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ABSTRACT: Degrees of freedom (DOF) refer to the number of free 
parameters in a model that need to be independently controlled for 
generating intended output. In this paper, we discuss how DOF is a 
critical issue not only for computational modeling, but also for 
theoretical understanding of prosody. The relevance of DOF is 
examined from the perspective of the motor control of articulatory 
movements, the acquisition of speech production skills, and the 
communicative functions conveyed by prosody. In particular, we 
explore the issue of DOF in the temporal aspect of speech, and show 
that, due to certain fundamental constraints in the execution of motor 
movements, there is likely minimal DOF in the relative timing of 
prosodic and segmental events at the level of articulatory control.  

1 Introduction 

The ability to model speech prosodic with high accuracy has long 
been the dream of prosody research, both for practical applications 
such as speech synthesis and recognition and for theoretical 
understanding of prosody. A key issues in prosody modeling is 
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degrees of freedom (henceforth interchangeable with DOF). DOF 
refers to the number of independent parameters in a model that need 
to be estimated in order to generate the intended output. There has 
been so far little serious discussion of the issue of DOF in prosody 
modeling, especially in terms of its theoretical implications. 
Nevertheless, DOF is often implicitly considered, and it is generally 
believed that, other things being equal, the fewer degrees of freedom 
in a model the better. For example, in the framework of intonational 
phonology, also known as the AM theory or the Pierrehumbert 
model of intonation, it is assumed that, at least for non-tonal 
languages like English, “sparse tonal specification is the key to 
combining accurate phonetic modeling with the expression of 
linguistic equivalence of intonation contours of markedly different 
lengths” (Arvaniti & Ladd, 2009:48). The implication of such sparse 
tonal representation is that there is no need to directly associate F0 
events with individual syllables or words, and for specifying F0 
contours between the sparsely distributed tones. This would mean 
high economy of representation. Sparse F0 specifications are also 
assumed in various computational models (e.g., Fujisaki, 1983; 
Taylor, 2000; Hirst, 2005). 

A main feature of the sparse tonal specification is that prosodic 
representations are assigned directly to surface F0 events such as 
peaks, valleys, elbows and plateaus. As a result, each temporal 
location is assigned a single prosodic representation, and an entire 
utterance is assigned a single string of representations. This seems to 
be representationally highly economical, but it also means that 
factors that do not directly contribute to the major F0 events may be 
left out, thus potentially missing certain critical degrees of freedom. 
Another consequence of sparse tonal specification is that, because 
major F0 events do not need to be directly affiliated with specific 
syllables or even words, their timing relative to the segmental events 
has to be specified in modeling, and this means that temporal 
alignment constitutes one or more (depending on whether a single 
point or both onset and offset of the F0 event need to be specified) 
degrees of freedom. Thus many trade-offs need to be considered 
when it comes to determining DOF in modeling. 
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In this paper we take a systematic, though brief, look at DOF in 
prosody modeling. We will demonstrate that DOF is not only a 
matter of how surface prosodic events can be economically 
represented. Rather, decisions on DOF of a model should be 
ecologically valid, i.e., with an eye on what human speakers do. We 
advocate for the position that every degree of freedom needs to be 
independently justified rather than based only on adequacy of curve 
fitting. In the following discussion we will examine DOF from three 
critical aspects of speech: motor control of articulatory movements, 
acquisition of speech production skills, and communicative 
functions conveyed by prosody. 

2 The articulatory perspective 

Prosody, just like segments, is articulatorily generated, and the 
articulatory process imposes various constraints on the production of 
prosodic patterns. These constraints inevitably introduce complexity 
into surface prosody. As a result, if not properly understood, the 
surface prosodic patterns due to articulatory constraints may either 
unnecessarily increase the modeling DOF or hide important DOF. 
Take F0 for example. We know that both local contours and global 
shapes of intonation are carried by voiced consonants and vowels. 
Because F0 is frequently in movement, either up or down, the F0 
trajectory within a segment is often rising or falling, or with an even 
more complex shape. A critical question from an articulatory 
perspective is, how does a voiced segment get its F0 trajectory with 
all the fine details? One possibility is that all F0 contours are 
generated separately from the segmental string of speech, as 
assumed in many models and theories, either explicitly or implicitly, 
and especially in those that assume sparse tonal specifications 
(Pierrehumbert 1980; Taylor 2000; ‘t Hart et al. 1990). This scenario 
is illustrated in Figure 1, where continuous F0 and formant contours 
of a tri-syllabic sequence are first separately generated with all the 
trajectory details (1a), and then merged together to form the final 
acoustic output consisting of both formant and F0 trajectories. The 
critical yet rarely asked question is, is such an articulate-and-merge 
process biomechanically possible? 
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As is found in a number of studies, the change of F0 takes a 
significant amount of time even if the speaker has used maximum 
speed of pitch change (Sundberg 1979; Xu & Sun 2002). As found 
in Xu & Sun (2002), it takes an average speaker around 100 ms to 
make an F0 movement of even the smallest magnitude. In Figure 1, 
for example, the seemingly slow F0 fall in the first half of syllable 2 
is largely due to a necessary transition from the high offset F0 due to 
the preceding Rising tone to the required low F0 onset of the current 
Rising tone, and such movements are likely executed at maximum 
speed of pitch change (Kuo et al., 2007; Xu & Sun, 2002). In other 
words, these transitional movements are mainly due to articulatory 
inertia. Likewise, there is also evidence that much of the formant 
transitions in the bottom left panel of Figure 1 are also due to 
articulatory inertia (Cheng & Xu 2013). 

⊕ !

  

Figure 1. Left: Continuous F0 (top) and formant (bottom) tracks of 
the Mandarin utterance “(bi3) ma2 yi2 wei3 (shan4)” [More 
hypocritical than Aunt Ma].  Right: Waveform, spectrogram and F0 
track of the same utterance. Raw data from Xu (2007). 

Given that F0 and formant transitions are mostly due to inertia, and 
are therefore by-products of a biomechanical system, if the control 
signals (from the central nervous system (CNS)) sent into this 
system also contained all the inertia-based transitions, as shown on 
the left of Figure 1, the effect of inertia would be applied twice. This 
consideration makes the articulate-and-merge account of speech 
production highly improbable. That is, it is unlikely that continuous 
surface F0 contours are generated (with either a dense or sparse tonal 
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specification) independently of the segmental events, and are then 
added to the segmental string during articulation.  

But how, then, can F0 contours and segmental strings be articulated 
together? One hypothesis, as proposed by Xu & Liu (2006), is that 
they are co-produced under the coordination of the syllable. That is, 
at the control level, each syllable is specified with all the underlying 
articulatory targets associated with it, including segmental targets, 
pitch targets and even phonation (i.e., voice quality) targets. This is 
illustrated in the top left block of Figure 2 for pitch and formants. 
Here the formant patterns are representations of the corresponding 
vocal tract shapes, which are presumably the actual targets. The 
articulation process then concurrently approaches all the targets, 
respectively, through target approximation (top right). The target 
approximation process ultimately generates the continuous surface 
F0 and formant trajectories (bottom), which consist of mostly 
transitions toward the respective targets. Thus, every syllable, before 
its articulation, would have been assigned both segmental and 
suprasegmental targets as control signals for the articulatory system. 
And importantly, the effects of inertia are applied only once, during 
the final stage of articulatory execution. 
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Figure 2. Left: Hypothetical underlying pitch (top) and formant 
(bottom) targets for the Mandarin utterance shown in Figure 1. 
Middle: The target approximation (TA) model (Xu & Wang 2001). 
Right: Waveform, spectrogram and F0 track of the same utterance. 
Raw data from Xu (2007). 

Pitch target specification for each and every syllable may mean 
greater DOF than the sparse tonal specification models, of course, 
which is probably one of the reasons why it is not widely adopted in 
prosody modeling. But what may not have been apparent is that it 
actually reduces a particular type of DOF, namely, F0-segment 
alignment. For the sparse tonal specification models, because F0 
events are not attached to segments or syllables, the relative 
alignment of the two becomes a free variable, which constitutes at 
least one degree of freedom (two if onset and offset of an F0 event 
both have to be specified, as in the Fujisaki model). Thus for each 
tonal event, not only its height, but also its position relative to a 
segmental event, need to be specified. This complexity is further 
increased by the assumption of most of the sparse-tonal specification 
models that the number of tonal and phrasal units is also a free 
variable and has to be learned or specified. For the Fujisaki model, 
for example, either human judgments have to be made based on 
visual inspection (Fujisaki et al. 2005), or filters of different 
frequencies are applied first to separately determine the number of 
phrase and accent commands, respectively (Mixdorff 2000). Even 
for cases where pitch specifications are obligatory for each syllable, 
e.g., in a tone language, there is a further question of whether there 
is freedom of micro adjustments of F0-segment alignment. 
Allowance for micro alignment adjustments is assumed in a number 
of tonal models (Gao 2009; Gu et al. 2007; Shih 1986).  

There have been accumulating evidence against free temporal 
alignment, however. The first line of evidence is the lack of micro 
alignment adjustment in the production of lexical tones. That is, the 
unidirectional F0 movement toward each canonical tonal form starts 
at the syllable onset and ends at syllable offset (Xu 1999). Also the 
F0-syllable alignment is not affected by whether the syllable has a 
coda consonant (Xu 1998) or whether the syllable-initial consonant 
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is voiced or voiceless (Xu & Xu 2003). Furthermore, the F0-syllable 
alignment does not change under time pressure, even if tonal 
undershoot occurs as a result (Xu 2004). The second line of 
evidence is from motor control research. A strong tendency has been 
found for related motor movements to be synchronized with each 
other, especially when the execution is at a high speed. This is 
observed in studies of finger tapping, finger oscillation, or even leg 
swinging by two people monitoring each other’s movements (Kelso 
et al. 1981; Kelso 1984; Kelso, Southard & Goodman 1979; 
Mechsner et al. 2001; Schmidt, Carello and Turvey 1990). Even 
non-cyclic simple reaching movements conducted together are found 
to be fully synchronized with each other (Kelso et al. 1979). 

The synchrony constraints could be further related to a general 
problem in motor control. That is, the high dimensionality of the 
human motor system (which is in fact true of animal motor systems 
in general) makes the control of any motor action extremely 
challenging, and this has been considered as one of the central 
problems in the motor control literature (Bernstein 1967; Latash 
2012). An influential hypothesis is that the CNS is capable of 
functionally freezing degrees of freedom to simplify the task of 
motor control as well as motor learning (Bernstein 1967). The 
freezing of DOF is analogous to allowing the wheels of a car to 
rotate only around certain shared axes, under the control of a single 
steering wheel. Thus the movements of the wheels are fully 
synchronized, and their degrees of freedom merged. Note that such 
synchronization also freezes the relative timing of the related 
movements, hence eliminating it as a degree of freedom. This 
suggests that the strong synchrony tendency found in many studies 
(Kelso et al. 1979; Kelso et al. 1981; Mechsner et al. 2001; Schmidt 
et al. 1990) could have been due to the huge benefits brought by the 
reduction of temporal degrees of freedom.  

The benefit of reducing temporal DOF could also account for the 
tone-syllable synchrony in speech found in studies discussed above. 
Since articulatory approximations of tonal and segmental targets are 
separate movements that need to be produced together, they are 
likely to be forced to synchronize with each other, just like in the 
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cases of concurrent non-speech motor movements. In fact, it is 
possible that the syllable is a mechanism that has evolved to achieve 
synchrony of multiple articulatory activities, including segmental, 
tonal and phonational target approximations. As hypothesized by the 
time structure model of the syllable (Xu & Liu 2006), the syllable is 
a temporal structure that controls the timing of all its components, 
including consonant, vowel, tone and phonation register (Xu & Liu 
2006), as shown in Figure 3. The model posits that the production of 
each of these components is to articulatorily approach its ideal 
target, and the beginning of the syllable is the onset of the target 
approximation movements of most of the syllabic components, 
including the initial consonant, the first vowel, the lexical tone and 
the phonation register (for languages that use it lexically). Likewise, 
the end of the syllable is the offset of all the remaining movements. 
In this model, therefore, there is always full synchrony at the onset 
and offset of the syllable. Within the syllable, there may be free 
timing at two places, the offset of the initial consonant, and the 
boundary between the nuclear vowel and the coda consonant. In the 
case of lexical tone, it is also possible to have two tonal targets 
within one syllable, as in the case of the L tone in Mandarin, which 
may consist of two consecutive targets when said in isolation. The 
boundary between the two targets is probably partially free, as it 
does not affect synchrony at the syllable edges.  

 

Figure 3. The time structure model of the syllable (Xu & Liu 2006). 
The syllable is a time structure that assigns temporal intervals to 
consonants, vowels, tones and phonation registers (each constituting 
a phone). The alignment of the temporal intervals follows three 
principles: a) Co-onset of the initial consonant, the first vowel, the 
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tone and the phonation register at the beginning of the syllable; b) 
Sequential offset of all non-initial segments, especially coda C; and 
c) Synchrony of laryngeal units (tone and phonation register) with 
the entire syllable. In each case, the temporal interval of a phone is 
defined as the time period during which its target is approached. 

3 The learning perspective 

Despite the difficulty of motor control just discussed, a human child 
is able to acquire the ability to speak in the first few years of life, 
without formal instructions, and without direct observation of the 
articulators of the skilled speakers other than the visible ones such as 
the jaw and lips. The only sure input that can inform the child of the 
articulatory details is the acoustics of the speech utterances. How, 
then, can the child learn to control her own articulators to produce 
speech in largely the same way as the model speakers? One 
possibility is that the acquisition is done through analysis-by-
synthesis with acoustics as the input. The strategy is also known as 
distal learning (Jordon & Rumelhart 1992). To be able to do it, 
however, the child has to face the problem of multiplicity of DOF.  
As discussed earlier, adult speech contains extensive regions of 
transitions due to inertia. Given this fact, how can the child know 
which parts of the surface contour are mostly transitions, and which 
parts best reflect the targets? In Figure 5, for example, how can a 
child tell that the Mandarin utterance on the left contains a Low 
tone, while the one on the right contains a Falling tone at roughly the 
same location? One solution for the child is to confine the 
exploration of each tonal target to the temporal domain of the 
syllable. That way, the task of finding the underlying target is 
relatively simple. This strategy is implemented in our computational 
modeling of tone as well as intonation (Liu et al. 2013; Prom-on et 
al. 2009; Xu & Prom-on 2014). Our general finding is that, when the 
syllable is used as the tone-learning domain, their underlying targets 
are easily and accurately extracted computationally, judging from 
the quality of synthesis with the extracted tonal targets in all these 
studies.  

The ease of extracting tonal targets within the confine of the 
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syllable, however, does not necessarily mean that it is the best 
strategy. In particular, what if the synchronization assumption is 
relaxed so that the learning process is given some freedom in finding 
the optimal target-syllable alignment? In the following we will 
report the results of a modeling experiment on the effect of 
flexibility of timing in pitch target learning. 

     

Figure 4. Mean time-normalized F0 contours of five-syllable 
Mandarin sentences with syllable 2 carrying the Low tone on the left 
and the Falling tone on the right. Data from Xu (1999). 

3.1 Effect of freedom of tone-syllable alignment on 
target extraction — An experiment 

The goal of this experiment is to test if relaxing strict target-syllable 
synchrony improves or reduces F0 modeling accuracy and efficiency 
with an articulatory-based model. If there is real timing freedom 
either in production or in learning, modeling accuracy should 
improve with increased timing flexibility during training. Also 
assuming that there is regularity in the target alignment in mature 
adults’ production, the process should be able to learn the alignment 
pattern if given the opportunity. 

3.1.1 Method 

To allow for flexibility in target alignment, a revised version of 
PENTAtrainer1 (Xu & Prom-on 2010-2014) was written. The 
amount of timing freedom allowed was limited, however, as shown 
in Figure 5. Only onset alignment relative to the original was made 
flexible. For each syllable, the onset of a pitch target is either set to 
be always at the syllable onset (fixed alignment), or given a 50 or 
100 ms search range (flexible alignment). In the case of flexible 
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alignments, if the hypothetic onset is earlier than the syllable onset, 
as shown in row 2, the synthetic target approximation domain 
becomes longer than that of the syllable, and the preceding target 
domain is shortened; if the hypothetic onset is later than the syllable 
onset, as shown in row 3, the synthetic target approximation domain 
is shortened, and the preceding domain is lengthened. Other, more 
complex adjustment patterns would also be possible, of course, but 
even from this simple design, we can already see that the adjustment 
of any particular alignment has various implications not only for the 
current target domain, but also for adjacent ones.  

1	   Original	  timing:	  
	  

2	   Target	  2	  onset	  shifts	  left:	  
	  

3	   Target	  2	  onset	  shifts	  right:	  
	  

Figure 5. Illustration of onset timing shifts used in the experiment 
and their impacts on the timing of adjacent syllables. 

The training data are from Xu (1999), which have been used in 
Prom-on et al. (2009). The dataset consists of 3840 five-syllable 
utterances recorded by four male and four female Mandarin 
speakers. In each utterance, the first two and last two syllables are 
disyllabic words while the third syllable is a monosyllabic word. The 
first and last syllables in each sentence always have the H tone while 
the tones of the other syllables vary depending on the position: H, R, 
L, or F in the second syllable, H, R, or F in the third syllable, and H 
or L in the fourth syllable. In addition to tonal variations, each 
sentence has four focus conditions: no focus, initial focus, medial 
focus, and final focus. Thus, there are totally 96 variations in tone 
and focus. 

3.1.2 Results 

Figure 6 displays bar graphs of RMSE and correlation values of 
resynthesis performed by the modified PENTAtrainer1 using the 
three onset time ranges. As can be seen, the 0 ms condition produced 
lower RMSE and higher correlation than both the 50 and 100 ms 
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conditions. Two-way repeated measures ANOVAs showed highly 
significant effect of onset time range on both RMSE (F = 387.4, p < 
0.0001) and correlation (F = 320.1, p < 0.0001). Bonferroni/Dunn 
post-hoc tests showed significant differences between all onset time 
ranges for both RMSE and correlation. More interestingly, on 
average, the learned alignments in the flexible conditions is still 
centered around syllable onset. The average deviation from the 
actual syllable boundaries is -2.3 ms in the 50-ms onset range 
condition and -5.1 ms in the 100-ms onset range condition (where 
the negative values mean that the optimized onset is earlier than the 
syllable boundary). Similar close alignment to the early part of 
syllable has also been found in Cantonese for the accent commands 
in the Fujisaki model, despite of lack of modeling restrictions on 
command-syllable alignment (Gu et al. 2007). 

    

Figure 6. Root mean square error (RMSE) and Pearson’s correlation 
in resynthesis of F0 contours of Mandarin tones in connected speech 
(data from Xu 1999) using targets obtained with three onset time 
ranges: 0, 50 and 100 ms. 

Figure 7 shows an example of curve fitting with 0 and 100 ms onset 
shift ranges. As can be seen, pitch targets learned with the 0 onset 
shift range produced much tighter curve fitting than those learned 
with free timing. More importantly, we can see why the increased 
onset time range created problems. For the third syllable, the learned 
optimal onset alignment is later than the syllable onset. As a result, 
the temporal interval for realizing the preceding target is increased, 
given the alignment adjustment scheme shown in Figure 6. As a 
result, the original optimal F0 offset is no long optimal, which leads 
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to the sizeable discrepancy in Figure 7b. Note that it is possible for 
us to modify the learning algorithm so that once an optimized onset 
alignment deviates from the syllable boundary, the preceding target 
is re-optimized. But that would lead to number of other issues. 
Should this re-optimization use fixed or flexible target onset? If the 
latter, shouldn’t the further preceding target be also re-optimized? If 
so, the cycles will never end. Note also that, having a flexible search 
range at each target onset already increases the number of searches 
by many folds, having to reapply such searches to earlier targets 
would mean many more folds of increase. Most importantly, these 
issues are highly critical not just for modeling, but also for human 
learners, because they, too, have to find the optimal targets during 
their vocal learning. 

a.

    

 

b.     

 

Figure 7. Examples of curve-fitting with targets learned with 0-ms 
onset timing shift (a) and 100-ms shift (b). The blue dotted lines are 
the original contours and the red solid lines the synthetic ones. 

In summary, the results of this simple modeling experiment 
demonstrate the benefit of fixing the temporal domain of tonal target 
to that of the syllable in tone learning. Fully coinciding the two 
temporal domains reduces DOF, simplifies the learning task, 



14 

shortens the learning time, and also produces better learning results. 

4 The functional perspective 

Given that prosody is a means to convey communicative meanings 
(Baily & Holm 2005; Bolinger 1989; Hirst 2005), the free 
parameters in a prosody model should be determined not only by 
knowledge of articulatory mechanisms, but also by consideration of 
the communicative functions that need to be encoded. Empirical 
research so far has established many functions that are conveyed by 
prosody, including lexical contrast, focus, sentence type (statement 
versus question), turn taking, boundary marking, etc. (Xu 2011). 
Each of these functions, therefore, needs to be encoded by specific 
parameters, and all these parameters would constitute separate 
degrees of freedom. In this respect, a long-standing debate over 
whether prosody models should be linear or superpositional is highly 
relevant. The linear approach, as represented by the Autosegmental-
Metrical (AM) theory (Ladd 2008; Pierrehumbert 1980; 
Pierrehumbert & Beckman 1988), is based on the observation that 
speech intonation manifest clearly visible F0 peaks, valleys and 
plateaus. It is therefore assumed that prosody consists of strings of 
discrete prosodic units, each exclusively occupying a temporal 
location. Such a linear approach naturally requires rather limited 
degrees of freedom. 

The superpositional models, on the other hand, assume that surface 
F0 contours are decomposable into layers, each consisting of a string 
of F0 shapes, and the shapes of all the layers are added together to 
form surface F0 contours (Bailly & Holms 2005; Fujisaki 1983; 
Thorsen 1980; van Santen et al. 2005). Take the Fujisaki model for 
example, two layers are used to represent local shapes generated by 
accent commands, and global shapes generated by phrase 
commands, respectively. The output of the two layers are added 
together on a logarithmic scale to form a smooth global surface F0 
contour. Thus superpositional models allow more than one unit to 
occur at any particular temporal location. This means more DOF 
than the linear models. In terms of economy of DOF, therefore, 
superpositional models may seem less optimal than linear models. 
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However, economy of DOF should not be the ultimate goal of 
prosody modeling. Instead, a model should be able to represent as 
many meanings conveyed by prosody as possible, while minimizing 
redundancy of representation. From this perspective, superpositional 
models with more than one layer of potential prosodic unit are in the 
direction of providing sufficient DOF for encoding rich prosodic 
meanings (e.g., Baily & Holm 2005), which makes them compare 
favorably to linear models. Meanwhile, however, as shown in our 
earlier discussion on articulatory mechanisms, each and every DOF 
should be articulatorily plausible. In this regard, superposition 
models still share with linear models the problematic articulate-and-
merge assumption. Furthermore, from a modeling perspective, a 
superposition model has to first separate the surface contours into 
different layers, each corresponding to a particular communicative 
function. But this task is by no means easy. In Mixdorff (2000), 
filters of different frequencies were used to first separate surface F0 
contours into large global waves and small local ripples. Phrase 
commands are then sought from the global waves and accent 
commands from the local ripples. But the results are not satisfactory 
and manual intervention is often still needed (Mixdorff 2012). 

The parallel encoding and target approximation model (PENTA) 
takes both articulatory mechanisms and communicative functions 
into consideration (Xu 2005). As shown in Figure 8, the articulatory 
mechanism that generates surface F0 is syllable-synchronized 
sequential target approximation, shown in the lower panel of the 
figure. In this mechanism, each syllable is assigned an underlying 
pitch target, and surface F0 is the result of continuous articulatory 
approximation of successive pitch targets. This process is controlled 
by four free parameters: target height, target slope, target 
approximation rate and duration. Each of these parameters therefore 
constitutes a DOF controllable by the encoding schemes. But there is 
no temporal DOF, as each target approximation is fully 
synchronized with the associated syllable. The encoding schemes 
each correspond to a specific communicative function, and the 
communicative functions are assumed to be parallel to (rather than 
dominating) each other, hence ‘parallel’ in the name of the model. 
Like superposition, parallel encoding allows more than one prosodic 
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element at any temporal location. But unlike superposition, in which 
streams of surface output are generated separately and then 
combined by summation, the encoding schemes in PENTA all 
influence a common sequence of underlying targets. And the final 
sequence of targets carrying the combined influences from all 
communicative functions then generate surface output in a single 
articulatory process.  

 

Figure 8. Upper panel: A schematic sketch of the PENTA model (Xu 2005). 
Lower panel: The target approximation model of the articulation process (Xu 
& Wang 2001). 

This single-target-sequence assumption of PENTA not only makes 
the generation of surface F0 contours a rather straightforward 
process, it also makes it easy to account for a particular type of 
prosodic phenomenon, namely, target shift under the interaction of 
different communicative functions. Target shift is most vividly seen 
in the case of tone sandhi, whereby the underlying pitch target of a 
lexical tone is changed from the canonical one to a form that is very 
different in certain contextual conditions. In Mandarin, for example, 
the Low tone changes its target from low-level to rising when 
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followed by another Low tone, and the resulting surface F0 closely 
resembles that of the Rising tone. In American English, the pitch 
target of a word-final stressed syllable is a simple high in a pre-focus 
position; it changes to a steep fall when under focus in a statement, 
but to a steep rise in a question (Liu et al. 2013; Xu & Prom-on 
2014; Xu & Xu 2005). In the PENTA approach, such a shift is 
modeled without taking any special steps, since for each functional 
combination a unique target has to be learned whether or not a 
sizable target shift occurs. Therefore, to the extent the PENTA 
approach is ecologically realistic, the way it models target shift may 
suggest why target shifts occur in languages in the first place. That 
is, because each multi-functional target needs to be learned as a 
whole, it is possible for them to evolve properties that deviate 
significantly from their canonical forms. This issue is worth further 
exploration in future studies. 

In terms of the specific target parameters in a model, the justification 
for each should come from empirical evidence of their usage in 
specific function, and this principle is followed in the development 
of the PENTA model. For example, lambda, the rate of target 
approximation, could be fixed, just like the time constant in the 
Fujisaki model (Fujisaki 1983). However, empirical research has 
provided evidence that the neutral tone in Mandarin and unstressed 
syllable in English approach their targets at much slower rates than 
normal tones and stressed syllables (Chen & Xu 2006; Xu & Xu 
2005). Modeling studies have also shown that much lower lambda 
values are learned for the neutral tone and unstressed syllables 
(Prom-on et al. 2012; Xu & Prom-on 2014). Thus there is sufficient 
justification to keep lambda as a free parameter. Likewise, there is 
both analytical and modeling evidence for Rising and Falling tones 
to have unitary dynamic targets rather than successive static targets 
(Xu 1998; Xu & Wang 2001). Target duration is found to be used 
mainly in boundary marking, lexical contrast and focus (Xu & Wang 
2009; Wagner 2005). Target slope is found to be critical for tonal 
contrast. 

In the PENTA approach, therefore, although there are only four free 
parameters at the target level, at the functional level, there can be as 
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many degrees of freedom as required by the number of functions and 
the number of function-internal categories that need to be encoded. 
For English, for example, the communicative functions that need to 
be prosodically encoded include lexical stress, focus, sentence type, 
boundary marking, etc. (Liu et al. 2013; Xu & Xu 2005). For focus, 
it is necessary to control separate target attributes in pre-focus, on-
focus and post-focus regions. For sentence type, target attributes 
need to be controlled throughout the sentence, especially from the 
focused location onward (Liu et al. 2013). Also, focus, sentence type 
and lexical stress have three-way interactions that determine the 
final attributes of all pitch targets in a sentence, which often result in 
rich diversities in local pitch targets (Liu et al. 2013). 

5 Summary 

We have examined the issue of degrees of freedom in speech 
prosody modeling from three different perspectives: the motor 
control of articulatory movements, the acquisition of speech 
production skills, and the communicative functions conveyed by 
prosody. From the articulatory perspective, we have shown that it is 
unlikely for the CNS to first generate separate continuous laryngeal 
and superlaryngeal trajectories and then merge them together when 
producing the whole utterance. Rather, it is more likely that 
individual syllable are assigned underlying laryngeal and 
supralaryngeal targets before their execution; and during articulation 
multiple target approximation movements are executed in 
synchrony, under the time structure provided by the syllable. From 
the learning perspective, a new modeling experiment demonstrated 
the benefit of having minimum temporal DOF when learning pitch 
targets from continuous speech, i.e., by confining target search 
strictly within the temporal domain of the syllable. From the 
functional perspective, we have demonstrated how the PENTA 
approach allows multiple encoding schemes of prosodic functions to 
influence a common string of underlying targets, and then generate 
surface output in a single articulatory process of syllable 
synchronized sequential target approximation. We have further 
argued that DOF at the functional level should be based on the 
number of functions and number of function-internal categories that 
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need to be encoded. 

Overall, we have shown that DOF is a critical issue not only for 
computational modeling of prosody, but also for theoretical 
understanding of how speech prosody, and probably speech in 
general, can be learned in acquisition and articulated in skilled 
production. 
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