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Abstract 
Prosody is an essential aspect of speech, as it carries both lexical and non-lexical 

information. A conventional approach to studying speech prosody is to collect and 

analyze F0 data based on certain hypotheses and then develop a theory based on the 

observation, which constitutes the final conclusion of the study. This process is 

however far from complete, as the developed theory has not been actually tested for 

its ability to predict actual acoustic data. This paper presents PENTATrainer2, a 

prosody modeling tool based on the parallel encoding and target approximation 

(PENTA) framework. PENTATrainer2 can facilitate prosody studies in testing 

hypotheses and theories using an automatic analysis-by-synthesis and stochastic 

learning algorithm. Users can flexibly design the annotation scheme based on their 

own hypotheses and then find out whether the hypothesized categories can lead to 

accurate synthetic F0 contours. PENTATrainer2 consists of three main components: 

multi-layer annotation, target approximation and stochastic optimization. First, 

acoustic data are annotated in parallel layers, each of which corresponds to a 

functional category that may affect F0 contours. These layers are then compiled into 

unique functional combinations. The combinations represent underlying invariant 

representations of communicative functions and their interaction with each other. 

Target approximation parameters of each combination are then learned through 

analysis-by-synthesis and stochastic optimization. Pilot tests of PENTATrainer2 

conducted on Thai, Mandarin and English demonstrate not only high accuracy of the 

synthesized F0 contours but also distinctive contrasts in the distribution of pitch 

target parameters. This indicates the effectiveness of PENTATrainer2 in modeling 

speech prosody. 

Keywords: prosody modeling, analysis-by-synthesis, parallel encoding, target 

approximation, stochastic optimization. 

Introduction 
Speech prosody conveys multiple levels of information simultaneously, in 

terms of both linguistic contrasts such as tone, focus and modality, and 

paralinguistic variations related to emotion, mood and attitude. Usually, the 

method of studying prosody is to try to link such information to changes in 

surface acoustics by means of statistical analysis. A conclusion drawn from 

the results was then used to formulate a theory about prosody. This process 

is however far from complete, as the developed theory has not been actually 

tested for its ability to predict actual acoustic data. This is a crucial step as it 

makes the formulated theory testable. A major reason for the general absence 

of this step is the lack of quantitative tools that allow speech scientists to 
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incorporate their empirical findings into quantitative modeling. The present 

paper reports the development of PENTATrainer2 as one of such tools, 

which can automatically learn parameters of user-defined prosodic 

categories and synthesize F0 contours according to the learned parameters.   

PENTATrainer2 

Modeling Method 

The general scheme of PENTAtrainer2 is based on the notion that speech 

prosody conveys information about multiple communicative functions in 

parallel (Xu, 2005). This notion is implemented in PENTAtrainer2 in its 

annotation scheme. Figure 1 shows an example of parallel annotation 

scheme of three communicative functions of English intonation, including 

Stress, Focus, and Modality. Each function was annotated independently as a 

parallel layer. Boundaries on each layer were marked according to the time 

span of that function.  

 

 
 

Figure 1. An example of conversion process from parallel annotations to 

essential functional combinations. 

 

These parallel layers of communicative functions can also be considered as 

a sequence of functional combination categories. By projecting the 

boundaries from the layer with the smallest temporal unit (i.e. largest 

number of intervals) to other layers, we can obtain a sequence of functional 

combinations associating with each interval. Summarizing the unique 
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combinations of all utterances in the corpus together results in a set of 

functional combinations that essentially describe the prosody of that corpus. 

Each interval, which is temporally divided from the functional 

combinations, corresponds to an F0 movement that approaches one pitch 

target. This movement is quantitatively implemented in the quantitative 

Target Approximation (qTA) model (Prom-on et al., 2009). Figure 2 

illustrates an example of F0 movements and their corresponding pitch targets 

in the qTA model. In qTA, F0 asymptotically approaches consecutive pitch 

targets and its dynamic states are transferred from one target approximation 

interval to the next at the boundary. This transfer of dynamic states, which 

include F0 level, velocity, and acceleration, allows the process to carryover 

the momentum of the previous syllable, thus resulting in the observed 

carryover coarticulation. F0 movement thus contains two components: forced 

response and transient response. Forced response is a pitch target, which is 

the goal driving the target approximation process, while transient response is 

the F0 transition from the initial F0 dynamic state to the pitch target. 

 

 
Figure 2. Illustration of the target approximation process (Xu and Wang, 

2001; Prom-on et al., 2009). 

 

In qTA, there are three model parameters controlling the F0 movement of 

each interval, including target slope (m), target height (b), and strength of 

target approximation (λ). m and b specify the form of the pitch target and λ 

indicates how rapidly a pitch target is approached. 

After the functional combinations were determined, their parameters were 

estimated using the analysis-by-synthesis strategy and the simulated 

annealing algorithm (Kirkpatrick et al., 1983). Parameters of essential 

combinations were randomly initialized. They were then randomly modified 

and tested to determine whether to accept or reject the proposed modification 

depending on the annealing temperature of the algorithm. The temperature is 
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initially set to a high value and then gradually reduced as the procedure is 

repeated. This allows the solution to converge to the global optimum over 

the iterations. Since the final optimized parameters may differ slightly, the 

learning process should be repeated a number of times to obtain more stable 

solution. The median of the parameters were then calculated across 

repetitions for each functional category of each speaker. 

Software 

PENTATrainer2 contains three computational tools. Figure 3 shows the 

workflow of PENTATrainer2. First, users need to manually define the 

annotation scheme using the Annotation tool. Next, parameters are 

automatically optimized using the Learning tool. Users can then use the 

Synthesis tool to synthesize F0 contours based on the optimized parameters 

and compare them to the original contours.  
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Figure 3. PENTATrainer2’s workflow for prosody modeling 

Pilot Tests 

Corpora 

We conducted pilot tests of PENTATrainer2 on Thai, Mandarin and English 

corpora. Table 1 shows the detail of the corpora. For full details of each 

corpus, please refer to prior publications (Thai: Prom-on and Xu, 2012; 

Mandarin: Prom-on et al., 2011; English: Liu and Xu, 2007). Each corpus 

was annotated separately according to the prosodic factors of that study. 
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Parameters were estimated according to the method described in Section 2.1. 

Root-mean-square error (RMSE) and Pearson’s correlation coefficient were 

used to measure the synthesis accuracy between the synthesized and original 

F0 contours. 

 

Table 1. Corpus descriptions 

Corpora Number of Utterances (Subjects) Factors 

Thai 2500 (3 males, 2 females) Tone, Vowel Length 

Mandarin 1280 (4 males, 4 females) Tone, Focus, Modality 

English 960 (2 males, 3 females) Stress, Focus, Modality 

Results 

Figure 4 shows examples of synthesized F0 contours of all three languages as 

compared to the original F0 contours. As can be seen, the F0 contours 

synthesized with learned categorical pitch targets are very close to the 

original ones. Table 2 shows the overall synthesis accuracies of all three 

corpora. These accuracies are better than when parameters were estimated 

locally (Prom-on et al., 2009, 2011). High correlations and relatively low 

RMSEs can be seen across languages. Such high synthesis accuracies 

provide support for the user-defined hypothesized functional categories. 

These results also indicate the effectiveness and the generalizability of 

PENTATrainer2 to different languages. 

 

Table 2. Means and standard errors of RMSE and correlation of each corpus. 

Parameters were learned according to the factors shown in Table 1. 

Corpora Number of 

Parameters 

RMSE (semitone) Correlation 

Thai 10/subject 0.78 ± 0.05 0.889 ± 0.012 

Mandarin 28/subject 2.16 ± 0.22 0.903 ± 0.008 

English 26/subject 2.07 ± 0.23 0.836 ± 0.019 

 

After obtaining the parameters that yield the best synthesis accuracy, the 

next step in a general modeling study is to analyze the distribution of 

estimated parameters to determine whether there is any difference between 

categories. This can lead to a better understanding of the underlying 

representations of that prosodic phenomenon. To demonstrate this, we show 

here the parameter distributions of Thai tones and their related statistical 

analyses.  
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Figure 4. Examples of synthesized (red dotted line) compared to the original 

(blue dashed line) F0 contours. The short dashed green lines represent the 

learned categorical pitch targets with which the synthetic F0 contours were 

generated. 

 

Thai has five lexical tones, including Mid (M), Low (L), Falling (F), High 

(H) and Rising (R), and two lexical vowel lengths, short and long. Previous 

acoustic analysis has shown highly variable F0 contours of these tones in 

connected speech depending on both contexts and other lexical factors such 

as vowel length. In particular, there are both carryover and anticipatory 

effects in contextual tonal variations (Gandour et al., 1992; Potisuk et al., 

1997).  There are also interactions between tone and vowel length (Gandour, 

1977), with the shorter duration associated with higher F0 value. But it is 

unknown whether these variations reflect changes in the underlying tonal 

representation. In this study, we explored these issues by making use of 

PENTATrainer2’s ability to learn underlying representations. Tone and 

vowel length were labeled without contextual information before the training 

process. Figure 5 shows the distributions of pitch target parameters learned 

using PENTATrainer2. Repeated measures ANOVAs showed that the 
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parameters were significantly different depending on the tonal categories (m: 

F(4,49) = 56.81, p < 0.001; b: F(4,49) = 71.07, p < 0.001; λ: F(4,49) = 9.23, 

p < 0.001). This indicates that the variability within tone groups is 

significantly less than that between groups. This also indicates that despite 

the variability in surface acoustics, learned underlying tonal representations 

are consistent and can accurately simulate F0 contours that varied depending 

on the tonal contexts.  

Comparing between different vowel lengths, target slope and strength were 

not significantly different, but target height of M tone was higher in short 

vowels than in long vowels (F(1,49) = 5.37, p = 0.026). This difference 

might suggest that M has two tonal targets so as to enhance the vowel length 

contrast similar to what is found in Finnish (Vainio et al., 2010). However, 

we cannot reach a clear conclusion on this because the difference in the 

learned target height could also be due to other factors. For example, it is 

possible that the height difference is because M has a weak strength, just like 

the Mandarin neutral tone (Chen and Xu, 2006). But the estimation of such 

weak strength requires the presence of consecutive M tones (Prom-on et al., 

2012), which is lacking in the current corpus. This issue therefore has to be 

resolved by future studies.  

 

 
Figure 5. Parameter distributions of Thai tones (Prom-on and Xu, 2012). 

Conclusion 
This paper presents PENTATrainer2 and its workflow for prosody modeling. 

PENTATrainer2 can learn underlying representations of communicative 

functions in the form of pitch target parameters, and use them to accurately 

synthesize F0 contours. Users can flexibly design hypothesized functional 

categories and test whether they lead to an improvement in synthesis 

accuracy. This allows speech scientists to objectively and quantitatively 

investigate speech prosody based on communicative functions. The pilot test 

results have provided initial indication that PENTATrainer2 works 

effectively across languages. Both high synthesis quality and its ability to 

estimate underlying representations indicate the effectiveness of 

PENTATrainer2 in prosody modeling. The integration of the analysis-by-



S. Prom-on, Y.Xu 100 

synthesis approach and the stochastic optimization also allows users to 

explore theoretical issues such as underlying representations of tonal and 

intonational units. 
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