Post-low bouncing in Mandarin Chinese: Acoustic analysis and computational modeling

Santitham Prom-on(a)
Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, United Kingdom

Fang Liu
Center for the Study of Language and Information, Stanford University, Stanford, California 94305-4101

Yi Xu
Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, United Kingdom

(Received 18 October 2011; revised 29 February 2012; accepted 28 April 2012)

Post-low bouncing is a phenomenon whereby after reaching a very low pitch in a low lexical tone, \(F_0 \) bounces up and then gradually drops back in the following syllables. This paper reports the results of an acoustic analysis of the phenomenon in two Mandarin Chinese corpora and presents a simple mechanical model that can effectively simulate this bouncing effect. The acoustic analysis shows that most of the \(F_0 \) dynamic features profiling the bouncing effect strongly correlate with the amount of \(F_0 \) lowering in the preceding low-tone syllable, and that the additional \(F_0 \) raising commences at the onset of the first post-low syllable. Using the quantitative Target Approximation model, this bouncing effect was simulated by adding an acceleration adjustment to the initial \(F_0 \) state of the first post-low syllable. A highly linear relation between \(F_0 \) lowering and estimated acceleration adjustment was found. This relation was then used to effectively simulate the bouncing effect in both the neutral tone and the full tones. The results of the analysis and simulation are consistent with the hypothesis that the bouncing effect is due to a temporary perturbation of the balance between antagonistic forces in the laryngeal control in producing a very low pitch.

I. INTRODUCTION

Fundamental frequency (\(F_0 \)) carries important communicative information in speech, but much of its variability also comes from articulatory factors. The classic work of Lehiste and Peterson (1961) has established the importance of recognizing specific articulatory effects in the understanding of \(F_0 \) contours in speech. They have demonstrated the effects of vowel intrinsic \(F_0 \) and consonantal perturbation on the intonation contours of English declarative sentences, which have later been shown to be generalizable to other languages (Francis et al., 2006; Hombert et al., 1979; Silverman, 1986; Whalen and Levitt, 1995; Xu and Xu, 2003). Other works have further identified additional articulator-based effects on \(F_0 \) realization, including carryover assimilation (Gandour et al., 1994; Han and Kim, 1974; Xu, 1997, 1999), maximum speed of pitch change (Sundberg, 1979; Xu and Sun, 2002), anticipatory dissimilation (Gandour et al., 1994; Laniran and Clements, 2003; Xu, 1997, 1999), and total pitch range (Honorof and Whalen, 2005). There has also been evidence of syllable-synchronized pitch target approximation (Xu, 1998; Xu and Wang 2001), although the generality of this mechanism is still in dispute (Arvaniti and Ladd, 2009). All these findings suggest that in order to understand how \(F_0 \) conveys communicative information, it is necessary to recognize the contributions of specific articulatory mechanisms.

The present study is concerned with a much lesser known articulation-based effect that so far has been observed only for Mandarin and Cantonese. The effect raises \(F_0 \) after the Low (L) tone, especially when the following syllables carry the Neutral (N) tone (Chen and Xu, 2006; Gu and Lee, 2009; Shen, 1994). The raised pitch of the N tone after the L tone in Mandarin has been long known, but the effect has been considered mostly as a tonal phenomenon, limited to the first N tone after the L tone (Chao, 1968; Lin and Yan, 1980; Shen, 1992; Shih, 1988). A somewhat similar effect was also reported for Cantonese (Gu and Lee, 2009). Chen and Xu (2006) observed that the \(F_0 \) rising after the L tone continued into the subsequent N-tone syllables, and that the effect became even stronger when the L tone was under prosodic focus. Similar patterns were again observed in Liu and Xu (2007). An example is shown in Fig. 1, where the third syllable carries four alternating full tones, including High (H), Rising (R), Low (L) and Falling (F), as indicated by the different line patterns. In the case of the L tone (3rd syllable), \(F_0 \) drops sharply within the L-tone syllable, but starts to rise from the beginning of the next syllable, which carries the N tone, and continues to rise further in the next N tone. By the second N tone, the \(F_0 \) height has surpassed those of all the other tone sequences whose \(F_0 \) contours nearly

(a) Also at: Department of Computer Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand. Author to whom correspondence should be addressed. Electronic mail: santitham@cpe.kmutt.ac.th
converge by the end of the third N-tone syllable. The behavior of F_0 in the L-N sequence in Fig. 1 (thick line) is like that of a bouncing ball after hitting the ground, hence the name, post-low bouncing.

Such an F_0 bouncing, although occurring between tones, is different from the known carryover effect that has been extensively studied in Thai (Gandour et al., 1994) and Mandarin Chinese (Xu, 1997, 1999). As found in these studies, the initial F_0 of a syllable is heavily assimilated to the final F_0 of the preceding tone, but over the course of the current syllable, F_0 gradually approaches its own tonal target. To account for such assimilatory effect, Xu and Wang (2001) proposed the Target Approximation model, which represents the production of successive tones as a process of asymptotically approaching each tonal target within the time interval of the respective syllable. In such a process, carryover assimilation results from the articulation of each tone having to start from the offset F_0 of the preceding syllable. The Target Approximation model has been computationally implemented with simple mechanical dynamics as the quantitative Target Approximation (qTA) model (Prom-on et al., 2009). In the qTA model, the carry-over effect results from the transfer of the final F_0 dynamic states (F_0 level, velocity, and acceleration) of one syllable to the next as the initial conditions. However, the qTA model, in its original form, cannot simulate the post-low bouncing effect because it generates only a carryover lowering, rather than raising effect after an L tone.

Chen and Xu (2006) have reported that post-low bouncing also occurs in the full tones in Mandarin, but the effect is smaller and lasts shorter than in the N tone. They suggested that this could be due to the difference in target approximation strength between these tones. That is, the stronger strength of the full tones may be more effective in restoring the muscular balance in the laryngeal control after the articulation of the L tone. As a result, it is only when the L tone is focused, which pushes F_0 to an even lower level (Xu, 1999), is the effect of post-low bouncing clearly observable (Chen and Xu, 2006).

Based on the observational evidences, Chen and Xu (2006) proposed that post-low bouncing could be a byproduct of the laryngeal activity in producing a very low pitch. The production of low F_0 below the mid-level is known to involve the activation of extrinsic laryngeal muscles such as the sternohyoids, sternothyroids, and thyrohyoids (Atkinson, 1978; Erickson, 1993, 2011; Erickson et al., 1995; Halle, 1994; Ohala, 1972). A possible main function of these muscles is to control the vertical position of the larynx (Atkinson, 1978; Shipp, 1975). It has been suggested that the lowering of the larynx pulls the cricoid cartilages across a curvature of the cervical spine (Honda et al., 1999), which tilts the top of the cricoids forward, thus further shortening the vocal folds by an extra amount (Atkinson, 1978; Honda et al., 1999; Shipp, 1975). Given these findings, it is possible that after producing a very low F_0, the extrinsic laryngeal muscles, especially the sternohyoids (Atkinson, 1978; Ohala, 1972), stop contracting and thus temporarily tip the balance between the two antagonistic forces maintained by the intrinsic laryngeal muscles, resulting in a sudden increase of the vocal fold tension. If this is the case, post-low bouncing could be modeled by adding an extra F_0 raising force after F_0 is lowered beyond a certain threshold. The general goal of the present study is to test this balance-perturbation account of post-low bouncing. Specifically, we will try to answer two questions: (1) Is there acoustic evidence in support of the balance-perturbation account of post-low bouncing? (2) Is it possible to computationally model post-low bouncing based on the balance-perturbation account? To answer the first question, we conducted a multifactor correlation analysis to identify the factors most closely related to post-low bouncing. To answer the second question, we tested the effectiveness of adjusting the initial condition of the post-low tone in the qTA model to simulate the extra force.

II. MULTIFACTOR CORRELATION ANALYSIS

A. Corpus

The corpus was originally collected for a study of the Neutral tone in question intonation (Liu and Xu, 2007). It consisted of 1280 eight-syllable utterances recorded by four male and four female native Mandarin speakers. Table I shows the sentence structure of the N-tone corpus. In each utterance, the first and second syllables always have the H and L tones, respectively. The third and fourth syllables form disyllabic words with the tone of the third syllable varying...
TABLE II. List of F₀ dynamic features used for profiling post-low bouncing.

<table>
<thead>
<tr>
<th>Trigger (F₀ dynamic features in a L-tone syllable preceding the post-low bouncing event)</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₀ lowering</td>
<td>st</td>
<td>Magnitude of F₀ lowering measured at the end of the syllable relative to the F₀ mean of each speaker</td>
</tr>
<tr>
<td>F₀ excursion</td>
<td>st</td>
<td>Magnitude of F₀ lowering measured at the end of the syllable relative to the initial F₀ value of each syllable</td>
</tr>
<tr>
<td>Peak velocity</td>
<td>st/s</td>
<td>Maximum rate of F₀ lowering</td>
</tr>
<tr>
<td>Peak velocity time</td>
<td>s</td>
<td>Elapsed time from the point of peak velocity to the end of the syllable</td>
</tr>
<tr>
<td>Average velocity</td>
<td>st/s</td>
<td>Average rate of F₀ movement in each syllable: (v_{av} = \frac{f_d}{\text{syllable duration}})</td>
</tr>
<tr>
<td>Peak acceleration</td>
<td>st/s²</td>
<td>Maximum rate of velocity change</td>
</tr>
<tr>
<td>Peak acceleration time</td>
<td>s</td>
<td>Elapsed time from the point of peak acceleration to the end of the syllable</td>
</tr>
<tr>
<td>Final velocity</td>
<td>st/s</td>
<td>Rate of F₀ change at the end of the syllable</td>
</tr>
<tr>
<td>Final acceleration</td>
<td>st/s²</td>
<td>Rate of velocity change at the end of the syllable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event (F₀ dynamic features of the post-low bouncing event)</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak time</td>
<td>s</td>
<td>Elapsed time from the beginning of the syllable to the post-low peak</td>
</tr>
<tr>
<td>F₀ overshoot</td>
<td>s</td>
<td>Magnitude of post-low peak relative to the final settling F₀ value</td>
</tr>
<tr>
<td>F₀ rising excursion</td>
<td>s</td>
<td>Magnitude of post-low peak relative to the initial F₀ value of the first post-low syllable</td>
</tr>
<tr>
<td>Peak rising velocity</td>
<td>st/s</td>
<td>Maximum rate of F₀ bouncing</td>
</tr>
<tr>
<td>Peak rising velocity time</td>
<td>s</td>
<td>Elapsed time from the beginning of the syllable to the point of rising peak velocity</td>
</tr>
<tr>
<td>Peak rising acceleration</td>
<td>st/s²</td>
<td>Maximum rate of velocity increment</td>
</tr>
<tr>
<td>Peak rising acceleration time</td>
<td>s</td>
<td>Elapsed time from the beginning of the syllable to the point of maximum rising acceleration</td>
</tr>
<tr>
<td>Initial velocity</td>
<td>st/s</td>
<td>Initial rate of F₀ change at the beginning of the N-tone sequence</td>
</tr>
<tr>
<td>Initial acceleration</td>
<td>st/s²</td>
<td>Initial rate of velocity change at the beginning of the N-tone sequence</td>
</tr>
</tbody>
</table>

Our strategy is to identify, through a multifactor correlation analysis, the acoustic features that can best represent and predict post-low bouncing. We first assembled a set of F₀ dynamic features, shown in Table II with corresponding abbreviations and descriptions. These features, all of which were independently measured except for \(v_{av}\), which was derived, were related to the dynamic variations of F₀ contours either prior to or during post-low bouncing. Velocity and acceleration measurements were calculated using a two-point central differentiation algorithm (Bahill et al., 1982), based on F₀ contours with a sampling rate of 100 Hz and smoothed with a 50-ms triangular window. The reliability of the extraction of F₀ contours was ensured by manual rectification of every vocal pulse marking using ProsodyPro (Xu, 2005–2011). Figure 2 illustrates the locations where the measurements of the features were taken from an F₀ track. The measurements can be

![Figure 2](http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp)

FIG. 2. Illustration of F₀ dynamic features of the triggering L-tone syllable and the subsequent N-tone syllables in which post-low bouncing occurs. Abbreviations and explanations of the features are shown in Table II. The thick black line represents the F₀ contour. The vertical gray lines demarcate syllable boundaries. The dashed gray lines mark the measurement locations and dimensions.

B. Analysis

The reliability of the extraction of F₀ contours was ensured by manual rectification of every vocal pulse marking using ProsodyPro (Xu, 2005–2011). Figure 2 illustrates the locations where the measurements of the features were taken from an F₀ track. The measurements can be...
categorized into two groups, the trigger and the event, depending on whether they were made on the L-tone syllable immediately preceding the bouncing or the N-tone sequence following the L-tone syllable.

The association between the features were calculated using Pearson’s correlation coefficients (hereafter correlation, or \(r \)). In this study, correlation strength between two \(F_0 \) dynamic features was defined as none-to-weak if \(|r| < 0.4 \), moderate if \(0.4 \leq |r| < 0.7 \), or strong if \(|r| \geq 0.7 \). While correlation is not necessarily equivalent to causation, a significant correlation of \(F_0 \) dynamic features between the trigger syllable and the post-low bouncing event would suggest the possibility of a causal relation while a significant association within groups would indicate an interdependency between the features.

C. Results and discussion

Figures 3(a) and 3(b) show the correlation matrices of \(F_0 \) dynamic features paired within the trigger and event groups, respectively. These correlations were calculated from \(F_0 \) dynamic measurements of 320 utterances. Within the trigger group, there are three strongly correlated feature pairs (\(f_E-f_L \), \(v_{av}-f_E \), \(v_{av}-v_P \)) and four moderately correlated feature pairs. Correlation between features within the group may arise either because the feature measurements share similar traits or the features are influenced by the same mechanism. The strong correlations of the two feature pairs, \(f_E-f_L \) and \(v_{av}-f_E \), may be due to interdependence of features. The strong correlation of \(v_{av}-v_P \) is, however, not from the feature derivation but from the sharing of feature characteristics since their measurements were done independently.

Within the event group, there are 5 strongly correlated feature pairs (\(A_P-V_{I} \), \(A_P-A_I \), \(V_P-F_E \), \(A_P-F_E \), \(A_P-V_P \)) and 11 moderately correlated feature pairs. The strong positive correlation between Initial velocity (\(V_I \)) and Initial acceleration (\(A_I \) \(r = 0.77 \)) indicates that there is no deceleration at the beginning of the syllable. Initial acceleration is also strongly and positively correlated with Peak raising acceleration (\(A_P \)) \(r = 0.75 \). This indicates that the force driving post-low bouncing starts at the syllable onset. Further analysis of Peak acceleration time (\(T_{AP} \)) indicates that the data have an exponential distribution with a mean of 4.4 ms \((p < 0.001, \text{Kolmogorov–Smirnov test}) \) as shown in the empirical distribution function in Fig. 4. Compared to Peak time (\(T_P \)), the acceleration that drives post-low bouncing reaches its peak.

FIG. 3. Correlation matrices of \(F_0 \) dynamic features paired (a) within the trigger group, (b) within the event group, and (c) between the trigger and event groups. The gray intensity in each cell indicates the correlation strength.

FIG. 4. Empirical distribution functions of Peak rising acceleration time (\(T_{AP} \)) and Peak time (\(T_P \)), denoted by the thick and thin lines, respectively.
very early and may have originated from the same force driving Initial acceleration. It also indicates that there are no other raising forces involved in the bouncing, otherwise Peak acceleration time would not have an exponential distribution, but would incline toward a normal distribution instead. The distribution of Peak time is close to normal \((p = 0.025, \text{Kolmogorov–Smirnov test}) \), which indicates consistency of the bouncing behavior across speakers. The strong correlations between the \(F_0 \) rising excursion, Peak velocity, and Peak acceleration \((V_{PE}; r = 0.90, A_{PE}; r = 0.70, A_{PE}V_P; r = 0.86) \) indicate the mechanistic nature of the \(F_0 \) control.

Figure 3(c) shows the correlations between the trigger and event groups. There are 9 strongly correlated feature pairs \((f_L-V_I, f_L-A_I, f_L-FOS, f_L-FE, f_L-V_P, f_L-A_P, f_E-FOS, f_E-FE, f_E-V_P) \) and 23 moderately correlated feature pairs. Figure 5 shows the scatter plots of the strongly correlated feature pairs between the trigger and event groups. Because features in the trigger group were measured prior to the bouncing while features in the event group were measured during the bouncing, high correlations of the features between these two groups would suggest possible causal relations. As can be seen from Figs. 3 and 5, \(F_0 \) lowering is predominantly and strongly associated with almost all but the timing features in the event group. It also has consistently stronger associations than \(F_0 \) excursion to the event group. This indicates that \(F_0 \) lowering is the most likely trigger of post-low bouncing. Interestingly, only none-to-weak correlations were observed between final and initial \(F_0 \) dynamic states \((v_{F-I}; r = 0.25, a_{F-A_I}; r = -0.07) \), while there were strong correlations between the final and initial features in the trigger group.
correlations between F_0 lowering and the initial F_0 dynamic state (f_L-V_1: $r = -0.75$, f_L-A_1: $r = -0.80$). This indicates that there is an abrupt change in F_0 dynamics at the syllable boundary prior to the bouncing, which is closely associated with F_0 lowering in the preceding syllable (f_L). It should be noted that the strong correlation between f_L and F_E is partly due to the fact that F_E is the combination of f_L and the F_0 overshoot beyond the speaker mean. In contrast, f_L and F_{OS} are relatively independent of each other, so the strong correlation between them ($r = -0.84$) further affirms the crucial role F_0 lowering (f_L) plays in triggering the bouncing behavior.

III. MODELING

A. Method

The results of the acoustic analysis suggest that the trigger of post-low bouncing is the lowering of F_0 in the preceding L tone, which activates an F_0 raising force right at the syllable boundary. After the activation, the raising force propagates through the N-tone sequence without any further reinforcement until its momentum diminishes. This means that it is possible to simulate post-low bouncing by emulating the perturbation of the balanced F_0 control at the syllable boundary after the L tone. To this end, the qTA model, which has been effective in simulating articulatory carry-over effects in both Mandarin and English (Prom-on et al., 2009), was used. The basic idea of the qTA model is that F_0 contours are responses of the target approximation process to the input pitch target sequence, as illustrated in Fig. 6. Surface F_0 contours, represented by the thick curve in Fig. 6, are the result of sequential implementation of pitch targets, each of which is localized to the host syllable. The final F_0 dynamic state (in terms of F_0 level, F_0 velocity, and F_0 acceleration) at the end of a syllable is transferred to the onset of the next syllable, resulting in a smooth and continuous F_0 trajectory across the syllable boundary.

In qTA, an F_0 contour as a general form of output of the linear system is composed of two parts: Forced response and natural response (Prom-on et al., 2009), as represented by the following equation:

$$f_0(t) = (mt + b) + (c_1 + c_2t + c_3t^2)e^{-kt}.$$

The first term in parentheses is the forced response, which is the pitch target, i.e., the desired pitch trajectory associated with a tone. The second term, consisting of the polynomial and the exponential, is the natural response, i.e., the transition from the current articulatory state to the pitch target. The model has three free parameters: m and b which specify the form of the pitch target in terms of its slope and height, respectively, and λ which represents the rate or strength of target approximation, i.e., how rapidly the pitch target is approached. The greater the value of λ the faster F_0 approaches the target. The transient coefficients c_1, c_2, and c_3 are jointly determined by the initial F_0 dynamic state of the syllable and the pitch target. The initial dynamic state in this case consists of F_0 level, $f_0(0)$, velocity, $f_0'(0^-)$, and acceleration, $f_0''(0^-)$, which are transferred from the preceding syllable. The transient coefficients are computed with the following formulas:

$$c_1 = f_0(0) - b,$$
$$c_2 = f_0'(0^-) + c_1\lambda - m,$$
$$c_3 = \left(f_0''(0^-) + 2c_2\lambda - c_1\lambda^2 \right)/2.$$
needed, we modified the qTA parameter estimation algorithm implemented in PENTAtTrainer (Xu and Prom-on, 2010–2011) to iteratively search for the optimal extra values of either vs or as that would result in the lowest sum of square errors in the parameter estimation for the syllables following the L tone. The best strategy for modeling post-low bouncing in the N tone was then selected by comparing the synthesis accuracies of using different F0 dynamic adjustments. Once the optimal F0 dynamic adjustments of all utterances were determined, we associated them to the possible triggering feature by using regression analysis. The resulting relation was then used as a rule to simulate post-low bouncing.

B. Results and discussion

The first set of results in this section is to show the inadequacy of the qTA model in its original form in simulating post-low bouncing in the test corpus. Table IV shows synthesis accuracies of utterances having each of the four Mandarin full tones on the third syllable without applying any adjustments for post-low bouncing. The utterances with the L tone show both higher error and lower correlation compared to the other tones (Root-Mean-Square Error (RMSE); L-H t(14) = 3.18, p = 0.003; L-R t(14) = 2.41, p = 0.015; L-F t(14) = 4.20, p < 0.001; Correlation: L-H t(14) = 5.21, p < 0.001; L-R t(14) = 3.77, p = 0.001; L-F t(14) = 5.93, p < 0.001). The impact of post-low bouncing on the synthesis accuracy thus seems significant.

The second set of results, as displayed in the top four rows of Table V, shows the accuracies of F0 synthesis when either estimated vs or as is applied to the F0 dynamic state at the syllable boundary after the L tone. These results are based only on the utterances in the corpus that have the L tone on the third syllable. As can be seen, implementing as yielded greater improvements than implementing vs, which seems reasonable since acceleration is directly proportional to force according to Newton’s second law of motion. Compared to Table IV, with as, the overall errors and correlations of the utterances with the L tone on the third syllable are now comparable to those with other full tones. Implementing both as and vs yielded only marginal additional improvements over implementing either alone. This is probably because velocity variations are the direct result of acceleration variations and so the two are not independent of each other. Further analysis on the distribution of the estimated vs and as when both were implemented is shown in Fig. 7.

Only a small proportion (3%) of all cases involves only vs, while more than half (55%) involves only as. This indicates that the estimated as adjustments dominate those of vs. Thus, in the following, we will only discuss the results of using as to model post-low bouncing.

Examples of F0 contours synthesized with and without post-low bouncing simulation, with different focus conditions and sentence types, are shown in Fig. 8. With no additional accelerations added to the initial F0 dynamic state of the first post-low N tone (dashed line), synthesized F0 simply asymptotically approaches the pitch target of the N tone, resulting in a contour that is very different from the original (dotted line). With the acceleration adjustment (solid line), the F0 contours seem to resemble the original much better. This pattern is consistent across focus and sentence type conditions. Analyzing the pitch target of N tones in different preceding tone contexts reveals the importance of post-low bouncing simulation. Without acceleration adjustment, m of the post-low N tone significantly differs from the N tone following other tones [F(3,252) = 4.56, p = 0.04], whereas with the acceleration adjustment, it is more consistent with the N tones following other tones [F(3,252) = 1.96, p = 0.121]. This suggests that pitch targets

Table III

Strategies for F0 dynamic adjustments. vs and as denote velocity and acceleration adjustment, respectively. The hat sign "^" indicates the modified version of F0 dynamic states.

<table>
<thead>
<tr>
<th>Strategy 1: vs</th>
<th>Strategy 2: as</th>
<th>Strategy 3: vs & as</th>
</tr>
</thead>
<tbody>
<tr>
<td>f0^0(0) = f0(0)</td>
<td>f0^0(0) = f0(0)</td>
<td>f0^0(0) = f0(0)</td>
</tr>
<tr>
<td>f0^0(0) = f0^0(0) + vs</td>
<td>f0^0(0) = f0^0(0) + as</td>
<td>f0^0(0) = f0^0(0) + vs</td>
</tr>
<tr>
<td>f0^0(0) = f0^0(0) + as</td>
<td>f0^0(0) = f0^0(0) + as</td>
<td>f0^0(0) = f0^0(0) + as</td>
</tr>
</tbody>
</table>

Table IV

RMSEs and correlations of utterances having each full tone on the third syllable. The values in each cell are mean and standard error calculated from all speakers.

<table>
<thead>
<tr>
<th>Tone</th>
<th>RMSE (st)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.99 ± 0.10</td>
<td>0.975 ± 0.003</td>
</tr>
<tr>
<td>R</td>
<td>1.20 ± 0.09</td>
<td>0.960 ± 0.005</td>
</tr>
<tr>
<td>L</td>
<td>1.82 ± 0.24</td>
<td>0.909 ± 0.012</td>
</tr>
<tr>
<td>F</td>
<td>0.76 ± 0.07</td>
<td>0.983 ± 0.002</td>
</tr>
</tbody>
</table>

Table V

RMSEs and correlations of different simulation strategies used for simulating post-low bouncing. The values in each cell are mean and standard error calculated from all speakers.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>RMSE (st)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.82 ± 0.24</td>
<td>0.909 ± 0.012</td>
</tr>
<tr>
<td>Baseline + vs</td>
<td>1.12 ± 0.11</td>
<td>0.967 ± 0.004</td>
</tr>
<tr>
<td>Baseline + as</td>
<td>1.00 ± 0.10</td>
<td>0.974 ± 0.003</td>
</tr>
<tr>
<td>Baseline + vs and as</td>
<td>0.97 ± 0.10</td>
<td>0.975 ± 0.003</td>
</tr>
<tr>
<td>Baseline + rule*</td>
<td>1.06 ± 0.10</td>
<td>0.960 ± 0.005</td>
</tr>
</tbody>
</table>

*Post-low bouncing rule as shown in Eq. (5).
estimated with the post-low bouncing simulation are more realistic than its counterpart.

Figure 9 shows the scatter plot of the simulated acceleration adjustment \(a_S\) as a function of the amount of \(F_0\) lowering relative to the speaker mean \(f_L\). A strong linear relation can be seen, with a coefficient of determination \((R^2)\) of 0.79. A separation of \(a_S-f_L\) pairs in different focus conditions of the preceding L tone can also be clearly seen. This separation is due to the expansion of the \(F_0\) range in the on-focus L tone (Botinis et al., 2000; Hasegawa and Hata, 1992; Rump and Collier, 1996; Xu, 1999, 2005). The linear trend in the scatter plot can be expressed by the following equation:

\[
a_S = \begin{cases}
-412.82 f_L + 191.17, & f_L \leq 0.46 \\
0, & f_L > 0.46.
\end{cases}
\]

(5)

This linear relation indicates that the lowering of \(F_0\) in the L tone by 1 st would increase the initial acceleration of the following N tone by \(-412.82\) st/s², with the x-axis intercept approximately at 0.46 st. Interestingly, for the cases where \(F_0\) lowering is zero or positive, the simulated accelerations are mostly zero. This means that the post-low bouncing force starts to occur as long as \(F_0\) drops below the speaker mean (recall that \(F_0\) lowering is computed relative to the speaker mean). This is consistent with the previous findings (Atkinson, 1978; Erickson, 1993, 2011; Erickson et al. 1995; Ohala, 1972) that the external laryngeal muscles, especially the sternohyoids, become active as soon as \(F_0\) goes below the mid-level of the speaking pitch.

The final set of results shows the effectiveness of using Eq. (5) as a generalized rule to simulate post-low bouncing instead of using the extracted individual acceleration adjustments. For each utterance, \(F_0\) lowering of the L tone was measured and the simulated acceleration adjustment was calculated with Eq. (5) and used in generating post-low bouncing. As shown in the last row of Table V, the synthesis accuracy when using the post-low rule does not differ much from other simulation strategies. This suggests that a generalized post-low bouncing rule like Eq. (5) is largely sufficient to simulate the bouncing effect.

IV. APPLICATION TO FULL TONES

In the following modeling experiments, we examined whether there is indeed a difference in target approximation strength between the N and the full tones and tested the
effectiveness of directly applying the post-low bouncing rule learned from the N tone to the full tones.

A. Corpus

The full tone corpus was originally collected for a study of tone and focus in Mandarin (Xu, 1999). It consisted of 3840 five-syllable utterances recorded by four male and four female native Mandarin speakers. Table VI shows the sentence structure of the full tone corpus. In each utterance, the first and last syllables always have the H tone. The tone of the second syllable varies across all four full tones. The tone of the third syllable varies across H, R, and F. For this position, the L tone was omitted in the corpus to avoid the tone sandhi which changes an L tone to an R tone before another L tone (Chao, 1968). The tone of the fourth syllable was either H or L. Each utterance was spoken with focus on the first two syllables, the middle syllable, the last two syllables, or without focus. Each utterance was repeated five times for each tone and focus condition.

For the purpose of comparing the target approximation strengths of the N and full tones, we trained the qTA model on the full tone corpus and compared the values of the parameter \(\lambda \) to those of the N tone obtained in Sec. III. To test the effectiveness of the post-low bouncing rule in full tones [Eq. (5)], which was derived from the N-tone simulation, the \(F_0 \) contour of each utterance in the full tone corpus was synthesized using the qTA model with the rule and compared to the original. Due to a severe creaky voice of two of the female speakers that may cause the errors in measuring \(F_0 \) lowering, their data were excluded from the analysis. Thus, there were 720 utterances in total with the L tone on the second syllable, and 2160 utterances in total with the other full tones on the second syllable. The effectiveness of the simulation was evaluated by both numerical assessment of synthesis accuracy and visual inspection.

B. Results and discussion

Figure 10 shows the values of target approximation strength (\(\lambda \)) in different Mandarin tones obtained from the N-tone and full-tone corpora. As can be seen, the target approximation strength in the N tone is less than half as strong as those of the full tones, which is also borne out by the results of Welch’s \(t \)-test comparisons [N vs H: \(t(6) = 8.88, p < 0.001 \); N vs R: \(t(6) = 7.32, p < 0.001 \); N vs F: \(t(9) = 15.45, p < 0.001 \)]. This is consistent with the hypothesized weak strength of the N tone (Chen and Xu, 2006). It also suggests that the post-low bouncing effect in the full tone, even if it exists, is likely to be small.

Table VII shows the synthesis accuracy of each tone in the full tone corpus when the qTA model is used without the post-low bouncing rule in Eq. (5). The RMSE of the L tone was higher than the other tones, but correlation of the L tone was comparable to R and F tones and better than those of the H tone. This indicates that the post-low bouncing force is not high enough to significantly affect the full tones. To explore this possibility, we applied Eq. (5) to the full-tone syllable after the L tone. There was a small but non-significant increase in the synthesis accuracy, indicating that the acceleration adjustment did not significantly affect \(F_0 \) variations.

Although the numerical comparisons showed almost no difference in terms of synthesis accuracy, it is possible that the applied post-low bouncing rule still had an effect, but with a small magnitude. Figure 11 shows the \(F_0 \) contours, averaged across six speakers, compared between the original and the synthesized contours when the post-low bouncing rule was applied. The rule was used to adjust the initial \(F_0 \) state of the third syllable only when the second syllable had the L tone. In the right panels, we can see that in the original sentences, the \(F_0 \) contour after the focused L tone at the second syllable always bounces back, at some point, to a level higher than the \(F_0 \) contours after the other tones. In the left panel, we can see that in each of the three graphs a bouncing pattern after the L tone of the second syllable closely resembles that of the corresponding original on the right. Thus the subtle post-low bouncing effect in the H, R, and F tones was simulated by the qTA model with the rule in Eq. (5).

<table>
<thead>
<tr>
<th>Table VII. RMSEs and correlations of utterances in the full-tone corpus having each full tone on the second syllable. The values in each cell are mean and its standard error calculated from all speakers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

FIG. 10. Mean and standard errors of target approximation strength compared between the N tone and the full tones.

V. GENERAL DISCUSSION

Two questions were raised at the beginning of the present study: (1) Is there acoustic evidence in support of the balance-perturbation account of post-low bouncing? (2) Is it possible to computationally model post-low bouncing based on the balance-perturbation account? Regarding the first question, results of the acoustic analysis in Sec. II show strong linear relations between F_0 lowering and a number of F_0 dynamic features that profile post-low bouncing, as depicted in Fig. 5. Moreover, the abrupt change between the final and initial F_0 dynamic state across the syllable boundary as shown in the correlation matrices in Fig. 3 indicates that post-low bouncing is very likely triggered at the end of the L-tone syllable. This suggests that the state of very low F_0 at the end of the syllable plays an important role in triggering post-low bouncing in the subsequent N-tone syllables. This is consistent with the proposals of Chen and Xu (2006) that post-low bouncing is due to an added articulatory force introduced by the sudden cessation of the contraction of the extrinsic laryngeal muscles after producing a low F_0 (Atkinson, 1978; Erickson, 1976, 1993; Erickson et al., 1995; Halle, 1994; Ohala, 1972), which temporarily tips the balance in the antagonistic control of the vocal fold tension by the intrinsic and extrinsic laryngeal muscles.

Further support for this balance-perturbation account was demonstrated by our modeling tests, which also addressed the second question. By translating the balance-perturbation account into F_0 dynamic adjustment strategies as shown in Table III, we trained the qTA model with a procedure that allowed the identification of an additional force in terms of either a velocity or acceleration adjustment added to the initial state of the first post-low N tone. The modeling results in Secs. III and IV support the balance-perturbation account in two ways. The first is a highly linear relation between the amount of F_0 lowering in the L tone and the simulated acceleration adjustment, as shown in Fig. 9. This linear relation can be conceptualized if we link Hooke’s law of elasticity with Newton’s second law of motion. In such a relation, the acceleration as part of the restoring force is linearly proportional to displacement of one end of a spring from its equilibrium position. The second support is in the fact that the application of the generalized post-low bouncing rule based on Eq. (5) led to an almost equal performance...
as that of applying utterance-specific acceleration adjustments, as shown in Table V.

The relatively subtle post-low bouncing effect in the full tones, when compared to the N tone, indicates that target approximation strength is an important factor influencing the effect. This complicates the situation further as focus also interacts with post-low bouncing (Chen and Xu, 2006). That is, a focus on an L tone generates two direct effects. The first is the lowering of the L tone itself, which is the source of post-low bouncing. The second effect, known as post-focus compression, lowers the F_0 of all the post-focus syllables (Cooper et al., 1985; Xu, 1999; Xu and Xu, 2005). Because the two effects are in opposite directions, part of the post-low bouncing effect could be neutralized. Such neutralization is more likely to occur in a post-focus full tone than an N tone, because the latter has weaker target approximation strength as shown in Fig. 10. The post-low bouncing effect in the full tones can therefore be easily masked by noise in analysis and modeling.

With regard to the second question, we demonstrated in Secs. II and III the effectiveness and generalizability of the post-low bouncing rule in F_0 synthesis. This rule, when applied in adjusting the F_0 acceleration at the beginning of the first syllable after the post-low syllable, can effectively simulate post-low bouncing in both the neutral and full tones.

The evidence in the present study suggests that post-low bouncing is an articulatory-based phenomenon. As such it is potentially applicable to other languages. The current results also suggest, however, that certain requirements need to be met for post-low bouncing to be observable. The first is the presence of a low pitch target such as in the L tone in Mandarin, and the lower the actual F_0 associated with it, the more likely the bouncing effect may occur. The second is the strength of the post-low target as shown in Fig. 10. The lower the strength, the more likely the bouncing effect may occur. But it is relative weight of the two factors that would eventually determine how observable the bouncing effect is. A case in point is Cantonese. As reported by Gu and Lee (2009), in Cantonese, unlike in Mandarin, a subtle post-low bouncing can be observed in non-weak tones after the low-falling tone (Tone 4) even without focus. As they suggested, it is possible that it is the need to clearly distinguish Tone 4 from Tone 6, which is also low (low-level), that pushes F_0 even lower than in the Mandarin L tone. Being articulatory in nature, post-low bouncing may also occur in non-tonal languages. For example, as suggested by Chen and Xu (2006), English may also meet these requirements, i.e., in situations where an L* pitch accent on a stressed syllable is followed by a number of unstressed syllables (Pierrehumbert, 1980). Erickson et al. (1995) have found that L* in English has the highest sternohyoid activity compared to other pitch accents. It is thus possible that post-low bouncing also occurs in these sequences in English, which could explain the constant valley-to-peak interval reported by Pierrehumbert (1980) and discussed in Chen and Xu (2006).

Two caveats need to be mentioned. First, acoustic data have been used in this study to infer a hypothetical articulatory mechanism. Although such practice is not uncommon in the study of F_0, formant or duration (Lehiste and Peterson, 1961; Linblom, 1963; Moon and Linblom, 1994; Xu and Sun, 2002; Xu, 2009), ultimately it is desirable to corroborate the acoustic data with articulatory evidence. Further studies of this phenomenon at the articulatory level are therefore needed. Second, our informal listening during the course of the study clearly suggested the need to address post-low bouncing in modeling and the advantage of simulating it with the strategy used in the study. However, formal perceptual tests have not yet been conducted. It therefore awaits future research to conduct perceptual evaluations of the present modeling approach.

VI. CONCLUSION

Post-low bouncing is a subtle phenomenon in speech prosody that has only recently been recognized as an isolatable effect (Chen and Xu, 2006; Gu and Lee, 2009). But its understanding is crucial for explaining such long-known phenomena as the rising contour of the neutral tone after the Low tone in Mandarin (Chao, 1968) or possibly the F_0 peak after a low pitch accent in English (Pierrehumbert, 1980). The present study investigated post-low bouncing by means of multifactor acoustic analysis and computational modeling. The results of this study provided evidence in support of the balance-perturbation hypothesis, which describes post-low bouncing as a temporary loss of balance in the antagonistic laryngeal control right after the production of a very low pitch (Chen and Xu, 2006). In addition, the modeling results demonstrate the ability of the qTA model, which is based on the idea of balanced antagonistic laryngeal control (Prom-on et al., 2009), to simulate not only normal contextual tonal variations, but also post-low bouncing after the addition of a very simple adjustment in the initial state of the first post-low syllable. It will be interesting to explore the applicability of this approach to other languages.

ACKNOWLEDGMENT

The authors would like to thank the Royal Society and the Royal Academy of Engineering for financial support through the Newton International Fellowship Scheme, and the Thai Research Fund through the TRF-CHE Research Grant for New Scholar (Grant No. MRG5380038 to S.P.). This work was also supported in part by the Economic and Social Research Council (Grant No. PTA-026-27-2480-A to F.L.).
