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ABSTRACT 

 
Intuitively, speech production can be learned by 
imitating proficient speakers in language acquisition. 
But a recent computational simulation has shown that 
learning to produce English words can be achieved 
under the guidance of speech perception, without 
direct mimicry. In this study, we tested whether 
similar perception-guided learning also applies to 
Mandarin tone acquisition. We used PENTAtrainer, a 
pitch modelling tool to simulate learners’ tone 
articulation, and a trained tone recognizer to simulate 
tone perception. Three learning methods with 
different optimization objectives were tested: 1) 
closeness of fit of f0 contours, 2) tone recognition by 
an automatic tone recognizer, and 3) tone recognition 
plus minimization of mean f0 difference at the initial 
learning phase. The results show that method 3 
achieved the best learning outcome as evaluated by 
the tone recognizer and human listeners. Perception-
guided tone learning is therefore shown to be 
effective if learners’ exploration range can be reduced 
first. 
 
Keywords: speech perception, vocal tone learning, 
computational modelling, speech synthesis 

1. INTRODUCTION 

It is still unclear how children acquire language 
spontaneously without explicit adult instructions. A 
popular idea is that they do it through imitation [16, 
23, 24]. However, it has been difficult to 
computationally simulate such imitative learning [11, 
20, 21, 25]. And a major source of difficulty has been 
the speaker normalization [13] or correspondence [5] 
problem. For example, because children’s vocal tracts 
are much shorter than adults’ [10, 27], their formants 
are much higher and more dispersed, making it 
difficult for children to directly imitate adult speech. 
However, recently it has been demonstrated 
computationally that this correspondence problem 
can be largely solved by using speech perception as a 
guide in production learning [15, 26, 34]. The 
production of simple English words with high 
intelligibility can be learned this way without directly 
imitating any specific utterances.  

The effectiveness of simulating perception-guided 
vocal learning raises the question of whether tone 

learning can be simulated in a similar way. 
Theoretically, this is conceivable, and in fact should 
be easier since tones mainly involve a single acoustic 
dimension, i.e., fundamental frequency (f0), and tones 
have been successfully modelled with PENTAtrainer, 
a Praat-based prosody modelling tool [31]. However, 
perception-guided learning with only a single 
acoustic dimension could also present problems due 
to the lack of cross-reference to other parameters.  

This study is a preliminary test of perception-
guided tone learning. But a strategy slightly different 
from [15, 26, 24] is applied. First, the acoustic 
imitation was simulated by an algorithm that 
optimized the matching of f0 contours across a whole 
corpus consisting of many utterances produced by 
multiple speakers (including both males and females). 
Second, data from the same corpus were used to 
assess the learning outcome of both imitative and 
perception-guided learning, thus minimizing 
confounding in comparison. 

2. METHOD 

2.1. Corpus 

The Xu1999 corpus used in this project was originally 
recorded for an experimental study of tone and focus 
in Mandarin [28], which consisted of utterances 
produced by four female and four male speakers. The 
utterances were five-syllable sentences composed of 
three words (two disyllabic and one monosyllabic), as 
shown in Table 1. As can be seen, the second, third 
and fourth syllables have varying tones, while the 
tone of the first and last syllable is always H. The 
speech was fluent, with a speech rate of roughly five 
syllables/s. 

 
Table 1: Tone patterns and corresponding 
sentences used as recording material. H, R, L, and 
F represent high, rising, low, and falling tones, 
respectively [28]. 

The sentences in the full corpus also varied in focus 
conditions: initial, medial, final and no focus [28]. 
The present study only used the neutral focus 
sentences, however, to simulate tone learning only. 
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The corpus was divided into a training set consisting 
of 6 of the 8 speakers, 3 males and 3 females, and a 
testing set consisting of 2 speakers (1 male, 1 female). 

2.2. Modelling tool 

The computational tool was a special-purpose version 
of PENTAtrainer [31] — an interactive Praat [3] 
script for modelling speech prosody. PENTAtrainer 
models tone and intonation by combining built-in 
articulatory dynamics (target approximation) [22, 
33], parallel encoding [29], and global stochastic 
learning (simulated annealing [14]) [31]. The original 
version has been shown to generate intelligible and 
natural-sounding tone and intonation by optimizing f0 
contour fitting [31]. The f0 fitting can be viewed as a 
form of learning by imitation, as it tried to maximize 
the similarity between the learned and the original f0 
contours.   

The special-purpose version of PENTAtrainer 
used in this study included two additional learning 
methods, learning by optimizing tone recognition, 
and learning by optimizing tone recognition and 
minimizing mean f0 difference (deltaf0). The 
computationally intensive learning task was run by a 
Python executable called by the Praat script. The tone 
recognizer, also called by the Praat script, was a 
support vector machine (SVM) trained by the scikit-
learn package [6] in Python with syllable-sized f0 
contours as input data. The trained model was able to 
recognize both tone and focus with high accuracy [7, 
8]. In learning method 3, deltaf0 was the utterance-
wide mean f0 difference between each original and 
synthetic contour, and it added a fraction of weight to 
the tone recognition error in the coarse-tuning phase 
of the learning:  

(1) e = 0.9 er + 0.1 d 

where er = 10 (1 – recognition rate [0,1]), and d = 
f0orig – f0orig, where f0orig and f0orig were utterance-wide 
mean f0 of original and synthetic tones, respectively. 

The coarse-tuning phase, consisting of the first 
450 of the total 750 training iterations, optimized all 
tonal targets at once in each iteration, while the fine-
tuning phase optimized each parameter (height, slope 
and strength [31]) of each tonal target at a time. 

2.3. Procedure 

The experiment proceeded in 5 steps: 

Step 1. Training the tone recognizer on all the neutral-
focus utterances in the Xu1999 corpus. The 
overall post-training recognition rate was 94.7%. 

Step 2. Running PENTAtrainer in the training set 
with three learning methods, each repeating five 
times. The main simulated annealing parameters 
used were: iteration = 750, learning rate = 0.1, 

starting temperature = 700, and reduction factor 
= 0.98. 

Step 3. Averaging the pitch targets of each tone 
learned from the five runs of each learning method 
to obtain three sets of tone targets.  

Step 4. Running PENTAtrainer in the testing set with 
the mean tone targets to a) generate f0 contours that 
were input to the automatic tone recognizer for 
tone recognition, and b) resynthesize all the 
utterances in the testing set with the model-
generated f0 contours. 

Step 5. Playing the resynthesized utterances to 
listeners for perceptual tone identification and 
judgment of naturalness.  

For step 5, the stimuli contained 320 recordings from 
the testing set, which were divided into four 
conditions: a) original recordings, b) recordings 
resynthesized with parameters learned from f0 fitting, 
c) recordings resynthesized with parameters learned 
from recognition only, and d) recordings resynthesized 
with parameters learned from recognition+deltaf0. The 
tones to be identified belonged to the second syllable, 
which was always /mi/, c.f. Table 1. Syllables in other 
positions carried fewer tones, varied in segmental 
compositions, and were not included in the perception 
test. For the naturalness rating, listeners were asked 
to judge whether they have heard a human utterance 
or a computer-generated sound. 

The listening subjects were 20 native Beijing 
Mandarin speakers, who performed the perception 
tasks on Gorilla, an online experiment platform. They 
had no history of neurological or communication 
disorders, and passed a hearing screening at 20 dB HL 
bilaterally at 125, 250, 500, 750, 1000, 2000, 3000, 
and 4000 Hz.  

3. RESULTS 

3.1. Numerical evaluations 

Table 2: Numerical assessments of tone learning 
separated by learning methods. 

 
Table 2 shows the root mean square error (RMSE), 
Pearson’s correlation coefficient (r) and tone 
recognition rate for the three learning methods. As 
expected, learning by f0 fitting worked well, achieving 
low RMSE and high correlation, consistent with 
previous findings on the same corpus [31]. 
Interestingly, the tone recognition rate, at 0.85, was 
also fairly high, which was consistent with [7]. 
Recognition only showed poor results, with high 
RMSE and low correlation, whereas 

Learning method RMSE Correlation Recog. rate 
F0 fitting 1.64 0.81 85% 
Recog. only 4.12 0.18 66% 
Recog.+deltaf0 2.09 0.72 95% 
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recognition+deltaf0 had the highest recognition rate 
at 95%, although its RMSE was higher and 
correlation was lower than those of f0 fitting. 

Figure 1 shows learning progression in terms of 
mean RMSE and recognition rate. Both indicators 
were recorded during learning with all methods, 
regardless of whether the method itself used them as 
optimization objectives. As can be seen, in all cases, 
RMSE was reduced over the iterations while 
recognition was improved. In all cases, the sudden 
improvement from iteration 450 was due to the shift 
from coarse- to fine-tuning phase of learning, as 
explained in 2.1. 

 

 

 
Figure 1: Examples of learning progression per 
iteration in terms of mean RMSE and recognition 
rate. 

As can be seen, for f0 fitting, RMSE was reduced to a 
very low level in the fine-tuning phase, but the 
increase of tone recognition hovered around 90%. For 
recognition only, both RMSE and recognition failed 
to improve much further in the fine-tuning phase. For 
recognition+deltaf0, RMSE stopped to reduce below 
two semitones, but recognition went quickly above 
95% after the onset of fine-tuning. 

3.2. Human perceptual evaluation 

Figure 2 shows perceptual tone identification rates for 
the four types of stimuli: a) original utterances, b) 
audios resynthesized with parameters learned from f0 

fitting, c) audios resynthesized with parameters 
learned from recognition only, and d) audios 
resynthesized with parameters learned from 
recognition+deltaf0. 

 
Figure 2: Tone recognition rate in four conditions.  

The original utterances achieved the best tone 
recognition rate at 81%, while recognition+deltaf0 
was the second best at 80%. A two-tailed t-test found 
the difference between the two conditions non-
significant. However, neither of these conditions 
performed nearly as well as the overall automatic tone 
recognition rate of 94.7% mentioned in section 2.3. 
One likely reason is that the recognizer performance 
was for tones of all syllables in each sentence. 
Syllables 1 and 5 both always had T1, the high-level 
tone, whose recognition rate was very high, partially 
due to over-training. For the tone of the second 
syllable alone, the recognizer achieved only 90% for 
the testing set, although this is still much higher than 
the 81% of the listener recognition of the original 
tones in Figure 2. Therefore, the superior 
performance of the recognizer is more likely because 
it has been trained on the same corpus, whereas the 
listeners relied on their real-life listening experience, 
which would include many more speakers with 
diverse tone articulations. The recognition rate for f0 
fitting was 76%, which was significantly lower than 
both the original (t(16) = 6.57, p < 0.001) and 
recognition+deltaf0 (t(16) = 4.89, p < 0.001) 
conditions.  

  

  
Figure 3: Heat map of confusion matrices for the 
perception of tones in four conditions.                                                                   

0

20

40

60

80

100

0

5

10

15

20

25

30

0 200 400 600 800

Re
co

gn
iti

on
 ra

te
 (%

)

RM
SE

 (s
em

ito
ne

)

Learning iteration

 Mean RMSE  Recognition rate

f0 fitting

0

20

40

60

80

100

0

5

10

15

20

25

30

0 200 400 600 800

Re
co

gn
iti

on
 ra

te
 (%

)

RM
SE

 (s
em

ito
ne

)

Learning iteration

 Mean RMSE  Recognition rate

recognition only

0

20

40

60

80

100

0

5

10

15

20

25

30

0 200 400 600 800

Re
co

gn
iti

on
 ra

te
 (%

)

RM
SE

 (s
em

ito
ne

)

Learning iteration

 Mean RMSE  Recognition rate

recognition+deltaf0

10. Phonetics of First Language Acquisition ID: 282

2326



Confusion matrices of tone perception are shown in 
Figure 3. These confusions can be examined together 
with the mean f0 contours in Figure 4, which are 
separated by tone of the second syllable. First, for 
both T1 and T2, the recognition-only condition 
learned obviously wrong targets, high-fall for T1 and 
high-level for T2. Curiously, at 82% and 89%, the 
perception of these two tones did not seem to be 
severely affected. Second, For T2, the 
recognition+deltaf0 condition generated a contour 
with an extra low minimum f0 and a sharp terminal 
rise. This allowed the tone to be perceived (90%) as 
well as in the original condition (89%). Third, for T4, 
f0 fitting generated a contour with a lower f0 peak than 
both the original and recognition+deltaf0 conditions. 
This is probably why it had a 26% confusion with T3. 
Finally, in the recognition+deltaf0 condition, T3 was 
heard as T2 around 22% of the time. Although this is 
similar to the original condition where confusion with 
T2 was 12%, the f0 contour in the bottom left plot of 
Figure 4 shows that the greater confusion was likely 
due to an earlier rise than the original T3. 
 

 

 
Figure 4: Mean F0 contours, separated by the tone 
of the second syllable, clockwise from the top left: 
T1, T2, T3 and T4. The horizontal axis is 
normalized time (10 points/syllable). The vertical 
axis is f0 in semitones.  

 
Figure 5: Percentage of utterances judged as natural 
speech (rather than synthetic) in the four conditions.  

Figure 5 shows the results of naturalness judgment by 
listeners. As can be seen, even the original utterances 

were judged only 69% as human articulation. 
Interestingly, utterances from the f0 fitting condition 
were judged as more likely to be humanly articulated 
than those from the recognition only (t(16) = 7.55, p 
< 0.001) and recognition+deltaf0  (t(16) = 4.97, p < 
0.001) conditions. 

4. DISCUSSION AND CONCLUSION 

This preliminary simulation study has demonstrated 
that perception-guided vocal learning [15, 26, 34] 
may also work for tone acquisition, provided that the 
target exploration range is constrained in the early 
learning phase, as done in the recognition+deltaf0 
condition. The quality of the learned tones with that 
method was better than those learned with f0 fitting as 
assessed by both automatic tone recognition and 
human tone perception, except in terms of naturalness. 

It is important to note, however, that the f0 fitting 
method in this study was not strictly simulating direct 
mimicry, because it optimized f0 contour match in all 
instances of each tone across all the repetitions by all 
speakers in the training set of the corpus (120 in total). 
But the optimization in recognition+deltaf0 was also 
performed across all the utterances in the training set. 
In other words, the only difference between these two 
methods was the learning objective: to maximize the 
similarity of f0 contours, or to maximize the tone 
recognition accuracy. On the face of it, the 
differences may be hard to comprehend. Why 
wouldn’t achieving maximum acoustic similarity to 
multiple speakers lead to the best learning outcome? 
But the results clearly show an advantage for 
recognition-guided learning. This suggests that the 
difference in learning objectives is not trivial, as it 
may reflect the core nature of speech as a 
communication system. Given this nature, the proper 
objective of vocal learning should be to gain the 
ability to produce maximally intelligible speech 
rather than to just sound like other speakers. And the 
same may also be true of adult speech. That is, what 
makes a contrastive phonetic unit equivalent across 
different speakers is that it has been learned in such a 
way that it is most likely to be perceived as that unit. 
While this may sound circular as a factual definition, 
the circularity would disappear once it is treated as an 
operational definition, as shown in this study. 

It is unclear, however, why recognition guidance 
alone did not work well in this study. Is it indeed due 
to a lack of cross-reference to other parameters as 
speculated in the Introduction? If yes, is it possible to 
introduce some minor adjustments to the current 
learning algorithm? This will need to be addressed in 
future studies. 
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