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ABSTRACT:
In English, a sentence like “He made out our intentions.” could be misperceived as “He may doubt our intentions.”

because the coda /d/ sounds like it has become the onset of the next syllable. The nature and occurrence condition of

this resyllabification phenomenon are unclear, however. Previous empirical studies mainly relied on listener

judgment, limited acoustic evidence, such as voice onset time, or average formant values to determine the

occurrence of resyllabification. This study tested the hypothesis that resyllabification is a coarticulatory

reorganisation that realigns the coda consonant with the vowel of the next syllable. Deep learning in conjunction

with dynamic time warping (DTW) was used to assess syllable affiliation of intervocalic consonants. The results

suggest that convolutional neural network- and recurrent neural network-based models can detect cases of resyllabi-

fication using Mel-frequency spectrograms. DTW analysis shows that neural network inferred resyllabified sequen-

ces are acoustically more similar to their onset counterparts than their canonical productions. A binary classifier

further suggests that, similar to the genuine onsets, the inferred resyllabified coda consonants are coarticulated with

the following vowel. These results are interpreted with an account of resyllabification as a speech-rate-dependent

coarticulatory reorganisation mechanism in speech. VC 2023 Acoustical Society of America.
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I. INTRODUCTION

Despite the wide recognition of the syllable as a speech

unit among speakers and researchers (Browman and

Goldstein, 1992; Levelt, Roelofs and Meyer, 1999;

MacNeilage, 1998), there have been doubts about the role of

the syllable due to ambiguity associated with syllable

boundaries. One situation where ambiguity is especially

severe is in regard to the syllable affiliation of intervocalic

consonants. For example, the phrase “escort us” in British

English (/E s#k+O t#@s/) can be syllabified as /E s#k+O #t@ s/

in connected speech, according to observation of a noisy

release during the word final /t/ (Levelt et al., 1999). The

phenomenon is more formally known as resyllabification,

which usually denotes a shift of syllabification of a coda

consonant into the onset of the following vowel-initial sylla-

ble (Levelt et al., 1999; Schiller et al., 1997). For English,

empirical work examining resyllabification goes back as far

as 70 years ago, when Stetson used the kymograph to inves-

tigate consonant vowel (CV) and vowel consonant (VC)

production at different speech rates (Stetson, 1951). He

observed that in a sequence of syllables such as /bi bi bi…/,

the CV structure remains stable regardless of speech rate. In

contrast, a sequence of VC syllables, such as /ib ib ib…/,

becomes very similar to /bi bi bi…/ when repeated at a fast

rate, according to kymograph data, indicating that the coda

/b/ is resyllabified as an onset consonant. The perceptual

finding was consistent with articulatory patterns recorded by

the kymograph. Stetson’s findings were later replicated by

Tuller and Kelso (1990, 1991) with glottal transillumination

data, which showed that glottal movements shifted drasti-

cally at a critical rate of speech, and perception of the spo-

ken sequences also shifted to be mostly identified as /ip ip

ip…/.

In languages such as Spanish and French (Berm�udez-

Otero, 2011; Gaskell et al., 2002), resyllabification is recog-

nised as a phonological process, although there are –cross

dialect variations according to acoustic evidence such as

consonantal duration (Strycharczuk and Kohlberger, 2016).

Due to the lack of clear empirical evidence, the existence of

resyllabification in English is questioned (Shattuck-

Hufnagel, 2011), as mentioned above. Furthermore, the sta-

tus of the syllable is called into question because of bound-

ary ambiguity due to resyllabification (Blevins, 2003;

Steriade, 1999). A major source of the difficulty of deter-

mining the syllabification status of segments is that it is

mainly based on the subjective judgment of listeners (N�ı
Chios�ain et al., 2012; Content, 2001; Goslin and

Frauenfelder, 2001; Schiller et al., 1997). Even when acous-

tic measurements are taken, listener judgments are still

treated as the “ground truth” (de Jong et al., 2004;

Mullooly, 2003). Yet, as found in de Jong et al. (2004), lis-

teners agree with each other well only in cases in which a

gap between the release of the coda consonant and the

beginning of voicing for the next vowel can be easily

detected. In the absence of apparent gaps, listener judgmentsa)Electronic mail: zirui.liu.17@ucl.ac.uk
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become very diverse. de Jong et al. (2004), therefore, sug-

gested that the difference between the coda and onset conso-

nant is more closely related to how they are motorically
optimised in production in ways that are too subtle for most

listeners to detect.

What is needed is an alternative definition of resyllabifi-

cation which departs from conventional definitions that are

based on language-specific phonotactics (what is phonologi-

cally legal), perceptual impression, and language-specific

acoustic properties (aspiration, voicing, etc.). In this study,

we consider an articulatory-acoustic definition that specifies

the affiliation of an intervocalic consonant based on an artic-

ulatory definition of the syllable. The definition of the sylla-

ble, as will be reviewed next, also addresses coarticulation,

another essential issue of speech articulation.

A. Resyllabification, coarticulation, and the syllable

Resyllabification is closely related to a well-documented

asymmetry between onset and coda consonants in phonology

and phonetics. For languages that allow for coda consonants,

codas are more vulnerable than their onset counterparts as they

are more susceptible to deletion and reduction (Barlow and

Gierut, 1999; Xu, 1986, 2020). In contrast, onset consonants are

often inserted when the syllable is vowel initial, such as glottal

stop insertion (Birgit, 2001; Garellek, 2012), intrusive /r/’s

(Gick, 1999; Uffmann, 2007), and vowel hiatus breakers

(Mudzingwa, 2013; Smith, 2001). In terms of canonical syllable

structures, CV syllables are also more common than VC and

consonant vowel consonant (CVC) syllables in many languages

(Clements and Keyser, 1983; Levelt et al., 1999; Xu, 2020).

According to articulatory phonology, the vulnerability

of codas is likely related to an asymmetry in coarticulation

within the syllable. That is, onset consonants are coupled

“in-phase” with the vowel, resulting in synchronous activa-

tion between the vocalic and onset C gestures (Goldstein

et al., 2006). On the other hand, coda consonants are cou-

pled “antiphase” with the vowel, which is a less stable mode

of coordination. Resyllabification is, therefore, “analysed as

an abrupt transition to a more stable coordination mode”

that is likely to occur under increased speaking rate

(Goldstein et al., 2006, p. 237).

An alternative account of resyllabification is provided

by the synchronisation model of the syllable (Xu, 2020), as

shown in Fig. 1, which shares some similarities with articu-

latory phonology but differs from it in certain critical

details. The model assumes that syllable is a mechanism for

eliminating most of the temporal degrees of freedom by syn-

chronising consonant, vowel, and glottal movements at syl-

lable onset (vertical lines), whereby each movement (dotted

lines) is to approach an underlying target within its allocated

time interval. The synchronisation makes the initial conso-

nant fully overlapped, hence, coarticulated with the initial

portion of the “following” vowel. In contrast, a coda conso-

nant is articulated sequentially after the vowel because its

closing movement directly conflicts with the opening move-

ment of the vowel (Xu and Liu, 2006). There are two differ-

ences between this model and articulatory phonology that

are directly relevant for the current study. First, synchronisa-

tion is assumed to be a fundamental design of the syllable

(likely centrally controlled) rather than emerging from the

coupling of the gestural planning oscillators as in articula-

tory phonology (Goldstein et al., 2006). Second, the sequen-

tial articulation of coda consonant is not modelled in terms

of phase relation between C and V because (a) individual

target approximation movements are frequently allocated an

insufficient amount of times (Nakatani et al., 1981; Xu and

Wang, 2009), thus, disallowing them to form complete

movement cycles (Xu and Prom-on, 2019), and (b) syllables

constantly vary their duration due to stress, phrasing, and

other linguistic factors, which makes it difficult for syllable

sequences, together with their constituent segments, to be

temporally periodic to make oscillation-based modelling

possible.

According to the synchronisation model of the syllable,

resyllabification is due to a lack of articulation time, as sche-

matised in Fig. 2 rather than due to transition from antiphase

to in-phase articulatory coordination. In Fig. 2(A), the coda

consonant (C2) occupies its own time interval because it is

sequentially articulated after the first vowel (V1).

Meanwhile, the second syllable is not articulated as a true

FIG. 1. (Color online) The synchronisation model of the syllable (Xu,

2020).

FIG. 2. (Color online) An illustration of articulatory resyllabification based

on the synchronisation model of the syllable.
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VC because it actually starts with a glottal stop (Cg). Such

glottal stops have been reported as frequently occurring at

slow speech rate (Birgit, 2001; de Jong, 2001) but would

disappear as speech rate reached a certain threshold, leading

to a perceptual shift from /VC#VC/ to /CV#CV/ (de Jong,

2001). As illustrated in Fig. 2(B), as speech rate increases,

less time is allocated to the syllable, which would require

the duration for V1 and C2 to be shortened to an implausible

extent (as indicated by the red cross). The increased time

pressure (Tiffany, 1980; Xu and Prom-on, 2019) may then

lead to the replacement of the glottal stop (Cg) with C2 when

speech rate approaches a certain threshold (e.g., 350 ms per

syllable; de Jong, 2001). Now, C2 becomes the initial conso-

nant of the second syllable, as shown in Fig. 2(C). This reor-

ganisation gives V1 more articulation time while preserving

all of the segmental composition of the original syllables.

Based on this account of resyllabification, two predictions

can be made. (1) Due to similarity in articulatory structure,

resyllabified codas spectrally resemble their onset counterparts

more than their canonical form, and the opposite can be

observed for the neural network inferred non-resyllabified

sequences (correctly classified coda sequences). (2) Because a

resyllabified coda is fully coarticulated with the vowel of the

following syllable, there is similar amount of vowel informa-

tion shared between the resyllabified onsets and the canonical

onsets but not between canonical codas and canonical onsets.

These predictions can be tested on English by applying

machine learning models on acoustic data.

B. Using deep neural networks with acoustic data to
identify resyllabification

Given the difficulty of subjectively judging the occur-

rence of reyllabification (de Jong et al., 2004), an alternative

is to obtain objective evidence by taking advantage of recent

developments in machine learning technology. This study,

therefore, aims to determine the occurrences of resyllabifica-

tion using deep learning models and dynamic time warping

(DTW) in combination with continuous acoustic data. The

deep learning models used were inspired by state-of-the-art

automatic speech recognition (ASR) networks (Amodei

et al., 2015). ASR systems without language models are

error prone when detecting the canonical structure of resyl-

labified sequences (Adda-Decker et al., 2002; Mirzaei et al.,
2018; Wu et al., 1997). For example, a sequence like “fade

out” could be recognised as “fay doubt” if the coda /d/ is

resyllabified as the onset of the second syllable. We trained

recognition networks on slow speech data with no resyllabi-

fication occurrences and used them to classify data from

normal rate speech. The reason behind using data from the

slow speech rate condition for training is to ensure that there

are no resyllabified sequences in the training data. In other

words, for the model to be able to misclassify a sequence as

its onset counterpart due to resyllabification, it should not be

trained with a resyllabified sequence labelled as its canonical

version. The misclassified sequences in normal speech rate

(i.e., “fade out” as “fay doubt”) were further examined to shed

some light on the articulatory structure of the syllable.

II. METHODS

We trained a deep neural network classifier to identify

word sequences such as “coo part” and “coop art.” The

utterances in the slow condition were used for training the

classifiers. Then, we used the trained classifiers to classify

the same utterances spoken in the normal rate recordings. A

/CVC#VC/ sequence, such as “coop art,” was categorised as

resyllabified if the classifier “misclassified” it as its counter-

part /CV#CVC/ sequence, i.e., “coo part.” These neural

network inferred resyllabified sequences are referred to as

NN-resyllabified to avoid confusion between the cognitive

process of syllable reorganisation and the inferred syllabifi-

cation status by the classifier. DTW was next used to inves-

tigate the spectral similarities between the NN-resyllabified

sequences in the normal speaking rate and the sequences in

the slow rate (e.g., NN-resyllabified “coop art” vs slow “coo

part” or NN-resyllabified “coop art” vs non resyllabified

slow “coop art”). Furthermore, to test prediction (2), we

built binary neural network classifiers to categorise contras-

tive pairs, such as “coop art” vs “coop eat,” whose training

data only consisted of the intervocalic consonantal portions

of the acoustic signal (e.g., aspiration for /p/). The closure

interval was not included due to very little acoustic energy

in the data, as /p/ is a voiceless stop. The results were com-

pared between speech rates and syllable structures.

A. Subjects

Eight subjects aged 20–40 years old, whose first lan-

guage was Southern Standard British English (6 female and

2 males), participated in this study. No speaking or hearing

disorders were reported prior to recording. To ensure data

quality, all of the potential participants had to submit a short

recording on Gorilla (Berlin, Germany). The experimenters

then visually inspected the recordings in the computer pro-

gram Praat (Boersma and Weenink, 2022). Only participants

with an external microphone and sufficient recording quality

took part in the study.

B. Stimuli and data collection

Table I lists the word sequences used in this study. The

stimuli include three groups of four sequences. For each

group, the onset pair and coda pair match in terms of seg-

ments and differ in syllable structure, e.g., /CVC#VC/ vs

/CV#CVC/. This maximises the possibility that if the classi-

fier misclassified a coda sequence as its onset counterpart, it

is likely due to the shift in syllable structure, i.e.,

resyllabification.

TABLE I. Stimuli.

Group Onset Coda

1 Lee steal Lee stale Least eel Least ale

2 Do mart Do meet Doom art Doom eat

3 Coo part Coo Pete Coop art Coop eat
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Note that there exist differences other than syllabifica-

tion between onset and coda sequences, such as lexical, syn-

tactic, or prosodic properties. For example, “doom art” is a

noun/verb noun sequence, whereas “do mart” is a verb noun

sequence. The neural network classifier could use informa-

tion such as syllabification, syntactic, and lexical differences

between the onset and coda tokens. Therefore, it is impor-

tant to minimise the similarities between items such as “coo

part” and “coop art” due to the following: If the classifier

misclassified “coop art” as “coo part,” it is important to min-

imise the possibility that the misclassification took place

due to prosodic or lexical similarity between the two rather

than coarticulation between the intervocalic C and the sec-

ond V. Therefore, within each onset and coda pair, we use

word combinations that differ in their morphosyntactic

structure (e.g., “Lee steal” vs “least eel”). However, other

unknown factors may still result in similarities between the

onset and coda pairs, which could contribute to misclassifi-

cation. The current design can only assume that when a

coda sequence is misclassified as its onset counterpart, it is

due to similarity in coarticulation structure rather than other

unknown factors.

There is also a vowel minimal contrast in the second

syllable for each syllable structure condition in each group.

The vowel contrast allows us to examine the amount of

coarticulation in the intervening consonant by assessing the

performance of a binary classifier at predicting the second

vowel identity using only acoustic data from the annotated

consonant interval. Previous studies have used a minimal

pair design and showed that when a consonant is coarticu-

lated with the upcoming vowel, acoustic information associ-

ated with the vowel can be detected during the consonant

(Liu and Xu, 2021, Liu et al., 2022). Liu and Xu (2021) also

show that the entire cluster in /clusterV/ syllables in British

English is coarticulated with the vowel. Thus, a cluster trip-

let is included in the current study to investigate whether the

following vowel is coarticulated from the onset of the con-

sonant cluster.

Participants were instructed to say the word sequences

in isolation in two blocks of different speaking rates—first

slow, then normal. For the slow block, the speakers were

instructed to articulate the words clearly and fluently at a

slow pace. In the normal condition, speakers were informed

to speak at a faster pace in a colloquial style. There were no

instructions on what resyllabification was or whether they

should or should not resyllabify anything. The stimuli were

read aloud with 20 and 10 repetitions for the randomised

slow and normal blocks, respectively, yielding 360 tokens

per speaker (12� 20þ 12� 10). Around 3% of the data

were excluded as a result of background noise during

recording.

The recording took place online over Zoom (San Jose,

CA) with the sampling rate of 32 kHz with Zoom’s original

sound feature turned on, which preserved the original

recording quality by minimising the amount of audio

enhancement. All of the participants used an external micro-

phone during the experiment, and the recording quality was

assessed by the researcher prior to the experiment. For the

resyllabification classifiers, the recordings were annotated in

either [C1V1#C2V2C2] or [C1V1C1#V2C2] format (subscripts

denote syllable position), where the first boundary is the

start of acoustic landmark of onset C1 (e.g., lateral murmur

for /l/) and the second boundary is the end of acoustic land-

mark of the coda C2. For the binary classifiers, the conso-

nantal intervals were segmented as the plosive aspiration for

/p/, nasal murmur for /m/, and frication for /s/. An example

is displayed in Fig. 3.

C. Speech rate analysis

As speech tempo can be speaker specific due to differ-

ence in speaker characteristic (Jacewicz et al., 2009), partic-

ipants were free to speak at a rate they deemed appropriate

as slow or normal. For the slow and normal rate conditions,

participants were instructed to speak fluently (i.e., without

spontaneous pausing). No spontaneous pauses were

FIG. 3. An annotation example of “coo part” from one speaker, where the vertical lines indicate the segmentations.
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identified in the data during the annotation process.

Therefore, speech rate in the present study is analogous to

articulation rate, which does not include hesitation, pausing,

or emotional expressions. The duration values of annotated

tokens are presented in Fig. 4. As Fig. 4 shows, speech rate

was faster for the normal condition compared to the slow

condition for all of the speakers. On average, speakers pro-

duced 2.9 syllables per second for the normal rate and two

syllables per second for the slow rate. According to de Jong

(2001), resyllabification should take place when articulation

rate approaches 2.8 syllables per second.

D. Neural network classifier for identifying
resyllabification

1. Data preparation

To ensure high accuracy, neural networks were trained

for each speaker individually. The segmented word sequen-

ces from the slow condition were converted into mel-

frequency spectrograms with 40 mel filter-banks with 25 ms

as the window length and a hopping interval of 5 ms. We

augmented the data to boost the amount of training data by

using common augmentation techniques such as speed aug-

mentation, noise addition, and frequency/time masking (Ko

et al., 2015; Park et al., 2019). First, half of the tokens from

the speaker were selected and sped up randomly between

the factors of 0.3 and 0.9 by using the Audacity software

with a custom Python script (Audacity Team, 2021). This

resulted in 360 samples per speaker. Then, 15% of the resul-

tant dataset was reserved as the testing set (N¼ 54), and

85% was reserved as the training set (N¼ 306).1 Note that

the samples were randomised before data splitting. Since the

original data are balanced between word classes, the train

and test split should also contain approximately balanced

data, resultant of the random sampling process. The training

set was then further boosted by augmenting 30% with

random Gaussian noise in addition to the raw acoustic signal

(Pervaiz et al., 2020) or frequency or time masking to the

spectrograms (Park et al., 2019), yielding 398 samples for

the training set. Not only does data augmentation improve

model generalisation and performance, the sped-up samples

also familiarise the model with shorter acoustic signals such

as those in the normal speech rate condition. The motivation

for doing noise addition and masking boost after the speed

boost is to provide the benefit of these augmentation techni-

ques for the sped-up tokens as well rather than just the origi-

nal slow sequences.

2. Model architecture

The model architecture is shown in Fig. 5,2 which was

inspired by a combination of Deep Speech and ResNet,

developed by Baidu (Beijing, China; Amodei et al., 2015)

and Microsoft (Redmond, WA; He et al., 2015), respec-

tively. Each model was trained for 120 epochs unless the

average accuracy across the last 5 epochs has reached the

threshold of 98% for the testing set. For each epoch, the

spectrograms were padded to the same duration as the lon-

gest sequence in the batch (N¼ 32), and then fed into the

neural network. Note that Fig. 5 demonstrates the flow of

data through the network by a batch size of one. The spec-

trogram is first passed through a two-dimensional (2D) con-

volutional layer [i.e., convolutional neural network (CNN)],

which had a 3� 3 kernel with a stride of 1 and 32 channels.

The output from the 2D convolutional layer is then passed

through three residual blocks (He et al., 2015), the convolu-

tional layers in each residual block had a 5� 5 kernel with a

stride of one. For the 2D convolutional and residual layers,

padding was used to retain the shape of the tensors. The

motivation behind these two types of convolutional layers is

for the model to extract features, such as dynamic informa-

tion of spectral energy, between frequencies or time steps

(e.g., velocity of energy variation between time steps; Luo

et al., 2018; Sharma et al., 2020). To preserve as much

acoustic information as possible, no pooling was used. The

output from the residual layers was reshaped by collapsing

the 32 channels, resulting in tensors with the shape of 1280

� n timesteps, which was further reduced by a fully con-

nected layer with 512 units. Five layers of bidirectional

gated recurrent units (GRU) were then used to process the

sequential acoustic features. Only the last time step’s output

was used from the GRU. Finally, the output was fed into

two fully connected layers with a final SoftMax activation,

which generated the 12-dimensional probability vector, 1

vector for each word sequence in Table I. Due to the com-

plexity of the model, we used dropout as the regularisation

technique to combat overfitting (Semeniuta et al., 2016). A

dropout rate of 0.1 was used throughout the network (see

Fig. 5 for dropout locations). Furthermore, batch normalisa-

tion was applied after each mini batch to stabilise learning

as well as provide some regularisation effect (Ioffe and

Szegedy, 2015). The hyperparameters were tuned by using

FIG. 4. (Color online) An annotated sequence duration for eight speakers.
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grid search with data from the pilot study. The hyperpara-

meters used can be found in Table II in the Appendix.

The trained models were used to classify tokens from the

normal speech rate condition for each speaker. If a coda

sequence was misclassified as its onset counterpart (e.g., “coop

art” classified as “coo part”), we categorised it as resyllabified.

E. DTW analysis

DTW was used to measure how similar the NN-

resyllabified and non NN-resyllabified tokens were in rela-

tion to the onset or coda conditions in the slow speech rate

condition. DTW has been demonstrated to be effective at

measuring similarity between sequences such as acoustic

signals. For example, it has been widely used for speech

recognition (Sakoe and Chiba, 1978; Zhang et al., 2014), as

well as other applications such as bird song recognition

(Kogan and Margoliash, 1998), speech segment clustering

(Lerato and Niesler, 2019), and accent quantification

(Bartelds et al., 2020). The DTW algorithm is illustrated in

Fig. 6. First, a cost matrix is computed by measuring the dis-

tance between the feature vectors (in this case, we used mel-

FIG. 5. (Color online) Model architecture for the resyllabification classifier. The tensor dimensions for a batch size of one are shown. The box sizes reflect

tensor shapes as annotated above each box. The depth, height, and width of the boxes are not to scale and for illustration purposes only.

FIG. 6. (Color online) A demonstration of the DTW algorithm. The dotted

line shows the dynamic warping path. The spectrograms are mel-

spectrograms of the tokens “coop art” (bottom left) and “coop art” (top).

The pixel intensity in the lower right heatmap represent feature distances at

each time step between the two spectrograms.

TABLE II. Hyperparameters for the multi-class classifiers.

Hyperparameter Value

Number of residual blocks 3

Number of GRU layers 4

Number of units in the GRU layers 512

Number of units in the linear layers 512

Dropout rate 0.1

Number of channels for the CNN layers 32

Batch size 32

Learning rate 0.0001

Optimiser RMSprop

Epoch number 120
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spectrograms) between two sequences at each time step. We

used cosine similarity for the calculation of distance as it is not

affected by the magnitude of spectral energy, i.e., frequency

decibels (e.g., the same recording played at different volumes

would measure zero in cosine distance but not in Euclidean

distance). The lower right heatmap in Fig. 6 shows the cosine

distance between the mel-frequency vectors in the two sequen-

ces at all time steps. DTW works by finding the path in the dis-

tance matrix that results in the lowest cumulative distance (i.e.,

cost). Therefore, the DTW distance between the two sequences

in Fig. 6 is the sum of the distance values through the warping

path shown by the red line.

Using DTW, we can compute the similarity between

word sequences while minimising the effect of speech

tempo. For this study, we calculated the distances between

the NN-resyllabified as well the non NN-resyllabified coda

sequences and their onset and coda counterparts in the same

group from the slow rate condition (e.g., NN-resyllabified

“coop art” vs slow “coo part,” “coo Pete,” or NN-

resyllabified “coop art” vs slow “coop art” and “coop eat”).

Note that because the vowel contrast is constant between the

distance comparisons, it should not confound the analysis.

The DTW analysis was used to compare the similarities

between the NN-resyllabified sequences and the onset and

coda sequences in the slow condition. In addition, a parallel

DTW analysis was conducted for the non NN-resyllabified

(correctly classified normal rate coda sequences) to assess

whether they are more similar to their canonical form.

F. Detecting V2 information in the intervocalic
consonant

As illustrated in Fig. 3, the researcher manually seg-

mented the canonical acoustic intervals from the intervo-

calic consonant or the first cluster component (i.e., nasal

murmur for /m/, aspiration for /p/, and frication for /s/),

which were used to investigate the articulatory alignment of

the consonant and the following vowel. The segmented

intervals differ in terms of articulatory meaning between

groups as aspiration corresponds to the consonantal release

gesture and nasal murmur and frication correspond to conso-

nantal closures. This difference should have an impact on

the amount of vowel information detected in each group.

Similar to methods used in Tilsen (2020), Tilsen et al.
(2021), and Liu and Xu (2021) to detect vowel information

in the segmented intervocalic C, we trained a simple recur-

rent neural network (RNN) to predict the second vowel

identity between contrastive pairs (e.g., NN-resyllabified

“coop art” vs NN-resyllabified “coop eat”). Liu and Xu

(2021) showed that for tautosyllabic CnV, binary classifiers

are able to detect vowel information in the acoustic intervals

of onset C, such as during frication or lateral murmur.

For each minimal pair, tokens from all eight speakers

were used. From the normal speech rate condition, only the

NN-resyllabified tokens and true onset tokens were exam-

ined. According to results from the neural network classi-

fiers, not all of the coda tokens were NN-resyllabified,

which gave rise to the possibility of accuracy scores from

the onset conditions being higher than the NN-resyllabified

codas as a result of having significantly more training data.

For example, a speaker resyllabified 5 out of 10 repetitions

of “coop art” and “coop eat,” which would result in 10 sam-

ples in total for the neural network, whereas 20 samples are

available for the onset condition (i.e., 10 repetitions of “coo

part” and “coo Pete”). Therefore, we balanced the sample

sizes between the two conditions by randomly subsampling

the onset tokens for each speaker to match the number

of NN-resyllabified tokens. For instance, if a speaker resyl-

labified five out of ten repetitions of “coop eat,” only 5 ran-

dom selections of “coo Pete” were used from this speaker

for training the binary classifier.

The classifiers were bidirectional RNNs with long short-

term memory (LSTM) units (Soltau et al., 2016). The network

details appear in Fig. 7. The hyperparameters were tuned with

data from the pilot study using grid search, and details can be

found in Table III in the Appendix. The segmented tokens were

converted into mel-spectrogams with 26 filter-banks with

0.025 s as the window length and 0.005 s as the hop length.

Before training, all of the spectrograms were padded to the same

length as the longest one. As Fig. 7 shows, masking was applied

in the input layer, which tells the model to ignore the padded

duration. Due to the absence of CNN, we included delta coeffi-

cients (i.e., first-order differentials) to aid model performance,

which resulted in a 52-dimensional vector at each time step. The

data were split into training and testing splits with the ratio of

FIG. 7. The model architecture of the binary classifiers. The tensor shapes

are denoted on the right of each box.
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8:2. We randomly shuffled the data for each minimal pair and

trained a model from scratch 80 times and reported the accuracy

distribution on the testing sets. The motivation behind examin-

ing an accuracy distribution is to avoid the issue of accidental

above chance performance, which could arise with small data-

sets (Combrisson and Jerbi, 2015; Ojala and Garriga, 2009).

1. Bayesian analysis

To test the amount of vowel information in the acoustic

signal, we used Bayesian analysis with beta likelihood to model

the effect of syllable structure (i.e., onset vs coda) on model

accuracy. A conventional nonsignificant result cannot be used

to validate a null hypothesis as it only suggests a failure to reject

it. The advantage of using Bayesian statistics is that it simply

tells us which model is more supported by the evidence in the

data, and the models do not need to be nested. The motivation

behind using beta regression is a result of the nature of accuracy

rate being bounded between zero and one. Beta regression

assumes that the data generating process can be modelled by a

beta distribution (Balakrishnan and Nevzorov, 2003 in which

the distribution can be parameterized with the mean-precision

(l-u) parameters, where u is analogous to the inverse of data

dispersion. Because Y �Beta(l,u), beta regression presumes

that the mean l of the response given the predictor X is linear

on the logit transformed scale (Douma and Weedon, 2019). In

other words, in a beta regression model, the dependent variable

can be mapped from the bounded space [0,1] to unbounded real

numbers with a link function (most commonly, the logit func-

tion), where an ordinary linear regression can be used to model

the logit transformed data. During Bayesian estimation of the

posterior distribution of the model parameters, the likelihood

function with the l-u parameterization is

f y; l;/ð Þ ¼ C /ð Þ
C l/ð ÞC 1� lð Þ/ð Þ y

l/�1 1� yð Þ 1�lð Þ/�1 (1)

and

l ¼ logit�1 Xbð Þ: (2)

C is the gamma function, l is the inverse logit transformed

model prediction, y is the observed data bounded between

zero and one, and u is the precision parameter. Note that

model predictions are mapped back to the bounded space with

the inverse logit function. Our accuracy data contains values

equal to one. Therefore, the one-inflated beta distribution is

needed, which produces a mixture density (Ospina and

Ferrari, 2012). The likelihood function using the one-inflated

beta distribution incorporates a new parameter, a, such that

f y; a; l;/ð Þ ¼ 1� að Þf y; l;/ð Þ
a

0 < y < 1ð Þ;
y ¼ 1ð Þ:

�
(3)

To construct beta regression models with Bayesian analysis

with the one-inflated beta distribution for the likelihood

function, we defined a custom response distribution with the

brms package in R.3 Weakly informative Gaussian priors [b
� N(0,52)] were used as the priors for the regression

coefficients. The half Cauchy distribution was used for u {u
� Cauchy[0,52)}, and the beta distribution was used for a [a
� Beta(0.5,8)]. Note that model coefficients do not need to

be bounded in any way as model output is transformed with

the inverse logit function into the bounded space.

Bayes factors (BFs) were used for model comparison

(Dienes, 2016; Liu et al., 2022; Stone, 2013). There is contro-

versy regarding using BF to substitute for null hypothesis test-

ing (Gelman et al., 2013). However, BF is used here to

compare which model is more likely given the evidence (i.e.,

the data) rather than the likelihood of the observed effect being

due to chance, as is the case in null hypothesis testing (Morey

et al., 2016; Wagenmakers et al., 2016). Other popular meth-

ods, such as the Bayes leave-one-out (LOO) analysis, show

limitations when the ground truth is consistent with the null

hypothesis. Gronau and Wagenmakers (2019) demonstrate

that when the number of observations consistent with the sim-

pler model (i.e., H0) grows larger, LOO’s support for it reaches

an upper bound, and this bound can sometimes be very mod-

est. It was also demonstrated that depending on the prior distri-

bution, as more H0 consistent data is added, LOO’s support for

H0 can decrease. Therefore, to avoid potential bias toward the

more complex model, we use BFs for model comparison.

If BF0 (the BF indicates evidence for H0 over H1) is

between zero and 1/10, the data strongly support H1 over

H0. Conversely, if BF0 is larger than ten, there is strong evi-

dence for the null hypothesis (Jeffreys, 1961; Biel and

Friedrich, 2018; Dienes, 2014; Harms and Lakens, 2018;

Lakens et al., 2020; Sch€onbrodt and Wagenmakers, 2018;

Lee and Wagenmakers, 2014).

For each speech rate condition, a full model was con-

structed with the main effects of syllable structure (onset vs

coda for the slow rate and coda vs NN-resyllabified coda for

the normal rate) and group. The null model was constructed

with group as the only main effect. We also tested whether

the effect of syllable structure differed between item groups

by including an interaction term.

G. Duration analysis of NN-resyllabified and canonical
onset consonants

Although resyllabified sequences may have become simi-

lar to their onset counterparts in terms of spectral pattern, there

TABLE III. Hyperparameters for the binary classifiers.

Hyperparameter Value

Number of units in the first LSTM layer 60

Number of units in the second LSTM layer 30

Dropout rate for the first LSTM layer 0.1

Dropout rate for the second LSTM layer 0.2

Number of units in the linear layer 50

Merge mode Summation

Batch size 16

Optimiser Adam

Learning rate 0.001

Epoch number 70
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is evidence that resyllabifed codas retain their underlying coda

status through duration (Gao and Xu, 2010; Lehiste, 1960).

Specifically, the durations of the resyllabified consonants are

shorter compared to those of the canonical onsets. To test

whether duration differs between the two, the same acoustic

intervals from Sec. II F were used. Bayesian analysis with lin-
ear regression was used to determine if duration of the acous-

tic interval was affected by syllable affiliation (i.e., genuine

onset vs NN-resyllabified coda). Duration was used as the

dependent variable and item group and syllable affiliation

were used as the predictor. The likelihood function used the

normal Gaussian distribution. For the regression coefficient

priors, we used weakly informative Gaussian prior [b
� N(0,52)], and for the sigma prior, we used the half Cauchy

distribution {r � Cauchy[0,52)}.

III. RESULTS

A. Resyllabification classifiers

Figure 8 shows the model performance of the word

sequence classifiers. Since we trained a model for each

speaker separately, the result in Fig. 8 was calculated by

summing over each speaker’s confusion matrix. As shown,

the classifiers achieved near ceiling accuracy on the test split

for the slow speaking rate, indicating that the models could

distinguish the word sequences very well.

Figure 9 shows the model performance on the normal

speaking rate by summing over the results from all of the

speakers. Table IV lists the accuracy rate for the onset,

coda, and all of the sequences. As can be observed, most of

the onset sequences were classified correctly. Thus, the clas-

sifiers trained on the slow speaking rate data also did well

on the onset conditions spoken at a faster rate, such as “Lee

steal” or “Lee stale.” In the coda condition, the classifiers

misclassified a large portion of the sequences as their onset

counterpart, such as classifying “least eel” as “Lee steal.”

These misclassified sequences, presumably due to resyllabi-

fication, are examined in detail later.

B. DTW analysis

Figure 10 shows a bar graph of the cosine distance

between the NN-resyllabified tokens and te slow tokens.

The NN-resyllabified sequences were only compared to

slow sequences in the same group. Figure 10 shows that

when minimising the effect of speech tempo, NN-

resyllabified words, such as “least eel,” is more similar to its

canonical onset counterpart “Lee steal” than to its non-

resyllabified version. In other words, when comparing the

NN-resyllabified condition with the slow onset condition,

the cosine distance is smaller than when comparing with the

slow true coda condition.

The result from the DTW analysis can be reflected by

the spectrograms in Fig. 11. “Doom art” in the middle of

Fig. 11 was classified as “do mart” by the neural network in

Sec. II, therefore, we treated it as a resyllabified token. The

NN-resyllabified “doom art” appears to be more similar to

the canonical onset version “do mart” in the top panel of

Fig. 11. The bottom panel of Fig. 11 shows “doom art” spo-

ken in the slow condition, likely with a glottal stop at the

beginning of the second syllable “art.”

Figure 12 shows the DTW cosine distance between cor-

rectly classified normal rate coda tokens and the slow

tokens. The opposite trend from Fig. 10 can be observed:

the non NN-resyllabified sequences are more similar to their

FIG. 8. (Color online) A confusion matrix of model performance on the

testing split of the slow speech rate. This is an element wise summation of

all of the speakers’ confusion matrices. The colour intensity of tiles reflects

numeric value.

FIG. 9. (Color online) A confusion matrix of model performance on the

normal speech rate. This is an element wise summation of all of the speak-

ers’ confusion matrices. The colour intensity of tiles reflects numeric value.

TABLE IV. Accuracy summary for the normal speech rate tokens.

Coda 0.36

Onset 0.90

Overall 0.63
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canonical coda form in the slow rate condition, which sup-

ports the prediction that correctly classified coda tokens

likely have not been resyllabified, unlike their misclassified

counterparts.

C. Intervocalic consonant alignment analysis

1. Results for slow speech rate

With the consonant intervals described in Sec. II E, we

trained 80 neural networks for each vowel minimal pair in

Table I and obtained an accuracy distribution from the test

set. Figure 13 shows the accuracy rate from the slow speech

rate condition. As Fig. 13 depicts, for /s/ frication in the

intervocalic cluster (i.e., G1), the vowel classification accu-

racy is around chance, indicating that little to no vowel

information was picked up by the binary classifier in the fri-

cation of /s/ for the onset (e.g., “Lee stale”) and coda condi-

tions (e.g., “least ale”). For G2, the intervocalic /m/ contains

more detectable vowel information as the onset of the sec-

ond syllable and less so when it is the coda of the first sylla-

ble. Similar trends can be observed for G3, although with

overall higher accuracy, the binary classifier performs better

when /p/ is the onset of the second syllable.

To test the hypothesis via model comparison, we use

the BF, which can offer support for a model based on the

observed data (Dienes, 2014; Harms and Lakens, 2018). The

posterior distributions of the model parameters are not very

FIG. 10. (Color online) The DTW cosine distance between resyllabifed nor-

mal rate sequences and slow sequences. The error bars represent 95% of the

confidence interval. G1, “least eel,” “least ale,” “Lee stale,” “Lee steel”;

G2, “doom art,” “doom eat,” “do mart,” “do meet”; G3, “coop art,” “coop

eat,” “coo part,” “coo Pete.”

FIG. 11. (Color online) Mel-spectrograms of three word sequences from one speaker.

FIG. 12. (Color online) The DTW cosine distance between non NN-

resyllabifed normal rate sequences and slow sequences. The error bars rep-

resent 95% of the confidence interval. G1, “least eel,” “least ale,” “Lee

stale,” “Lee steel”; G2, “doom art,” “doom eat,” “do mart,” “do meet”; G3,

“coop art,” “coop eat,” “coo part,” “coo Pete.”
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informative as predictions need to be transformed with the

inverse logit function, and their details are included as sup-

plementary material.4 Therefore, the predicted distribution

from 100 random samples is displayed in Fig. 14, which

shows that the model with an interaction term exhibits the

best predicative power. BF0 was very close to zero (i.e.,

BF1 is larger than ten). Hence, the data indicate that the

alternative model, i.e., onset and coda conditions are differ-

ent, is highly more likely because model accuracy differs

greatly. We also constructed a model with an interaction

effect between item group and syllable structure.

BFinteraction (the BF indicating support for the interaction

model over the full model) is larger than ten, which pro-

vides strong support for the interaction model. To conclude,

the data show strong evidence for the effect of syllable

structure, which differs greatly between groups. In other

words, there is robust effect of syllable structure for G2 and

G3 but likely not for G1.

FIG. 13. (Color online) Vowel classification accuracy by group from the

slow speech rate condition. G1, “least eel,” “least ale,” “Lee stale,” “Lee

steel”; G2, “doom art,” “doom eat,” “do mart,” “do meet”; G3, “coop art,”

“coop eat,” “coo part,” “coo Pete.”

FIG. 14. (Color online) Model predictions against 100 random samples for the slow rate, where y refers to the observed data and yrep refers to predictions.

The columns correspond to item groups and the rows correspond to model type.
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2. Results for normal speech rate

The accuracy distributions from the normal speech rate

condition are observed in Fig. 15. Note that the coda condition

only contained NN-resyllabified sequences. Figure 15 shows

that the amount of vowel information detected during the

acoustic consonantal intervals (e.g., /s/ frication in “Lee stale”)

was very similar between the NN-resyllabified coda and onset

sequences. The item group wise trends are similar to the slow

rate condition in Fig. 13. The aspiration from the plosive onset /

p/ contains the most vowel related energy, and the nasal mur-

mur from /m/ contained enough vowel information for the clas-

sifier to perform above chance. For /s/ in G1, the accuracy

distributions are centered at chance level (i.e., 50%), indicating

that little to no vowel information was detected by the binary

classifiers during the frication intervals.

The predicted distributions from the Bayesian analysis

results are shown in Fig. 16. The posterior distributions of

model parameters can be found in the supplementary

FIG. 15. (Color online) Vowel classification accuracy by group from the

normal speech rate condition. The coda condition here refers to the NN-

resyllabified coda sequences in the normal speech rate condition. G1, “least

eel,” “least ale,” “Lee stale,” “Lee steel”; G2, “doom art,” “doom eat,” “do

mart,” “do meet”; G3, “coop art,” “coop eat,” “coo part,” “coo Pete.”

FIG. 16. (Color online) Model predictions against 100 random samples for the normal rate, where y refers to the observed data and yrep refers to predictions.

The columns correspond to item groups and the rows correspond to model type.
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material.4 Visually, the predicted distributions do not differ

too much from one another. BF0 was larger than ten, signi-

fying that the data provide more support for the null model.

Figure 15 indicates that model accuracy might differ slightly

between the NN-resyllabified coda and onset sequences for

G1. In other words, there might be an interaction between

the effect of syllable structure and group. BFinteraction (the

BF indicating support for the interaction model over the null

model) is smaller than 1/10, therefore, there is little to no

evidence suggesting that accuracy differs between onset and

NN-resyllabified coda tokens for G1.

D. Duration of intervocalic consonants

The duration of the acoustic intervals for the canonical

and NN-resyllabified onsets are shown in Fig. 17. Congruent

with previous findings (Gao and Xu, 2010; Lehiste, 1960),

NN-resyllabified codas are shorter than the canonical onsets.

Predictions of the Bayesian analysis are displayed in Fig.

18, and the parameter posterior distributions are included as

supplementary material.4 The effect of syllable structure

was estimated to be around 0.01 (l¼ 0.008 [0.005,0.012]).

BF0 is smaller than 1/10, which indicates that duration dif-

fers between syllable structures.

IV. DISCUSSION

Previous debates on the phenomenon of resyllabifica-

tion have mainly relied on phonotactic analysis, listener

judgment, or phonetic properties such as voicing and aspira-

tion. In this study, we tested an alternative approach that

examines articulatory coordination and coarticulation, as

reflected in the spectral patterns, using machine learning

models with acoustic data. The findings have offered a new

perspective on the nature of resyllabification.

A. Overall findings

The results of computational analysis have largely con-

firmed the two predictions laid out in the Introduction. The

deep learning models trained on slow speech rate data misi-

dentified coda sequences by classifying them as their onset

counterparts, and DTW analysis showed that for all three

consonants (i.e., /st/, /p/, and /m/), the sequences identified

as resyllabified were more similar to their onset versions

than the original coda versions. Moreover, the correctly

classified sequences are more similar to their canonical coda

version, which indicates that they likely have not undergone

resyllabification. Therefore, the first prediction—codas in

FIG. 17. (Color online) The duration of onset and NN-resyllabified conso-

nants from the normal speaking rate condition.

FIG. 18. (Color online) Model predictions against 100 random samples for the duration results, where y refers to the observed data and yrep refers to predic-

tions. The columns correspond to item groups and the rows correspond to model type.
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the NN-resyllabified sequences spectrally resemble canoni-

cal onsets more than their canonical coda version—was sup-

ported. The results from the binary classifiers confirm the

second prediction by showing that there was a similar

amount of vowel information detected in the NN-

resyllabified onsets and canonical onsets but not between

the true codas and onsets from the slow condition. This sug-

gests that the underlying articulation was alike between the

NN-resyllabified and canonical onsets. Therefore, the results

confirm previous findings of resyllabification in English (de

Jong, 2001; Gao and Xu, 2010; Stetson, 1951). In connected

speech, resyllabification can happen when a coda consonant

is followed by a vowel-initial syllable, and it applies to sin-

gleton consonants and consonant clusters. The coda status of

the NN-resyllabified consonants, however, seems to be par-

tially retained through duration: Resyllabified codas are

shorter compared to canonical onsets. This is consistent

with the findings of Lehiste (1960) and, more recently, Gao

and Xu (2010). Whether or not listeners can perceive the

durational cues, though, needs to be tested in future studies.

Furthermore, future studies can investigate the effect of

resyllabification and syllable position on consonant duration

by examining NN-resyllabified and non NN-resyllabified

consonants.

It is also interesting to note the relation between resylla-

bification and speech rate. When syllable duration is around

350 ms in the current study, the rate of inferred resyllabifica-

tion already reaches above 50%. At 2.86 syllables per sec-

ond, this speech rate is rather slow compared to the typical

normal articulation rate of 5–7 syllables per second in con-

nected speech (Eriksson, 2012; Tiffany, 1980). Yet, this is

consistent with the finding by de Jong (2001) that resyllabi-

fication starts to take place as speech rate increases to

around 350 ms per syllable, and resyllabification rate

approaches 100% at 150 ms per syllable. The implication is

that the tendency for resyllabification must be very strong so

that it would be difficult to avoid at normal speech rate.

The finding of resyllabification aligns with the syllable

model shown in Fig. 1, which is based on how the predic-

tions illustrated in Fig. 2 were derived. That is, once a coda

consonant is resyllabified as the onset of the next syllable,

as determined by the deep learning model and DTW analy-

sis, its articulation is overlapped with the vowel of the next

syllable, as determined by the binary classifiers. This is con-

sistent with the recent finding that the movements toward

the vowel and onset C are synchronised at syllable onset

(Liu et al., 2022; Liu and Xu, 2021; Xu et al., 2019), which

is denoted by the rime and onset tiers in Fig. 1.

B. Coarticulation resistance and dimension-specific
sequential target approximation (DSSTA)

CV synchronisation does not mean that vowel informa-

tion is always detectable from the syllable onset or at the

same time point, however, which is partly due to coarticula-
tion resistance, i.e., the ability of a segment to restrain coar-

ticulatory effects from adjacent segments (Bladon and Al-

Bamerni, 1976; Recasens, 1984). Recasens (1984) proposes

that the degree of coarticulation resistance is dependent on

the amount of constraint that a consonant or vowel places on

the tongue body. Xu (2020) further proposes that the phe-

nomenon is a mechanism that resolves the articulatory con-

flicts between consonants and vowels when they both

involve the same articulator while being coproducedd to

achieve C-V co-onset (Fig. 1). According to this mecha-

nism, namely, the dimension-specific sequential target
approximation (DSSTA) mechanism, different (e.g., vertical

or horizontal) dimensions of an articulator can be engaged

in executing only a single target, which is either consonantal

or vocalic, during C-V coproduction. This mechanism maxi-

mises the degree of C-V synchronisation while allowing

individual articulator dimensions to be engaged in only

sequential target approximation movements, i.e., without

gestural blending (Saltzman and Munhall, 1989) given its

computational difficulty (Tilsen, 2019). The following dis-

cussion will offer an account of the differences in the

detected vowel information in the present results that

include DSSTA as a critical mechanism.

The amount of detectable vowel information in the con-

sonant interval follows the order of group 1 (/s/) < group 2

(/m/) < group 3 (/p/). This order may result from two differ-

ent sources. The first source, which is more obvious, is the

differences in their relative timing. The frication in group 1

and nasal murmur in group 2 correspond to the articulatory

closure of the consonants, whereas the aspiration in group 3

corresponds to the articulatory release, which occurs after

the closure. This could partially explain why more vowel

information was detected in group 3 than in the other two

groups. The second source is coarticulation resistance due to

DSSTA. The consonant /s/ in group 1 involves the tongue

body to form a groove needed to direct the airflow toward

the front teeth (Borden et al., 2003). The involvement of the

tongue body would generate serious coarticulation resis-

tance in /s/ in group 1 because the horizontal and vertical

dimensions of the tongue body are likely involved in

approaching the target of the sibilant (Recasens et al.,
1997). In contrast, the articulation of /m/ in group 2 requires

only lip closure without constraints on the tongue. This

would account for the greater amount of detectable vowel

information in group 2 than in group 1. The lack of tongue

involvement in labial consonants is true of /p/ in group 3 as

well. Yet, there, it is added on top of the fact that aspiration,

where the binary classification was performed, occurs after

the stop closure, thus, giving rise to the maximal vowel

information detected by the classifier. Note that had one of

the syllables in group 1 contained a rounded vowel, such as

/u/, DSSTA would predict that vowel information would be

better detected because lip movements are not in direct con-

flict with the articulation of /s/. This possibility can be tested

in future research.

C. Chance level performance of the binary classifier
for G1 sequences

The lack of detectable vowel information in /st/ even in

normal speech rate may seem to contradict the recent
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finding that vowel articulation could be detected at the same

time as the onset of a consonant cluster (Liu and Xu, 2021).

That study found that for a minimal triplet, such as “slit” vs

“slot” vs “flot,” the difference between “slit” and “slot”

could be detected around the same time as “slot” and “flot,”

which is before the frication onset. However, we have noted

three major differences between Liu and Xu (2021) and the

current study. First, Liu and Xu (2021) only looked at clus-

ters such as /sp/ and /sl/, but did not consider /st/ as in the

current study. /p/ does not require any tongue movement,

thus, is less coarticulation resistant than /l/ and /t/. In terms

of /l/ and /t/, both are alveolars, and Iskarous et al. (2013)

found that /t/ is more coarticulation resistant than /l/ in the

vertical dimension for the jaw and tongue blade. This could

be a result of the requirement of a full closer for /t/ as a plo-

sive but not for the approximant /l/. /t/ being more coarticu-

lation resistant means that it may have delayed much of the

vowel movements. Second, much larger vowel contrasts

were involved in Liu and Xu (2021)—/slit/ vs /slot/—than

those in the present study—/steal/ vs /stale/. The greater the

vowel contrast, the greater the magnitude of tongue move-

ment in the articulatory dimensions, which are not essential

for the consonant articulation, and the more detectable the

vowel information is during the frication interval. Third, the

target words were produced with a carrier in Liu and Xu

(2021), which made the speech more fluent than the isolated

word sequences spoken in the present study. The average

speech rate in Liu and Xu (2021) was about 140 ms per syl-

lable compared to 350 ms per syllable in this study. It is

hard to tell, however, if any of these factors are decisive or

if all of them jointly contribute to blocking the vowel infor-

mation from being present in the /s/ frication.

D. Above chance performance of the binary classifier
for the slow coda sequence in G2

One of the most surprising results of this study, as

shown in Fig. 13, is the finding that for the slow speaking

rate, there is information of the upcoming vowel in the inter-

vocalic consonants when they are in the coda position of the

first syllable (e.g., “doom art”; “coop art”), albeit less than

when they are in the onset position. The detection of vowel

information in a non resyllabified coda may seem particu-

larly striking given the clear temporal gap or glottalisation

between the two syllables, as can be seen in Figs. 19 and 20.

However, the glottal component, as can be judged auditorily

and spectrally, corresponds to a glottal stop or glotallisation

(which is also a form of glottal stop, Redi and Shattuck-

Hufnagel, 2001; Garellek, 2013), which serves as the onset

of the syllable /art/. A glottal stop, just like that for other

stops, such as /b, d, g/, would be fully coarticulated with the

following vowel (Xu, 2020), as illustrated in Fig. 2. This

means that the target approximation of /a/ must have started

some time well before the glottal closure (Liu et al., 2022;

Xu and Liu, 2007). This can indeed be observed in Fig. 19,

i.e., the brief yet clearly visible labial release after the nasal

murmur of /m/ and the F2 transition from “doom” to “eat”

during and right before the glottalised interval in Fig. 20.

The high vowel detection rate of around 80% for /p/ and

65% for /m/ means that the vowel target approximation may

have started during (though probably not before) the closure

of the coda, but exactly when during the closure, however,

awaits future investigations.

E. Broader implications

The finding of a clear tendency toward resyllabification

in this study provides further support for the synchronisation

model of the syllable (Xu, 2020) beyond recent findings

(Liu et al., 2022; Liu and Xu, 2021). According to the

model, there is a strong demand for onset consonants to syn-

chronise (i.e., fully overlap) with the vowel, and a high time

pressure against the preservation of coda consonants. This is

partially consistent with the maximum onset principle

(Pulgram, 1970; Selkirk, 1982) but offers specific articula-

tory details that can be tested in the acoustic signals as per-

formed in the present study. Because the syllable is essential

and highly controversial for theoretical models in linguistics

as well as psycholinguistics, the current results may have

implications for many broader issues about speech produc-

tion, but here we focus only on two major issues. The first is

about the influential psycholinguistic model of speech

FIG. 19. The spectrogram of “doom art” from a male speaker.
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production (Levelt et al., 1999), which proposes a step-by-

step model of how speech production proceeds from lexical

selection to articulation. The results of the present study are

relevant for the phonological encoding to articulation stages

in the model. The most relevant result is probably the cor-

roboration of previous findings that resyllabification is con-

tingent on local articulation rate: highly likely at normal rate

but optional at slow rate (de Jong, 2001; Stetson, 1951).

This means that until local speech rate is known, the articu-

latory affiliation of coda consonant is undetermined, which

would suggest that either syllables retrieved from memory

(during phonological encoding) are incomplete in terms of

segment affiliation or the retrieved syllables are reorganised

by resyllabification, and this reorganisation would occur

after the phonetic encoding stage, just before articulation.

The finding of rate dependency of resyllabification is

further relevant to any psycholinguistic model of speech

production given the known extensive use of speech timing

by linguistic functions. Specifically, local articulation rate,

which is jointly determined by syllable duration and pause

duration, is used to encode multiple levels of boundary

strength (Lehiste, 1972; Klatt, 1976; Nakatani et al., 1981;

Wagner, 2005; Wang et al., 2017). Thus, resyllabification is

likely a regular variable of connected speech beyond word-

level phonetics. In fact, it is likely part of the process of pro-

ducing connected speech that involves many other phonetic

reorganisations, including deletion of intervocalic coda [as

opposed to resyllabification in some languages; e.g., tone

sandhi (Chen, 2000), intrusive /r/ (Gick, 1999), and vowel

hiatus breakers (Mudzingwa, 2013), etc]. There is already

evidence that some of these reorganisations may be cogni-

tively real, at least in the case of tone sandhi (Zhang et al.,
2015). These phonetic reorganisation tactics could, there-

fore, be included in an enhanced psycholinguistic model of

speech production, and their cognitive reality could be

experimentally investigated.

The second broad issue is whether the present results

can be interpreted in terms of ambisyllabicity. The original

proposal of ambisyllabicity was motivated by the lack of

phonetic means to clearly determine syllable boundaries,

hence, the affiliation of intervocalic segments had to rely on

phonotactic well-formedness, and for cases where ill-formed
syllables would occur if an intervocalic consonant can only

have a single affiliation, e.g., happy, attic, hobby, the solu-

tion is ambisyllabicity, i.e., simultaneous affiliation to both

adjacent syllables (Kahn, 1976). Exactly how such double

association is realised phonetically, however, has remained

unclear. Gick (2003) has proposed that some intervocalic

segments, e.g., /l/ and /w/, actually consist of a C-gesture

and a V-gesture, which are simultaneously phased to the sur-

rounding syllables and, therefore, ambisyllabified. The pho-

netic evidence is in terms of different time delays in the

achievement of the respective C and V gestural goals, which
differs from the onset alignment that the current study has
examined. Although this study is not designed for examining

ambisyllabicity, at least one phonetic cue is shown to have

the potential to indicate the original coda status of a conso-

nant, namely, the shorter duration of NN-resyllabified coda

than the original onset consonant (also cf. Lehiste, 1960).

However, if CV onset coarticulation is considered as the

sole indicator, the NN-resyllabified codas are unambigu-

ously overlapped with the following vowel according to the

present data.

F. Caveats

Two of the resyllabification classifiers satisfied the early

stopping criteria, which meant that their training epochs

were determined with the test split rather than the pilot data.

This could have slightly inflated the overall accuracy

reported for the slow condition in Sec. III A. However, the

use of the classifier is to classify normal rate sequences,

which is the focus of the study, and their accuracy has not

been inflated as the normal rate data were not used in any

way during training.

The possibility of false negatives cannot be completely

ruled out regarding the chance level performance of the

binary classifier for G1. Providing that upcoming vowel

related acoustic information exists during frication, two sce-

narios could result in false negative detections:

(1) Chance performance due to chance, and

FIG. 20. The spectrogram of “doom eat” from a female speaker.
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(2) the neural networks are not powerful enough to detect

the subtle difference.

The first scenario refers to the opposite of what is

described in Combrisson and Jerbi (2015), namely, the

model achieved chance performance by chance. This could

be due to the randomised nature of the data split and/or

model parameter initialisation (not hyperparameters).

However, this possibility is accounted for in the current

study by repeatedly training 80 classifiers on randomised

train and test data and analysing the resultant accuracy dis-

tributions. For the second scenario, despite tuning the hyper-

parameters with data from pilot recordings, the neural

network was not tuned for each speaker and consonant type

separately. In practice, it is very difficult to construct a per-

fect network regardless of the type of data in question.

Therefore, there is a small possibility that the binary classi-

fier could not detect a difference between groups in G1 due

to the lack of robustness. Future studies could incorporate

articulatory data as it might provide more detailed informa-

tion than acoustic data in the current study (Tilsen, 2020).

On the other hand, the possibility of false positives can-

not be ruled out either. Providing that the test dataset is large

enough, machine learning models cannot always achieve

100% accuracy. The same applies to the word sequence

classifiers in this study. This is evident in the results from

the slow speech rate in Sec. III A. Although overall accuracy

is high, there were still coda sequences classified as their

onset counterpart, as well as cases where onset sequences

were classified as their coda counterpart. At the slow speech

rate (two syllables per second, on average), is it unlikely

that resyllabification occurred, hence, these misclassifica-

tions are likely genuine incorrect classifications (i.e., not

due to syllabification). As for the normal rate results, there

should also exist genuine misidentifications like those in the

slow rate, which is likely why there are onset sequences

classified as their coda counterparts. This means that a small

number of the NN-resyllabified sequences might be genuine

misidentification as well. However, the normal rate results

show that onset sequences reached an accuracy rate of 90%

and only 36% was achieved for the coda sequences.

Therefore, a large portion of the NN-resyllabified tokens are

likely due to syllabification structure and not just simple

false positives.

Also, the study did not conduct a parallel analysis of V2

binary classification for the correctly classified coda tokens.

Unlike the DTW analysis, there are too few correctly classi-

fied coda sequences in the normal rate for training neural

network classifiers, especially for G1 and G2. This issue is

exacerbated by the imbalance of speakers in the data, i.e.,

some speakers had zero or a very small number of correctly

classified tokens in certain item groups. Future study can

potentially avoid this issue by increasing the number of rep-

etitions in the normal rate condition.

Finally, as noted in Sec. IV B, the lack of detectable

vowel information in group 1 might have been avoided had

one of the syllables in each pair contained a rounded vowel.

This is because despite its involvement of the tongue body,

the articulation of /s/ is not in direct conflict with the lip

movements of the coproduced vowel. This possibility can

be investigated in future research.

V. CONCLUSION

We used deep learning models with acoustic data to

investigate the phenomenon of resyllabification. The models

trained on slow speech data can be used to infer resyllabified

sequences in normal speech rate data. This was verified by

DTW analysis, which revealed that compared to slow

speech, NN-resyllabified sequences were more similar to the

true onset sequences than their original coda productions.

The acoustic intervals of intervocalic consonants were

examined with bidirectional RNN models. We found that a

similar amount of vowel information was detected in the

intervocalic consonants between the NN-resyllabified codas

and genuine onsets, suggesting that the coarticulation struc-

ture of the former resembles that of the latter. For slow

speech rate, the results show that the articulatory structures

likely differed between the onset and coda sequences.

Surprisingly, however, vowel information can still be

detected from the closure and release of labial coda conso-

nants, indicating that the articulation of the vowel has

started during the acoustic interval of a coda consonant even

when it is not resyllabified.

APPENDIX

The hyperparameter details for the multiclass classifier

and the binary classifiers are shown in Tables II and III,

respectively.
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