
ried by long and short vowels are clustered together with-
out any clear separation.

4.5.2. Mandarin

Table 7 shows average parameters representing interac-
tions between tone, focus and sentence modality in the
Mandarin corpus. Comparing parameters of Mandarin full
tones in on-focus regions with post-focus regions, we found
significant interactions of target slope and height between
tone and focus (m: F(3,126) = 19.86, p < 0.001; b: F
(3,126) = 14.68, p < 0.001), and a significant interaction
of target slope between tone and modality (m: F(4,126)
= 2.62, p = 0.038). These interactions indicate that pitch
targets of Mandarin tone depend on both focus and modal-
ity. Specifically, target slopes of R and F, in both statement
and question modalities, are steeper in on-focus than in
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post-focus regions, while target heights of H and L tones,
also in both modalities, are higher in on-focus than in
post-focus regions. Compared to pre-focus region, both
slope and height of H, L and L-sandhi tones in on-focus
regions also have larger values. We also found that the rate
of target approximation of full tones in post-focus region
was significantly higher than those of on-focus regions (F
(1,126) = 16.34, p < 0.001). These results indicate the
effects of on-focus enhancement, which expands the F0

range of on-focus syllables, and post-focus compression,
which compresses the F0 range of all post-focus syllables
(Cooper et al., 1985; Xu, 1999; Xu and Xu, 2005; Xu
et al., 2012). The pitch targets of Mandarin full tones are
also largely consistent with the acoustic observations in
previous empirical research (Xu, 1997, 1999) and the initial
modeling attempt (Prom-on et al., 2009), with the excep-
tion of L here that has positive target slope. This is because
of the limited tonal contexts of L tone in this corpus.

Like Thai, the clear separation of the learned Mandarin
tonal parameters can be also seen in a quasi-multi-dimen-
sional display shown Fig. 14. Here only the parameters in
the on-focus condition and statement modality are shown.
The total tonal space is much larger than that of the Thai
tones in Fig. 12. But this is likely related to the fact that
these Mandarin tones are under focus, while the Thai tones
were said with neutral focus.

Mandarin N tone has traditionally been considered as
toneless with no specific target because its F0 varies greatly
with the preceding tone (Chao, 1968). It has been argued
that N tone actually has a static mid target but with a weak
articulatory force (Chen and Xu, 2006; Liu et al., 2013).
This is supported by Table 7, where we can see a very small
slope value for N, indicating that the type of its target is
probably static. Target height of N tone was roughly
between those of H and L tone. Compared to full tones,

strength of N is significantly lower in both modalities
(Statement; N-H: t(14) = 3.53, p = 0.002; N-R: t(14)
= 3.59, p = 0.001; N-L: t(14) = 2.73, p = 0.008; N-F: t
(14) = 3.53, p = 0.002; Question; N-H: t(14) = 2.97,
p = 0.005; N-R: t(14) = 2.66, p = 0.009; N-L: t(14)
= 4.58, p < 0.001; N-F: t(14) = 3.92, p < 0.001), which is
explains the gradual slopes across several N-tone syllables
in Fig. 11, and provides support for the weak articulatory
strength hypothesis (Chen and Xu, 2006).

4.5.3. English

For the English corpus, the objective is to analyze pitch
targets of stressed and unstressed syllables in different focus
regions and at relative positions across sentence modalities.
Table 8 shows the functional parameters representing inter-
actions between these factors. Target slope shows a signif-
icant three-way interaction between stress, focus and
modality (F(1,104) = 9.43, p = 0.003). For word-final
stressed syllables under focus, the target slope is negative
in statement, indicating a fall, but positive in question,
indicating a rise, regardless of position in sentence (State-
ment: non-sentence-final, t(4) = 4.53, p = 0.004; sentence-
final, t(4) = 3.50, p = 0.011; Question: non-sentence-final,
t(4) = 4.96, p = 0.003; sentence-final, t(4) = 13.59,
p < 0.001). Non-word-final stressed syllables under focus
also have rising target slope in question (non-sentence-
final: t(4) = 7.45, p < 0.001; penultimate-sentence-final: t

(4) = 2.27, p = 0.047) but static slope in statement (non-
sentence-final: t(4) = 0.41, p = 0.338; penultimate-sen-
tence-final: t(4) = 0.26, p = 0.360). These specific target
types are consistent with the observed surface F0 contours
reported previously (Eady and Cooper, 1986; Hadding-
Koch and Studdert-Kennedy, 1964; Liu et al., 2013;
O’Shaughnessy and Allen, 1983). Furthermore, the learned
categorical parameters here are more representative and

Fig. 13. Four-dimensional/Four-way display of the learned target param-
eters of Thai tones by five speakers. The filled and unfilled circles represent
long and short vowels, respectively. The X and Y axes represent target
slope and target height, and circle width represents target strength. The
large ovals are manually added to highlight the clustering. (For interpre-
tation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 14. Multi-dimensional display of the learned target parameters of
Mandarin tones by eight speakers. The X and Y axes represent target slope
and target height, and circle width represents target strength. The large
ovals are manually added to highlight the clustering. (For interpretation of
the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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generalizable, given that they can predict F0 contours that
closely resemble those of the original, as shown in Fig. 12.

For target height, a significant interaction was found
between focus and modality (F(2,104) = 3.20, p = 0.045).
Particularly in the post-focus region, target height is positive
in question (t(24) = 6.12, p < 0.001), but negative in state-
ment (t(24) = 2.18, p = 0.041), indicating extensively raised
or lowered F0 as found in previous studies (Eady and
Cooper, 1986; Liu et al., 2013; Pell, 2001). Moreover, in
question modality, on-focus target height of the sentence-
final stressed syllable are significantly different from the
baseline depending on its position in word; positive for
word-final (t(4) = 3.86, p = 0.008) and negative for non-
word-final (t(4) = 5.24, p = 0.002). This indicates an impor-
tant role of syllable position in the sentence-final word in
realizing the focus contrast in the question modality.

5. Hypothesis testing case studies

With its ability to automatically learn underlying para-
metric representations that can be used in predictive syn-
thesis of realistic F0 contours, PENTAtrainer2 can also
serve as a hypothesis testing tool. Part of this capability
can be already seen in the parameter analysis in the previ-
ous section. Here we will explore the capability further with
three case studies, each testing a specific issue of some the-
oretical relevance. Unlike the modeling done so far, which
has been driven by the goal to achieve the best results pos-
sible, when using PENTAtrainer2 as a hypothesis testing
tool, manipulations can be introduced that may lead to
either enhanced or reduced synthesis quality. In this way
we will be able to see the direct consequences of specific
hypotheses. In the three studies presented below, the
manipulations are achieved by using specific annotation
schemes. The outcome of the individual hypotheses are
then assessed by comparing the synthetic accuracies.

5.1. Case study A: Underlying representation of Mandarin L
tone sandhi

Tone sandhi is a linguistic phonenomenon whereby a
lexical tone changes its form due to various factors, e.g.,
adjacent tone, position in word, part of speech, etc. (Chen,
2000). Mandarin L tone (Tone 3) is a well-known example
of contextual sandhi. It is said to change to R tone when
followed by another L tone (Chao, 1968). Perceptual evi-
dence shows that the sandhi-derived R tone is indistin-
guishable from the lexical R tone (Peng, 2000; Wang and
Li, 1967), and F0 analyses show close though not full
resemblance of the derived and original R tone. It is there-
fore generally accepted that the Mandarin L tone sandhi
involves a categorical tonal shift. This case study therefore
uses a low-controversy issue to test if the assessment of the
nature of a tonal variation agrees well with prior empirical
evidence.

The test was done by setting up three hypotheses on the
representation of the Mandarin L tone: A1: There is no
underlying tonal change, and so the observed variations
are coarticulatory; A2: L tone changes to R tone before
another L tone; and A3: L tone changes to a new tone
before another L tone. For A1 and A2, the syllable in a
tone sandhi context was annotated as L or R, respectively.
For A3, it was annotated as a new category named L-S.
Both speaker dependent and group average simulations
were carried out for each hypothesis. Paired t-test was then
used to compare the synthesis accuracies between the
hypotheses.

Table 9 shows the synthesis accuracies resulting from
simulating each tone sandhi hypothesis. The synthesis
accuracies of hypotheses A2 and A3 are not significantly
different (RMSE: p = 0.414, t(7) = 0.22; Correlation:
p = 0.394, t(7) = 0.28). Hypothesis A1 shows significantly
lower accuracy than both of the other two (A1 vs A2;
RMSE: p < 0.001, t(7) = 6.90; Correlation: p < 0.001, t(7)
= 6.36; A1 vs A3; RMSE: p < 0.001, t(7) = 5.76; Correla-
tion = 0.001, t(7) = 5.40). These statistical results indicate
that the underlying target of the sandhi L tone can be either
a separate category or the same as the R tone target, but
clearly not a L-tone target. This is consistent with previous
findings based on acoustic analyses and perceptual tests
(Peng, 2000; Wang and Li, 1967; Xu, 1997).

Fig. 15 shows the comparisons between original and
synthesized F0 contours of each hypothesis. It should be
noted that F0 raising in N-tone sequence after a focused
L tone is due to the post-low bouncing effect (Prom-on
et al., 2012) mentioned earlier and not the focus of the pres-
ent study. For hypothesis A1, the mismatch occurs not
only on the second syllable but also on the third syllable
when it is under focus since it shares the same category
as the focused L tone sandhi on the second syllable. Hence
A1 is invalidated by these mismatches. In contrast, hypoth-
eses A2 and A3 led to almost identical contours. Neverthe-
less, in a statement when the third syllable is under focused
(Column 3), hypothesis A3 has slightly better matched con-
tour in the second syllable than A2. This is because, when
treated separately as in hypothesis A3, the original R tone
category has lower pitch target than L tone sandhi as
shown in Table 8. Treating them as the same target thus
results in a compromised pitch target. This result is

Table 9
Synthesis accuracies of implementing each tone sandhi hypothesis.

Hypothesis Speaker + function
specific

Functional specific

RMSE Correlation RMSE Correlation

A1: Sandhi L ? L 2.41
(0.21)

0.863
(0.005)

2.90
(0.23)

0.838
(0.012)

A2: Sandhi L ? R 2.16
(0.20)

0.902
(0.008)

2.75
(0.23)

0.863
(0.012)

A3: Sandhi L ? another
category

2.16
(0.22)

0.903
(0.008)

2.72
(0.20)

0.868
(0.012)
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therefore slightly in favor of hypothesis A3, i.e., the most
accurate representation of Mandarin third tone sandhi is
as a separate tonal category. Surprisingly, this result agrees
well with previous empirical findings that the sandhi-L tone
is close but not identical to the R tone (Kuo et al., 2007;
Peng, 2000; Xu, 1997).

5.2. Case study B: Target bearing unit – rhyme vs syllable

In all the synthesis with PENTAtrainer2 performed so
far, we have used the syllable as the temporal interval of
each target approximation, regardless of whether the sylla-
ble-initial consonant is voiced, or whether the language is
tonal. This practice is based on previous evidence that
the entire syllable is the tone-bearing unit (Liu et al.,
2013; Wong and Xu, 2007; Xu, 1998). However, because
there is no F0 during a voiceless consonant, it is also rea-
sonable to assume that voiceless intervals are irrelevant
for realizing underlying tonal contours, as has been argued
based on phonetic data (Howie, 1974; Rose, 1988), and
assumed in some phonological accounts of tone (Duanmu,
2000; Yip, 2002; Zhang, 2004). More frequently, the issue
of the exact temporal interval of tonal unit is left vague.
For the purpose of computational modeling, however,
the issue is unavoidable. In this case study, we aim to test
more explicitly whether rhyme (B1) or syllable (B2) is the
pitch target bearing unit, as illustrated in Fig. 16. In
hypothesis B1, the target approximation process is imple-
mented only in the rhyme region, and during the voiceless
interval, the F0 dynamic state is assumed to be unchanged.
In hypothesis B2, the target approximation process is
implemented throughout the syllable, including the voice-
less interval. Only the English corpus was used in this case
study, because it is the only one containing sufficient num-
ber of voiceless consonants. An added benefit of testing this
in an English database is that, for a non-tonal language,
there is even less justification for the syllable to be the pitch

target bearing unit, unless the mechanism is universal
across languages. For each hypothesis, the Learning tool
was configured either to skip the voiceless interval for
hypothesis B1 or to start target approximation from the
onset of the voiceless interval for hypothesis B2. Only the
speaker dependent testing condition was used. Paired t-test
was used to determine the difference between the two
hypotheses. The error calculation was only done in the
voiced region where F0 measurement was possible.

As shown in Table 10, using the syllable as target
approximation interval, as in hypothesis B2, resulted in
more accurate synthesized F0 contours than using the
rhyme as the target approximation interval, as in hypothe-
sis B1 (RMSE: p = 0.003, t(4) = 5.25; Correlation:
p < 0.001, t(4) = 7.76). This provides a clear support for
the syllable as the target approximation interval for Eng-
lish. Fig. 17 further shows the effect of implementing each

Fig. 15. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours resulting from implementing each tone sandhi
hypothesis. Each contour was averaged across eight repetitions and five speakers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 16. Illustrations of hypotheses B1 (red) and B2 (blue). A solid black
line indicates F0, while a dashed blue line indicates virtual F0 during
voiceless onset. A red arrow indicates the direct transfer of F0 dynamic
state. For each hypothesis, pitch target is localized either to the rhyme (B1,
red solid line) or to the syllable (B2, blue solid line). (For interpretation of
the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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hypothesis on the F0 contour of an example utterance. The
largest observable mismatches due to different hypotheses
are around two voiceless intervals (as indicated by the blue
arrows). For example, at the beginning of “something”,
starting the target approximation at the onset of the rhyme
(B1) means to start the F0 rise at that point. In contrast,
starting the target approximation at the onset of the sylla-
ble (B2) means that much of the F0 rise is achieved during
the voiceless interval, and by the onset of the rhyme F0 is
already rather high, as indeed seems to be the case in the
original contour. This case study therefore provides sup-
port for the syllable rather than the rhyme to be the tempo-
ral interval of realizing underlying pitch targets even in a
non-tonal language like English.

5.3. Case study C: Effect of level of functional specificity

The articulatory–functional approach to prosody mod-
eling as implemented in PENTAtrainer2 is not a sure guar-
antee for the best prosody synthesis. This is because the
number of functional layers (cf. Section 5.3 for definition
of annotation layers) being modeled also have to be appro-
priate for a given corpus. With too many layers there could
be over fit as well as confounding, and with too few layers
there could be under fit (as well as possible confounding).
But PENTAtrainer2 can be actually used as a tool to verify
if sufficient number of functional layers have been anno-
tated, or if any of annotated layers are redundant. Func-
tional layers referred to here are those carrying

communicative meaning such as lexical tone, lexical stress,
focus and sentence type. This case study was to explore
PENTAtrainer2’s sensitivity to changes in functional spec-
ificity by testing four hypotheses about the appropriate
number of functional layers in the English corpus, using
only the speaker dependent modeling condition. The base-
line case, hypothesis C1, is when only the word stress layer
is imposed. Hypotheses C2 and C3 add to the baseline
either the focus or sentence modality layer, respectively.
Hypothesis C4 adds both focus and modality. Parameters
of each hypothesis were learned separately. The synthesis
accuracies were compared using paired t-tests.

Table 11 shows the synthesis accuracies when different
combinations of communicative functions were imposed.
Excluding modality layer as in hypotheses C1 and C2
results in a severely lower synthesis quality than including
modality (but excluding focus) in C3 (C1 vs C3; RMSE:
p = 0.005, t(4) = 4.62; Correlation: p < 0.001, t(4)
= 63.69; C2 vs C3; RMSE: p = 4.43, t(4) = 4.43; Correla-
tion: p < 0.001, t(4) = 18.47). C4 has significantly higher
synthesis accuracy than all the other hypotheses (C4 vs
C1; RMSE: p = 0.001, t(4) = 7.36; Correlation: p < 0.001,
t(4) = 29.81; C4 vs C2; RMSE: p = 0.001, t(4) = 7.12; Cor-
relation: p < 0.001, t(4) = 17.79; C4 vs C3; RMSE:
p = 0.001, t(4) = 6.61; Correlation: p < 0.001; t(4) = 8.99).
Including both focus and modality functions as in C4 yields
a better improvement than the sum of the effects of both
functions. Fig. 18 shows examples of original and synthe-
sized F0 contours when different functional layers were
included during training and synthesis. As more functions
were added, the synthesized F0 contours become increas-
ingly closer to the original. In hypotheses C1 and C2, the
synthesized contours deviate from the original extensively,
mainly due to the lack of modality-specific variations. Syn-
thesized F0 contours of hypothesis C3 show significant
improvement from C1 and C2, but the lack of focus still

Table 10
Synthesis accuracies of implementing each target bearing unit hypothesis.

Hypothesis RMSE Correlation

B1: Rhyme 2.73 (0.27) 0.741 (0.018)
B2: Syllable 2.07 (0.23) 0.836 (0.019)

Fig. 17. Effect of assigning different target approximation intervals for voiceless consonants. Vertical lines demarcate the voiced regions as well as syllable
boundaries. The blue arrows indicate the voiceless intervals where the effect of different hypotheses can be clearly observed. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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results in clear deviations from the original. When both
focus and modality are included in hypothesis C4, the syn-
thesized contours show an overall tight fit to the original,
except the creaky-voice effects in the original as mentioned
earlier.

Overall, the results of this case study show that, for a
controlled corpus like the one just tested, including all
the originally designed prosodic functions in the modeling
process led to a close fit of the synthetic F0 contours to the
original, while excluding any of them led to clear deteriora-
tions in the synthetic quality. This indicates that there is no
overfitting when including all four functional layers. This
deterioration implies that there are certain inconsistencies
in underlying parameters of each category. For example,
without the focus layer, parameters of each category would
contain the variability due to both on-focus pitch range
enhancement and post-focus compression. The consistency
of functional parameters thus depends largely on the spec-
ification of the required functional layers. Furthermore,
this case study also demonstrates that PENTAtrainer2 is
indeed an effective tool for testing hypotheses regarding
number of functional layers of prosody.

6. Discussion

The results reported above have shown that it is possible
to achieve automatic learning of invariant underlying
melodic representations of communicative functions from
real speech data, with which F0 contours closely matching
those of the original can be predictively synthesized. We
have achieved this with PENTAtrainer2, which combines
simulation of articulatory mechanisms of pitch production,
functional annotation, and analysis-by-synthesis stochastic
optimization. Through this process, we have achieved a
number of goals related to the questions raised in the Intro-
duction about both contextual and non-contextual varia-
tions. First, we have shown that it is possible to find
function-specific invariant representations (Tables 6–8)
with which all the contextual variants can be generated.
The illustration in Fig. 19 provides a clear view of what this
means. Fig. 19A displays F0 contours of four Mandarin
sentences generated with target parameters shown in
Table 7. In each plot only the third syllable has alternating
tones while the tones of other syllables remain constant.
Although the F0 contours of the neutral tone syllables vary
extensively with the alternating tones of the third syllable, a
single pitch target learned by PENTAtrainer2, represented
by the red dotted lines, can generate all the contextual vari-
ants, including the peak-delay after the R tone (Xu, 1998).
This is mainly thanks to the target approximation mecha-
nism simulated by the qTA model (Prom-on et al., 2009).
What this demonstrates is that it is possible to achieve
many-to-one mappings from contextually variant surface
acoustics to underlying phonetic representations. This

Table 11
Synthesis accuracies of implementing each functional layer hypothesis.

Hypothesis RMSE Correlation

C1: Stress 4.14 (0.48) 0.247 (0.024)
C2: Stress + focus 4.08 (0.47) 0.289 (0.021)
C3: Stress + sentence 2.96 (0.25) 0.675 (0.024)
C4: Stress + focus + sentence 2.07 (0.23) 0.836 (0.019)

Fig. 18. Mean time-normalized original (red dotted line) and synthetic (black solid line) F0 contours of an example utterance “You’re going to
Bloomingdales with Elaine”. Each row corresponds to the results of implementing each functional layer hypothesis. C1: Word stress only, C2: Stress
+ focus, C3: Stress + modality, and C4: Stress + focus + modality. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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contrasts with virtually all other modeling approaches, in
which the mappings are at most many-to-many for contex-
tual variants (e.g., Anderson et al., 1984; Bailly and Holm,
2005; Black and Hunt, 1996; Fujisaki et al., 2005; Kochan-
ski and Shih, 2003; Sun, 2002; Taylor, 2000).

Second, we have shown that non-contextual variability
can be modeled together with contextual variability by
treating all targets as function-specific, and allowing each
of them to be learned directly from speech signal based
on function-specific annotations. With these targets F0

contours can be then generated by qTA with both func-
tionally appropriate global patterns and articulatorily
plausible local contours. As illustrated in Fig. 19B, the
use of a new set of target parameters appropriate for the
question modality result in F0 contours that are very simi-
lar to those of Fig. 19A, except an apparently smaller over-
all downtrend. This way of specifying and learning
function-specific targets also allows unlimited number of
functions to be represented, facilitated by a multi-layer
annotation scheme that is purely functional. This elimi-
nates the need to annotate observed surface prosodic forms
like what is done in ToBI (Silverman et al., 1992), INT-
SINT (Hirst, 2011) or RaP (Breen et al., 2012).

Third, we have shown that the approach represented by
PENTAtrainer2 is also highly economical. The parameters
shown in Tables 6–8 are the entire sets of parameters
needed to synthesize all the F0 contours of the three

language corpora: 30 parameters for 2500 Thai disyllabic
phrases, 84 parameters for 1280 Mandarin utterances,
and 78 parameters for 960 English utterances. Such small
footprints are achieved not only by representing all contex-
tual variants with invariant underlying targets as just men-
tioned, but also by allowing as few other degrees of
freedom as possible. This is done, in particular, by elimi-
nating virtually all degrees of freedom in timing by assum-
ing full synchronization of the targets to the syllable, and
full alignment of the edges of the temporal domains of all
functions to syllable boundaries. Thus no variation in tar-
get parameters is needed for variable syllable durations.
However, there are various other conceivable functions
that we have not yet included in the present study, such
as topic shift, turn taking, emotion, attitude and speaking
style. When they are included, the number of parameters
will eventually increase. Some of these factors, as found
in recent studies (Xu et al., 2013a,b), could be implemented
as global changes that alter all the target values in the same
way, which would then result in an increase in the number
of parameters. It should also be noted that the synthesis
result in this study is still limited to only controlled corpora
with fixed varying experimental factors. More work is still
needed to test PENTAtrainer2’s ability to work with non-
controlled corpora.

Fourth, we have shown that with the small sets of
learned targets, predictive synthesis at high-accuracies
(Tables 4 and 5) can be achieved, both in a speaker-depen-
dent manner, which captures individuality, and in a
speaker-independent manner, which captures language/
dialect characteristics. In the latter case, high synthetic
accuracies can be achieved either when group averages
are applied to each of the individuals in the group, regard-
less of gender, or through cross-validation, in which F0

contours of an individual speaker are predicted by param-
eters summarized from all other members of the group,
also regardless of gender. The illustrations in Fig. 19 are
in fact examples of group average synthesis, in which the
F0 contours are generated with mean parameters from
eight speakers, four females and four males.

Finally, we have shown the plausibility of using full-
fledged prosody synthesis as a means of hypothesis testing
for basic research. Computational modeling has often been
used in basic research, but typically they are used to test a
specific hypothesis on materials that are directly related to
the hypothesis. The idea tested in the present project is
rather different. That is, it is possible for a theory to dem-
onstrate both validity and generalizability by showing its
ability to predict full phonetic details that can be directly
compared to real speech data, and especially details that
are beyond the specific phenomena for which it was origi-
nally proposed. The appeal of this approach is that any
phenomenon-specific hypothesis may have inadvertent
consequences when used to make predictions on other
aspects of the speech, but such consequences often remain
hidden unless full-detailed synthesis has to be performed.
Thus theory testing by full-scaled synthesis will help

Fig. 19. qTA-generated F0 contours imposed onto the original Mandarin
sentence “Ta1 mai3 ma1 ma0 men0 de0 le0 ma0”, generated with the
functional target parameters learned by PENTAtrainer2 shown in Table 8.
The dashed red lines corresponding to the N tones are the learned
underlying pitch targets. (The slight variation in these target lines is due to
the difference in duration of the syllables, to which the tonal targets are
synchronized.) Across the four curves, the only alternating tone is that of
the third syllable, while other tones remain constant. The target of the
second syllable, however, is changed into that of L-S in Table 7, in
conformity with the third tone sandhi rule (Chao, 1968). The curves in the
top plot are generated by parameters for statement in Table 7, while those
of the lower plot are generated by parameters for questions.
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accelerate rather than harm theoretical development. For
example, while the overall results of the present project
have demonstrated the strengths of the target approxima-
tion hypothesis, the inability of PENTAtrainer2 in its pres-
ent form to predict post-low bouncing as seen in rows 5-6
in Fig. 11 shows that additional articulatory mechanisms
still need to be considered, as has been done in Prom-on
et al. (2012). The case studies reported in Section 5 further
show that a theory-based synthesis system can be used to
test various specific hypotheses by manipulating various
aspects of the learning-synthesis process. The confirmation
of target shift in Mandarin L-tone sandhi in case study A in
Section 5.1 shows the effectiveness of PENTAtrainer2 for
separating phonological changes of underlying targets
from phonetic variations due to articulatory mechanism.
The results of case study B in Section 5.2 offer direct evi-
dence that the temporal domain of target approximation
is more likely to be the syllable rather than the rhyme. Case
study C in Section 5.3 shows the high sensitivity of PEN-
TAtrainer2 to the number of layers of functional annota-
tion provided by the investigator.

Beside what has been achieved, a number of caveats
need to be mentioned. The first is that, although the
derived underlying targets may be good enough for
predictive synthesis, they may not be fully consistent with
traditional phonetic descriptions. This is because the data-
driven approach adopted here is fundamentally different
from the classical rule-based approach to speech synthesis
(Klatt, 1987) where a heavy reliance is on the theoretical
knowledge of the researcher, which may or may not be accu-
rate. On the other hand, targets derived from a data-driven
approach may not be “accurate” either if the input data
are not fully balanced. For example, in theMandarin corpus
used in the present study, the L tone is preceded only by H
and L-S, which is probably why its learned m is highly posi-
tive (Table 7). Amore balanced tonal context may lead to an
m valuemuch closer to zero, whichwould bemore consistent
with the theoretical description of the Mandarin tones. Sec-
ond, the current version of PENTAtrainer2 simulates only
F0 variations due to the normal target approximation
process. It has not incorporated algorithms for simulating
additional articulatorymechanisms, including, in particular,
anticipatory raising (Gandour et al., 1994; Potisuk et al.,
1997; Xu, 1999), post-low bouncing (Chen and Xu, 2006),
consonantal perturbation (Silverman, 1986) and vowel
intrinsic pitch (Whalen and Levitt, 1995). Of these, post-
low bouncing has already been simulated in a separate study
by adding an extra component added to qTA (Prom-on
et al., 2012). Third, we did not do any duration modeling
for this paper, and no duration values of synthetic sentences
were changed from the original. Duration modeling will be
performed in subsequent studies. Fourth, perceptual evalua-
tion of the synthetic prosody was conducted only for Thai in
this study as this has never beendonebefore. ForEnglish and
Mandarin, since Prom-on et al. (2009) tested the both the
intelligibility and naturalness of the synthetic tone and focus
and showvery close performance between the two.Given the

significant improvement of the global optimization method
in the present study over the method used in Prom-on et al.
(2009) in terms of numerical evaluation results as shown in
Table 5, it is reasonable to expect no deterioration of percep-
tual quality from that study. Finally, there were no detailed
numerical comparisons with other models performed in the
present study. This is because, for such comparisons to be
meaningful, three basic requirements had to be met: (a) the
availability of common speech corpora with annotations
suitable for all models under comparison, (b) the design of
common tasks that all models are able to perform, and (c)
the actual implementation of the other models either by us
or by the original authors. These requirements can be met
only in future studies designed for the purpose of direct
model comparisons.

7. Conclusions

The findings of the present study have demonstrated not
only the ability of PENTAtrainer2 as a tool of prosody
modeling and synthesis, but also the importance of directly
addressing variability for the successful modeling of speech
prosody in general. We have shown that the modeling of
local contextual variability is not a dispensable burden,
but a vital step toward effective modeling of non-contex-
tual, i.e., function-driven variability. With the qTA model
as the core of PENTAtrainer, we have achieved many-to-
one mappings between surface prosody and underlying
representations. This in turn allows targets to be directly
associated with functional categories, and thus remain
unique and invariant across local tonal contexts. When this
intrinsic ability to handle variability is combined by the
multi-layer functional annotation scheme and global sto-
chastic optimization developed in this study, automatic
learning of the target parameters and predictive synthesis
of close-to-natural F0 contours of full phrases or sentences
in three languages were achieved. Given the effectiveness of
the current approach, it is potentially applicable to the seg-
mental aspect of speech as well.

Being both theory-based and trainable, PENTAtrainer
can serve as a new type of tool for basic research. See sup-
plementary materials for online address of PENTATrain-
er2 and its user manual, together with PENTAtrainer1,
which is useful for sentence-by-sentence target estimation
in small-scale studies and demonstrations.
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