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Abstract 
This paper reports preliminary results of our effort to address 
the acoustic-to-articulatory inversion problem. We tested an 
approach that simulates speech production acquisition as a 
distal learning task, with acoustic signals of natural utterances 
in the form of MFCC as input, VocalTractLab — a 3D 
articulatory synthesizer controlled by target approximation 
models as the learner, and stochastic gradient descent as the 
training method. The approach was tested on a number of 
natural utterances, and the results were highly encouraging. 
Index Terms: articulatory synthesis, embodiment constraint, 
target approximation, acoustic-to-articulatory inversion 

1. Introduction 
Speaking is one of the most complex human skills. To produce 
a normal speech utterance as simple as “Good morning”, a 
person has to generate a quick succession of highly variable 
articulatory movements, each involving simultaneous actions 
of multiple articulators [1,2], and all of them coordinated in 
such a way that multiple layers of meanings are 
simultaneously encoded [3]. A human child, however, is able 
to acquire this highly intricate skill without formal 
instructions, and without direct observation of the articulators 
of the skilled speakers other than the visible ones such as the 
lips. The only sure input the child receives is the acoustics of 
the speech utterances. How, then, can a child learn to control 
her own articulators to produce speech in largely the same way 
as the model speakers? The present paper reports results of our 
preliminary effort to answer this question, which is also 
known as the acoustic-to-articulatory inversion problem [4-
12]. 

Different approaches have been proposed to achieve 
acoustic-to-articulatory inversion [4-12]. These methods rely 
on either explicit mapping between acoustic and articulatory 
data [4-10], or optimization of articulatory synthesis model 
parameters [11-12]. The latter is an analysis-by-synthesis 
strategy, which iteratively adjusts parameters of a forward 
model to minimize the cost function. This strategy, with the 
implementation of forward models and supervised learning, 
has the potential of achieving the closest simulation of speech 
learning behavior.  

In this study we tested a new approach to acoustic-to-
articulatory inversion by simulating speech production 
acquisition as a distal learning task [13], with acoustic signals 
of natural utterances in the form of Mel-Frequency Cepstral 
Coefficients (MFCC) as sole input, VocalTractLab — a 3D 
articulatory synthesizer controlled by target approximation 
models [14-16] as the learner, and an iterative analysis-by-

synthesis optimization as the training regimen. We have tested 
this approach on a number of natural utterances, and have seen 
encouraging results. 

2. Method 
Figure 1 is a schematic diagram of our method, which consists 
of VocalTractLab, a target approximation model, analysis-by-
synthesis optimization and embodiment constraints. The 
following sections will go into details of each component. 

2.1. The articulatory synthesizer 

VocalTractLab is an articulatory synthesizer capable of 
generating a full range of speech sounds by controlling vocal 
tract shapes, aerodynamics and voice quality [14-16]. It 
consists of a detailed 3D model of the vocal tract that can be 
configured to fit the anatomy of any specific speaker and 
simulate growth, an advanced self-oscillating model of the 
vocal folds and an efficient method for the aeroacoustic 
simulation of the speech signal. The acoustic simulation 
method of the model is both stable and accurate and allows the 
synthesis of not only voiced sounds, but also aspiration and 
frication noise for fricatives and plosives. 

 
Figure 1: Workflow diagram of the current 
approach. 
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2.2. Sequential target approximation 

The control of the dynamics of VocalTractLab is based on the 
concept of sequential target approximation (TA), which has 
previously been implemented in various forms, as reviewed in 
[15]. TA assumes that continuous articulatory trajectories are 
composed of successive, non-overlapping movements, each 
approaching an underlying target. TA thus shares some 
similarities with the task dynamic model [17], but differs from 
it in having an explicit state transfer mechanism, which 
enables the simulation of extensive carryover influence, target 
undershoot, smooth transitions across movement boundaries, 
and reduced degrees of freedom due to absence of movement 
overlap. The TA model implemented in VocalTractLab is 
illustrated in Figure 2.  

A key advantage of TA is that it allows the mapping of 
variant surface trajectories due to phonetic context, stress, 
speech rate, etc., to a single invariant target [2,15,18], which 
simplifies the problem of inverse mapping from acoustics to 
articulation. This different from the DIVA framework that 
defines targets as context-sensitive regions rather than 
invariant points [19, 20]. To a child trying to acquire adult-like 
speech, this means that for each phonetic unit a single target or 
a single compound target can be learned from its many 
context-sensitive realizations. The feasibility of this approach 
has been seen in our recent work on F0 modeling [21-23]. A 
critical strategy in the present implementation of the TA model 
is an unconventional segmentation method. That is, a 
segmental interval is defined as the time period during which 
its canonical pattern is unidirectionally approached. As a 
result, the point where a segment best approximates its 
canonical pattern is marked as its offset rather than center, as 
shown in all the figures with segmental annotations in this 
paper. 

2.3. Optimization via analysis-by-synthesis 

The distal learning in the present study is achieved by 
representing surface acoustics of both natural and synthetic 
speech with MFCC and using the difference between the two 
as errors in the optimization of the articulatory targets. Each 
set of articulatory targets is hosted by a segmental interval, 
whose boundaries are manually defined before optimization. 
For each segment, articulatory targets in the form of vocal 
tract shapes are optimized iteratively to minimize the total sum 
of square errors of MFCC between original and synthesized 
sounds, which can be described as follows: 

 E = cij − ĉij( )2
j=1

m

∑
i=1

n

∑  (1) 

Here, n is the number of time frames, m is the number of 
MFCC coefficients, and cij and ĉij are the jth cepstral 
coefficient of the ith frame in the natural and synthesized 
utterances, respectively. 

For each segmental interval, articulatory target parameters 
associated with a vocal tract shape are randomly initialized. 
There are 23 vocal tract parameters in total [14], including 
HX, HY (Horz. and vert. hyoid positions), JX (Horz. jaw 
position), JA(Jaw angle), LP (Lip protrusion), LD (Vert. lip 
distance), VS (Velum shape), VO (Velum opening), TTX, 
TTY (Horz. and vert. tongue tip positions), TBX, TBY (Horz. 
and vert. tongue blade positions), TCX, TCY (Horz. and vert. 
tongue body positions), TRX, TRY (Horz. and vert. tongue 
root positions), TS1 – TS4 (Tongue side elevation at 4 

positions), MA1 (Min. area, tongue body), MA2 (Min. area, 
tongue tip), MA3 (Min. area ,teeth-lips) 

For each vocal tract shape, its parameters are iteratively 
adjusted to minimize the error function using a stochastic 
gradient method. Only adjustments that result in a lower error 
than the previous trial are accepted. This process was repeated 
until either the total error converged, or an upper limit of 
iterations was reached. 

2.4. Embodiment constraints 

Some articulatory parameters may not be entirely independent 
of others. For examples, the tongue parameters were found to 
be positively correlated in articulatory movements for certain 
places of articulation such as alveolar, palatal and velar places 
[24]. This relationship suggests that there should be a 
constraint weakly tying these parameters together so that the 
changes in one parameter also affect others according to the 
physiological locations. This embodiment constraint will 
therefore make the parameter adjustment in the optimization 
process more realistic. In this paper, we modeled this 
constraint by co-adjusting the articulators located near the 
articulator under adjustment. For example, whenever the 
tongue blade parameters (TBX/TBY) were adjusted, those of 
tongue tip and tongue body (TTX/TTY, TCX/TCY) were also 
modified by a small amount (20%) relative to the main 
adjustment. 

3. Results 

3.1. Vowel coarticulation 

Figure 3 shows spectrograms of a vowel sequence /a: i: u: e: 
o:/ produced by a male speaker at a normal speed and that of a 
synthetic one generated with optimized articulatory targets. 
Note that each vowel is annotated to terminate at a point where 
its target is best achieved, so that the formants in each segment 
move unidirectionally toward an ideal pattern. Smooth 
formant transitions from one vowel to another can be observed 
in the lower panel, just as in the upper panel. The similarity 
between the two spectrograms indicates a close approximation 
of the estimated articulatory targets (Pearson’s correlation: ρF1 
= 0.90, ρF2 = 0.96, ρF3 = 0.52). The low correlation of F3 is 
due to the lack of F3 raising in /i/ of the synthetic utterance. 
The smooth synthetic formant movements are thanks to the 

 

Figure 2: Target approximation model for controlling 
articulatory movements.  
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TA dynamics of all the articulators involved. Note, however, 
that the shuffling of formants in the original speech during a: 
and i: transition is not simulated in the synthetic speech. Such 
formant shuffling being speaker-specific and inaudible, as 
explained in some detail by Stevens [26], is not the simulation 
aim of our training process. Perceptual inspections by the 
authors indicated that the synthetic vowels sounded close to 
the original, except that /a:/ sounded a bit schwa-like as the 
low F1 also suggests. This is because its duration is the 
shortest and it contains less articulatory movement compared 
to other vowels, which possibly make it less important in 
terms of its contribution to the total error. 

3.2. Implicit speaker normalization 

Speaker normalization is generally considered as a critical step 
in acoustic-to-articulatory inversion [10-13]. The need for 
such normalization is even more obvious in children’s speech 
acquisition, given the large child-adult differences in 
articulatory dimensions. Here, we tested whether the present 
optimization method is able to normalize speaker differences. 
Figure 4 shows the results of the optimization of a male 
articulatory setting based on the word “aware” spoken by a 
female American English speaker. As can be seen, the formant 
patterns of the two spectrograms look similar, including the 
convergence of F3 and F2 during the retroflex /r/ (Correlation: 
ρF1 = 0.72, ρF2 = 0.95, ρF3 = 0.85). It should be noted that the 
moderate correlation in F1 is due to the lack of F1 variation in 
the original material. The female voice on the top not only has 
relatively high F0, as indicated by the close distances between 
the vertical striations, but also relatively higher formant 
frequencies (max F2 = 2396 Hz) than that of the learned male 
voice (max F2 = 1832 Hz). 

However, no explicit normalization strategies were used in 
this simulation. What seems to have enabled the learning 
across vocal tracts of rather different dimensions is the TA 
model. Despite the individual differences, formant trajectories 
resulting from TA bear sufficient resemblance to the original 
to allow the finding of optimal parameters even when the 
model dimensions differ. The implementation of TA as the 
basic dynamic control of the articulatory movements thus 
seems to have also helped the achievement of implicit speaker 
normalization. The effectiveness of the implicit normalization 
is also seen in the EMA comparison to be described next. 

3.3. EMA comparison 

Beside acoustic comparison, another way to examine the 
quality of the distal learning is to compare the learned 
articulatory shapes and trajectories with electromagnetic 
articulography (EMA) data of the original utterance, i.e., to see 
how well acoustic-to-articulatory inversion is achieved. Two 
four-syllable utterances of German vowel sequences, 
/,jaja‘jaja/ and /,jOjO’jOjO/ produced by a female speaker for 
a previous study [25] were used as testing materials. These 
sequences were spoken with secondary stress on the first 
syllable and primary stress on the third syllable. Articulatory 
trajectories of multiple sensor coils were recorded by means of 
electromagnetic articulography at a sampling rate of 200 Hz, 
of which we considered three sensors on the tongue tip, tongue 
blade (mid), and tongue back. 

In each utterance, articulatory target parameters for /j/, /a/ 
and /O/ were trained for all instances of these phones and used 
in different locations. Spectral comparison shown in Figure 5 
indicates that the acoustics of the synthetic /ja/ sequence 
closely approximates the original (Correlation: ρF1 = 0.95, ρF2 
= 0.93, ρF3 = 0.70). As verifications, the learned targets were 
also used to synthesize the corresponding sounds in isolation 
to confirm that they were perceptually accurate. Figure 6 
shows the learned targets for /j/ and /a/ in the first utterance, 
and for /j/ and /O/ in the second utterance. For comparison, the 
gray contours show the corresponding vocal tract shapes 
measured by MRI from the speaker whose vocal tract was 
modeled in VocalTractLab [14]. 

 

Figure 3: Spectrograms of original and synthetic 
vowel sequences /a: i: u: e: o:/. 

 
Figure 4: Spectrograms of “aware” in American 
English. The synthetic one was generated by 
VocalTractLab with parameters learned through 
analysis-by-synthesis of the original, with a male 
articulatory setting. 

 
Figure 5: Spectrograms of original and synthetic 
/,jaja‘jaja/. 
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Figure 7 shows the comparison of original and synthetic 
EMA trajectories of the utterance /,jaja‘jaja/. Three EMA 
sensors placed along the tongue surface are compared. The 
EMA trajectories of the synthetic utterance were derived from 
movements of specific vertices of the tongue model that 
correspond to the EMA sensor locations of the natural speaker. 
Original and learned articulatory trajectories as shown in 
Figure 7. The root-mean-square errors (RMSE), which 
indicate the average distance between original and synthetic 
contours, of x- and y-position are (1.9 mm, 2.1 mm) for the 
tongue tip sensor, (3.6 mm, 2.6 mm) for the tongue mid 
sensor, and (4.1 mm, 4.0 mm) for the tongue back sensor. 
Comparing the similarity between the contours by correlation 
coefficients of x- and y-position shows that tongue tip 
positions have correlations of (0.88, 0.83), tongue mid 
positions have correlations of (0.83, 0.87), and tongue back 
position have correlation of (0.87, 0.81). 

4. Discussion and Conclusions 
The preliminary results of the present study are very 
encouraging. They have shown that it is possible to simulate 
speech acquisition as a distal learning process, with surface 
acoustics of continuous speech and predefined annotated 
segmental boundaries as the input, an articulatory synthesizer 
controlled by target approximation models as the learner, and 
analysis-by-synthesis optimization assisted by embodied 
constraints as the training regimen. The simulation tests show 
that underlying articulatory targets can be learned this way to 
generate utterances that resemble the original both 
acoustically, as shown in Figures 3-5, and articulatorily, as 
shown in Figures 6 and 7, thus largely completing the 
acoustic-to-articulatory inversion process with close acoustic 
matching.  

The current results are still very preliminary, however. 
Though having shown implicit speaker normalization across 
genders, we have not yet tested the effectiveness of such 
normalization with a child vocal tract. Also all the consonants 

simulated so far are glides, which presumably have minimal 
gestural overlap with adjacent vowels. Strategies have yet to 
be developed to simulate the learning of overlapped CV 
gestures. Also, human learners are likely to have far more 
embodied constraints than the ones we have implemented in 
this study. A case in point is the seemingly excessively raised 
glottis in /j/ as compared to the measured configuration in 
Figure 6. Such a large discrepancy may require some 
additional constraints on the glottis position. Alternatively it 
might have been necessary to raise the glottis so far to 
approximate the acoustics of the natural female speaker 
(having a shorter vocal tract) with the male vocal tract model 
of the synthesizer. Finally, it should be noted that the acoustic-
to-articulatory inversion in the current study is not fully 
complete, as the division of continuous utterances into discrete 
unidirectional movements is done manually. The underlying 
assumption is that the learning of perceptual segmentation is 
achieved prior to the learning of the articulatory targets. But 
the validity of this assumption is not fully established, and has 
to be addressed in future studies. 

Examples of the original and synthetic sounds, and video 
animation of the learning progress, can be found in the 
supplementary material. 
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Figure 6: The black shapes are estimated vocal tract 
targets for /j/ and /a/ in /,jaja‘jaja/, and /j/ and /O/ in 
/,jOjO‘jOjO/ For comparison, the gray contours show 
measured vocal tract shapes for /j/, /a/, and /O/ of the 
real speaker that was modeled in VocalTractLab. 

 

Figure 7: EMA trajectories of three sensors on the 
tongue for the utterance /,jaja’jaja/. Original 
trajectories are shown as black lines and simulated 
trajectories based on the learned vocal tract target 
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