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Abstract
In  this  paper  we report  results of applying the quantitative 
target approximation model (qTA) [7] to simulate function-
specific F0 contours in Mandarin. The qTA model is based on 
a set of assumptions about the biophysical and neural control 
mechanisms of pitch production. To simulate F0 contours for 
tone and focus, we extracted qTA parameters that are tone-
specific  and  adjustment  parameters  that  are  focus-specific. 
The accuracy and effectiveness of this approach were tested 
through  a  series  of  synthesis  experiments.  In  the  baseline 
case,  the  results  were  fair  with  just  tonal  specifications. 
Further experiments showed additional improvements when 
the parameters became more functions-specific.

1. Introduction
Speech  conveys  communicative  meanings  through  sounds 
generated  by  the  human  vocal  apparatus.  This  means  that 
effective  prosodic  modeling  can  be  achieved  by 
simultaneously  simulating  the  articulatory  process  of  F0 

production  and  the  process  of  encoding  communicative 
meanings. The articulatory process has been proposed as one 
of syllable-synchronized  sequential target approximation (the 
TA model) [11], and the encoding process has been proposed 
as one of parallel control of the TA parameters by separate 
communicative functions (the PENTA model) [9]. To test the 
understanding represented by the two conceptual models, we 
developed the qTA model [7], a quantitative implementation 
of the TA model, whose parameters are suitable for encoding 
communicative functions. In this paper we report the results 
of our testing of the model.  We will  discuss,  in particular, 
how the model may help to achieve three objectives that, we 
believe,  are  critical  for  any  robust  speech  modeling:  (a) 
simulating  articulatory  processes  that  are  biophysically 
plausible, (b) automatic extraction of model parameters from 
natural speech, and (c) generating acoustic forms that convey 
specific communicative functions. 

2. The qTA model for simulating biophysically 
plausible processes

The  qTA  model  is  the  quantitative  version  of  the  Target 
Approximation (TA) model [11] which theoretically outlines 
the relationship between surface F0 contours and underlying 
articulatory  mechanisms.  The  qTA  model  is  based  on  a 
number  of  biophysical  assumptions  that  constrain  the  F0 

implementation process. In this section, we will summarize 
the  major  assumptions  and the  mathematical  framework of 
the model. More  discussions on the model assumption can be 
found in [7]. 

2.1. Assumptions

The  qTA model  assumes  that  F0 is  directly  related  to  the 
tension of the vocal folds. This tension is controlled by two 
antagonistic muscle forces generated by the contraction of the 
cricothyroid,  the  thyroarytenoid  and  the  strap  muscles. 
Furthermore,  since  there  is  no  observed  oscillation  in  F0 
movements,  the  tension  control  mechanism  can  be 
represented by an overdamped second order system.

As  shown  in  Fig.  1,  the  TA  model  [11]  describes  F0 

trajectories  as  asymptotic  movements  toward  successive 
targets.  Because  these  are  goal-oriented  movements,  they 
have to be controlled by a feedback mechanism to ensure that 
the  movement  reaches  the  desired  goal.  Hence,  the  qTA 
model  is  built  as  a  time-delayed  feedback  control  of  an 
overdamped second-order system.

The goal of each F0 movement takes the forms of either a 
static or a dynamic linear target as illustrated in Fig. 1. Each 
target can be represented by two parameters, slope and height. 
For  example,  in  Mandarin,  H,  L,  and  N  tones  can  be 
represented by static targets of different heights while R and 
L tones by dynamic targets with different slopes and heights.  

Also depicted in Fig. 1, the implementation of each tone 
is assumed to be synchronous with the syllable [11]. This also 
leads to the further assumption that the state of articulation, in 
terms  of  F0 level,  velocity,  and  acceleration,  is  transferred 
from  one  syllable  to  the  next,  resulting  in  a  smooth  F0 

trajectory  despite  abrupt  target  shifts  across  syllable 
boundaries.

2.2. Mathematical Framework

Fig. 2 shows a block diagram of the qTA model. The target 
can be represented by a simple linear function.

x t =mtb (1)

where  m and  b denote  the  slope  and  height  of  the  target, 
respectively.  The  behavior  of  the  second-order  system  is 

Figure 1: An illustration of the theoretical pitch target 
approximation model proposed in [9]



specified by two parameters,  ζ and ωn, namely, the damping 
ratio and the undamped natural frequency. ζ characterizes the 
responsiveness of the tension control. ωn indicates the amount 
of effort used to implement the target. The double amplifier is 
used to compensate the halving reduction of the feedback so 
that the forced response of the system is the pitch target. The 
time-delayed  feedback  is  approximated  by  the  first-order 
Padé approximant which, as a result, increases the order of 
the overall system by one. Thus, the complete response of the 
model is in the third-order form:

F0 t =c1 er1 tc2 er 2 tc3 er3 tmtb (2)

where r1, r2, and r3, are the roots of the homogeneous equation 
of the total differential equation. The coefficients c1, c2, and c3 

are solved from the initial conditions which include F0 level, 
velocity, and acceleration.

Target, defined by Eq. (1), is the forcing function of the 
system,  and  is  ideally  reached  at  the  end  of  the  syllable. 
Given  specific  syllable  duration  and  the  amount  of  effort 
represented by ωn, however, the target may not be reached. 

Finally,  the  sequential  target  approximation  of  the  TA 
model implies another critical mechanism of F0 realization by 
the qTA model. As mentioned earlier, the coefficients in Eq. 
(2) are calculated from the initial conditions. Except in the 
first syllable, these initial conditions are transferred from the 
final state of the previous syllable:

F 00 i=F 0t i−1
final i−1

F 0
' 0 i=F 0

' t i−1
final i−1

F 0
' ' 0 i=F 0

' ' ti−1
final i−1

(3)

where  the  conditions  with  subscription  i denote  the  initial 
conditions  of  the  ith syllable of that sentence.  This transfer 
mechanism reflects the propagation of the laryngeal state and 
its dynamics  across the syllable boundary [9].

3. Automatic Parameter Extraction
Like  what  has  been  done  previously  [1-3],  the  parameter 
extraction was done with an automatic analysis-by-synthesis 
optimization algorithm. This algorithm varies the parameter 
values in the specified search space and obtains the parameter 
set with the lowest sum square error. Also, there is a need to 
specify  appropriate  search  spaces,  without  which  the 
optimization process can be easily stuck at a local minimum.

Thanks to the biophysical assumptions just discussed, we 
adopted principled ways to restrict the degrees of freedom of 
the  system,  which  reduces  the  difficulty  in  parameter 
extraction.  Unlike in previous efforts, various restriction are 
imposed  on  the  optimization  process.  First,  ζ is  arbitrarily 
fixed at a constant value in an overdamping range (ζ > 1), e.g. 
1.5 in our tests. Consequently, the effort control parameter, 
ωn,  is  mathematically  limited by  Td,  which is  set  to  5  ms. 
Although  the  time  delay  of  the  feedback loop  may be too 
small for the auditory perception, it is possible that this small 
time delay comes from the forward model within the brain 
[5]. Second, following the target assumption, we specified the 
search space for m to depend on the tonal category: zero for 
H, L, and N, positive for R, and negative for F. Third, also 
based  on  the  target   assumption,  we  restricted  the  search 
space of b to center around the final F0 level of each syllable 
with a small vertical range, because that is where surface F0 

gets closest to the target.

4. Deriving function-specific parameters
The PENTA model [9] assumes that speech prosody aims to 
convey communicative  functions  encoded in  parallel  rather 
than  to  manifest  autonomous  phonological  representations 
[6]. Following this assumption, effective modeling of speech 
prosody  can  be  achieved  only  if  specific  communicative 
functions are simulated. The present study works toward this 
objective  by  trying  to  derive  qTA  parameters  that  are 
function-specific. 

Two  functions  are  being  simulated,  lexical  tone  and 
focus. Tone specific parameters are derived by averaging the 
values  of  m,  b and  ωn across  all  individual occurrences of 
each  of  the  four  Mandarin  tones,  H,  R,  L  and  F.  Focus 
specific  parameters  are  derived  based  on  the  findings  of 
[10,12]. The sentences are divided into the following regions: 
pre-focus, on-focus, post-focus and final-focus. Final-focus is 
treated separately based on the findings of [10,12] as well as 
[4], which show that a conflict with the interrogative function 
forces  final  focus  to  be  realized  with  severe  compromise. 
Finally, for a sentence with no narrow focus, its entirety is 
treated as pre-focus. The parameters extracted from all focus 
regions are measured relatively to the average values of the 
pre-focus regions. For each region the averaged adjustment 
parameters are calculated as follows,

m = 1
N ∑

i=1

N

mi−m pre

b = 1
N ∑

i=1

N

bi−b pre

n=
1
N ∑i=1

N

n , i− n, pre

(4)

where  Δm,  Δb,  and  Δωn are  the  averaged  adjustment 
parameters  for  target  slope,  target  height,  and  natural 
frequency,  respectively.  N denotes  the  total  number  of 
syllables  within  that  region.  m pre ,bpre ,and n , pre  are  the 
means of each parameter from the pre-focus region. 

5. Testing and Results
We  tested  the  effectiveness  of  the  new  approach  on  the 
dataset  obtained  in  [12].  We  did  the  testing  by  iteratively 
adding  more  functional  specifications  while  reducing  the 
amount of direct resynthesis.

5.1. Dataset and method

The dataset consists of 3840 Mandarin five-syllable utterances 
by 4 male and 4 female speakers. In each utterance, the first 
and last two syllables form disyllabic words while the third 
syllable is a monosyllabic word. Each position has different 

2-nd order 
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-

Figure 2: A block diagram of the quantitative target  
approximation model proposed in [7].



tones, and each sentence has four different focus conditions: 
no focus, initial focus, medial focus, and final focus. For more 
details on the dataset, please refer to [12].

Three tests were conducted. The first was to examine the 
capability of the model to simulate tone-specific F0 contours. 
The  second  test  was  to  examine  how well  the  model  can 
simulate focus-specific F0 patterns. And the third test aimed to 
examine  the  context  dependency  of  the  tone  and  focus 
functions. This was done by additionally specifying either the 
preceding or the following tonal context.

The tests were conducted separately for male and female 
speakers  due  to  the  difference  in  pitch  range.  The  test 
candidate was circularly selected from the dataset, while the 
data of the rest of the speakers formed the training set. Using 
this selection scheme, the test  repeated four times for each 
gender, thus maximizing the chances of detecting the worst 
error. The training phase began with automatically extracting 
the parameters from each utterance. The parameter were then 
averaged according to the functions to be tested and treated as 
the function-specific parameters in the testing phase. During 
the  testing  phase  the  root  mean  square  error  (rmse)  and 
correlation coefficient (r) for each sentence were measured.

5.2.Results 

Table 1 and 2 show the averaged tone-specific parameters 
and the corresponding focus-specific adjustment parameters, 
respectively. Table 1 shows the parameters learned from the 
pre-focus  region,  which  also  include  all  the  words  in 
sentences with no narrow focus, as explained earlier. The  b 
values in Table 1 are measured relative to the initial F0 value 
of  the  sentence.  The  parameters  in  Table  1  show  clearly 
distinct target values for the tones for both male and female 
speakers. They agree well with the tonal targets hypothesized 
in [12]. 

Table  2  shows the  averaged  adjustment  parameters  for 
different  focus  regions  expressed  as  differences  from  the 
parameter values in the pre-focus region shown in Table 1. 
These differences are consistent with the findings of [10,12]. 
Both m and b in the on-focus region were enhanced such that 
b is higher for H tone and lower for L tone while m is higher 
for R tone and lower for F tone. In contrast to the on-focus 

Table 1: The pre-focus parameters. 

Tone Male Female
m b ωn m b ωn

H 0 6 21 0 -9 21
R 250 -12 18 391 -41 17
L 0 -38 20 0 -117 14
F -474 -11 21 -710 -45 20

Table 2: The adjustment parameters of on-focus, post-
focus, and final-focus regions.

Region Tone Male Female
Δm Δb Δωn Δm Δb Δωn

on-focus

H 0 21 0.18 0 36 -0.76
R 229 6 0.33 354 4 -1.88
L 0 -12 0.96 0 -44 -1.18
F -226 10 -1.69 -539 -3 -3.17

post-focus

H 0 -38 -2.89 0 -72 -3.68
R -25 -27 -0.09 -39 -61 2.62
L 0 -18 -3.07 0 -48 -2.63
F 37 -18 -1.57 31 -41 -0.78

final-focus H 0 -4 -3.38 0 4 -5.27
L 0 -11 -3.42 0 -29 -2.68
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Figure 4: The testing results, averaged (a) rmse and (b) 
correlation coefficient, for successively imposing more 
functions to the qTA model. The white and black bars 
represent the test results for each gender, male and 

female, respectively.
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Figure 3: The comparisons between the original F0 (thin line) and synthesized F0 (thick line) of the tone sequence HRFHH with (a,e) 
no focus, (b,f) initial focus, (c,g) medial focus, and (d,h) final focus. (a,b,c,d) are the results from the lowest error sentences while  

(e,f,g,h) are the results from the highest error sentences. 
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region,  the  parameter  adjustment  values  in  the  post-focus 
region  are  compressed.  In  the  final-focus  region,  the  b 
adjustments (Δb)  are very small for H tone but slightly larger 
for L tone. Interestingly, the ωn adjustments in the final-focus 
region are negative for both males and females. This seems to 
reflect the minimum target adjustments with clearly increased 
syllable duration in the final position [4].

Fig.  3  shows  examples  of  comparisons  between  the 
original  and  synthesized  F0 with  different  focus  conditions 
using  the  tone-specific  parameters  and  their  focus-specific 
adjustments from Table 1 and 2, respectively. The samples 
were chosen from cases with the best (top) and  worst error 
rates (bottom). As we can see from the top plots, the model is 
able to predict both tones and focus well. The bottom plots 
show  that  even  in  the  worse  cases  the  shape  of  the  F0 

trajectories are well simulated, while the errors mainly come 
from differences in overall pitch level, which are due to errors 
in measuring the initial values of the test sentences.

Fig.  4  shows  the  error  and  correlation  results  which 
consist  of  averaged  rmse and  r across  the  dataset.  As 
expected,  as  more  functions  were  specified,  the  error  rates 
successively decreased and the correlation increased for both 
male/female  speakers.  Overall,  rmse and  r improved  from 
20.02/35.00 and 0.777/0.753 with only tonal specifications to 
16.18/25.96  and  0.802/0.770  with  focus-specific  and 
following-tone-specific adjustments.

The  results  from  the  context  dependency  test  shows 
another important characteristic of the qTA model. From Fig. 
4,  when  the  preceding  context  was  included,  there  are  no 
significant improvement in accuracy. This indicates that the 
qTA model  already  has  the  intrinsic  ability  to  capture  the 
carry-over effect. Meanwhile, including the following context 
considerably  reduces  the  error  rate.  This  is  because  the 
current  version  of  the  model  does  not  yet  include  a 
mechanism for simulating the anticipatory dissimilation effect 
[12], which makes b of H tone higher when it is followed by 
L tone than by other tones.

6. Discussion and conclusion
The present study has made considerable progress toward the 
three objectives that we believe are critical for robust speech 
modeling:  (a)  simulating  articulatory  processes  that  are 
biophysically  plausible,  (b)  automatic  extraction  of  model 
parameters from natural speech, and (c) generating acoustic 
forms that convey specific communicative functions. For the 
first objective, we developed qTA [7], a quantitative version 
of the TA model [11], that implements a feedback-controlled 
second-order  system,  which  generates  F0 contours  through 
syllable-synchronized sequential target approximation. Being 
based  on  a  set  of  assumptions  about  the  biophysical 
mechanisms and the neuromuscular control of goal-oriented 
motor  movements,  the  model  is  highly  constrained.  Only 
three  parameters,  all  functionally  meaningful,  need  to  be 
estimated from natural speech. This has made it possible for 
us to achieve automatic extraction of model parameters that 
are  applicable  to  not  only  the  original  but  also  other 
sentences. Finally, to generate F0 contours that are proper for 
specific communicative functions, we extracted tone-specific 
and focus-specific parameters from a natural speech dataset 
based  on  patterns  found  in  [4,10,12].  The  testing  results 
showed that even when applied to speakers not included in 
the training, the error rates were still comparable with those 
of previous studies [1-3,6,8].  These results demonstrate the 

effectiveness  of  the  qTA  model  in  simulating  function-
specific F0 contours in speech.

Note that there are many different levels of biophysical 
processes. What we have tried to do through the development 
of the qTA model is to identify a level where the link between 
articulatory control and communicative functions is the most 
direct. The integrated force that drives target approximation 
can be certainly decomposed into individual muscle forces, as 
have  been  the  goal  of  [1].  The  advantage  of  the  present 
approach  can  be  seen  in  the  finding  that  the  extracted 
parameters  were  applicable  to  both  original  and  novel 
sentences  and  even  across  speakers.  This  suggests  that 
prosodic  modeling  can  be  done  through  simulation  of  the 
encoding process at the articulatory and functional level. 

At  the  functional  level,  the  function-specific  parameter 
adjustments we have derived for focus can be considered as 
implementations  of  the  encoding  schemes  in  the  PENTA 
model.  We have yet  to  work out  a  quantitative system for 
representing different  communicative functions in  a unified 
way,  however.  Such a system can be developed only after 
many more communicative functions have been tested. Also, 
the robustness of our simulation needs to be further verified 
by perceptual tests, which we are currently planning to do.
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