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Abstract

Previous research has shown that parameters of the quantitative
Target Approximation model (qTA) proposed by Prom-on and
Xu can be directly extracted from natural speech with high ac-
curacy through analysis-by-synthesis implemented in PENTA-
trainers. While this may raise the possibility that PENTAtrain-
ers actually simulate natural acquisition of prosody production,
itis questionable that the human brain actually replicates the full
articulatory mechanics represented by qTA in order to learn and
control prosody production. In this paper we explore if a much
simpler function can be used to extract at least some of the qTA
parameters. We first managed to reduce the number of qTA pa-
rameters from three to two by evaluating their relative sensitiv-
ity. We then tested a pursuit function that learns only pitch target
height and slope. Using a corpus of Mandarin utterances vary-
ing in lexical tone and focus, we show that parameters learned
by the pursuit function can be used in qTA synthesis to generate
FO contours closely resembling those generated with parameters
learned with qTA-based analysis-by-synthesis, with the advan-
tage of having a much simpler learning algorithm. These results
suggest that it is possible to learn articulatory control parame-
ters for prosody without fully replicating the mechanical pro-
cess itself.

Index Terms: FO contour modelling, target approximation, pur-
suit curve

1. Introduction

It has been recently demonstrated that FO contours closely
resembling those of natural speech can be generated by the
PENTA model [1] with a small number of functionally specific
pitch targets extracted directly from raw speech data [2, 3]. The
FO contour generation in those studies is done by the quantita-
tive target approximation model (qTA), which simulates a third-
order linear system [2]. Two automatic algorithms have been
developed, as implemented in PENTAtrainer1 [4] and PENTA-
trainer2 [5], to extract the parameters of qTA model from func-
tionally annotated speech data using analysis-by-synthesis con-
trolled by either exhaustive [4] or stochastic [5] optimizations.
Such parameter extraction processes could be imagined as anal-
ogous to the natural speech acquisition process in which the
child presumably learns to speak by discovering, also through
analysis-by-synthesis [6], the articulatory control parameters
needed to generate adult-like speech patterns. There are two po-
tential problems with this analogy, however. The first is that the
number of analysis-by-synthesis cycles is unrealistically large.
The second problem is that the analogy assumes that either the
child overtly imitates the same adult utterance over and over
again, or develops a virtual replica of the qTA model in the
brain for both learning and controlling the production of tone
and intonation. With these problems in mind, in this paper we
explore an alternative learning mechanism that a) uses a simpli-

fied model that approximates the core properties of qTA, and b)
does not require analysis-by-synthesis searching process.

We will first try to reduce the model complexity from qTA
by reducing the number of parameters from three to two by
comparing the relative sensitivities of the three model param-
eters of qTA. We will then test a “pursuit” function [7], using a
corpus of Mandarin utterances varying in lexical tone and focus,
to show that the pursuit function can learn the two remaining
target parameters directly, with the learned values very simi-
lar to those found by exhaustive analysis-by-synthesis as imple-
mented in PENTAtrainer].

2. Pitch modeling
2.1. Target Approximation model

The quantitative target approximation model (qTA) assumes
that continuous surface FO contours are the results of succes-
sive, yet non-overlapping underlying articulatory movements,
each approaching an underlying target associated with a local
host syllable. A target can be either static or dynamic (Figure
1), which can be represented by a simple linear equation:

x(t) = mt +b, (H

where b is target height, m is target slope and ¢ is time relative
to the onset of the host syllable.
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Figure 1: Target approximation model.

The qTA model is a third-order critically damped linear sys-
tem as represented by the following equation

fo(t) = o(t) + (c1 + cat + cst®)e ', )

where fo(t) is the complete form of the fundamental frequency
in semitones, x(t) is the forced response and the polynomial
and the exponential are the natural response [2]. A is the rate of
target approximation, i.e., how rapidly the target is approached.
The transient coefficients c1, c2 and c3 are jointly determined
by the initial FO dynamic state of the syllable, consisting of FO
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level, velocity, and acceleration transferred from the offset of
the preceding syllable:

c1 = fo(0) — b, (3)
c2 = f5(0) + c1A —m, )
c3 = (f3'(0) + 2c2X — c10?) /2. )

At the end of the syllable, the final FO dynamic state is
transferred to the next syllable to become its initial state, which
results in a smooth and continuous FO trajectory across the syl-
lable boundary.

2.2. Control parameter sensitivity assessment

In order to find a simple model that can approximate the qTA
model we examined the sensitivity of FO contours generated by
qTA to variations in the three pitch target parameters: m, b, \.

A six syllable Mandarin phrase, /w6 you yi wei yd y1/, was
chosen and recorded by a male native speaker of Mandarin.
PENTAtrainerl [4] was used to find an optimal combination
of m, b and \. Then, three sets of FO contours were generated
by varying one parameter while holding the other two constant
at their optimal values. The difference between the generated
contour and the optimum contour was then analysed in terms of
semitone shifts, as described in the paragraphs below.

Figure 2 displays the error vectors for which the target slope
m and TA rate )\ are set to be the same as the optimal values but
target height b is given five different values. The graph is from
the rising tone syllable /wé/. The pattern distributions of er-
ror vectors are very regular — all the curves gradually move
away from x-axis at the same pace. The common starting point
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Figure 2: Error vectors with varying b while m and X are the
same as the optimal values. Measured in semitone.

is because qTA is a sequential model, and all variations in the
current syllable step from the same offset value of the previous
syllable. Because /wé/ is the first syllable of the chosen utter-
ance, the starting point is always zero. When the values of b
are equidistant from each other, the error vector curves exhibit
an even distribution. Note that the middle curve represents the
error vector resulting from subtracting the natural FO contour
of the syllable from the contour generated with the “optimal”
parameters. The very small deviations from the x-axis indicates
that the two contours are very similar to each other.

Figure 3 displays error vectors of contours that vary in m
while b and A are held constant at their optimal values. The
fusiform shaped distribution here is due to the fact that in qTA
b is defined as the ending point of a target. As a result, all
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Figure 3: Error vectors with varying m while b and X are the
same as the optimal. Measured in semitone.

the generated contours have a fixed tail height by the end of
the syllable, i.e., they shared the same offset. This means that,
when b is held at its optimal value, the offset FO of a syllable is
virtually guaranteed to be near optimum.
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Figure 4: Error vectors with varying A while m and b are the
same as the optimal. Measured in semitone.

Figure 4 displays error vectors of cases where only A is set
to vary from the optimal value. The deviations are very small,
indicating a much weaker effect than those of b and m. How-
ever, this does not mean that A is unimportant in all cases. It
has in fact been demonstrated that, when modelling data con-
tain unstressed syllables and the neutral tone, the role of A\ is
crucial [3, 8].

The conclusion is that among the three qTA parameters, \,
i.e., target approximation rate, is less important than b, target
height and m, target slope, at least for the present data set. It
further suggests that a learning procedure that can find close-
fitted target heights and target slopes may provide a good ap-
proximation to qTA, especially for data where A does not have
important functional significance.
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2.3. Pursuit functions for pitch target estimation

The qTA model was designed to generate contours from un-
derlying pitch targets. It is a third-order differential equation
which contains non-linear elements. In this form it is not easy
for learning, i.e., finding optimum underlying pitch targets from
input signal. There is no analytical expression for the inverse of
qTA, and so analysis-by-synthesis has to be used to estimate
the model parameters from natural speech data. To make math-
ematical inversion possible, we investigated a method involving
“pursuit” functions.

A pursuit curve is the path of an object that seeks to pur-
sue another moving object. Consider a simple case of a hound
chasing a fox, where the fox is moving at constant speed and
constant direction. The pursuit curve is found under the as-
sumption that the direction of the hound is always towards the
current location of the fox, i.e. that the tangent of the pursuit
curve at time ¢ is directed towards the location of the hound at
time ¢. Figure 5 shows an example pursuit curve.
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Figure 5: A pursuit curve. Arrows indicate velocity directions.

In the situation shown in Figure 5, where the pursued object
is moving at constant velocity, the pursuit curve can be shown
to have the form of an analytic equation

H(t) = Fo + vt + (Ho — Fo)e /", (6)

where Ho, Fy, v, t, [ denotes the initial position of the hound,
initial position of the fox, velocity of the fox, time series and
the “time lead” of the fox, respectively. We can interpret this
as the pursuer attaining the location and velocity of the pursued
according to some exponentially decreasing value of time. The
rate of attainment is simply related to the time lead of the pur-
sued.

If we use a pursuit curve to simulate the target approxima-
tion process, the linear path of the pursued becomes the under-
lying pitch target, the pursuit curve is the observed FO contour,
and the initial velocity of the pursuer becomes the initial condi-
tions for the FO at syllable onset.

As a simpler target estimation function, the pursuit func-
tion itself does not fit FO contours as cleanly as qTA since it
allows for instantaneous changes in velocity and acceleration at
syllable boundaries. This can lead to rather unnatural looking
FO contours as the pursuer changes from one pursued target to
another, as can be seen in Figure 6.

Since, however, we only want a simple way of deriving
pitch targets represented by b and m from the input contours,
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Figure 6: Clear sharp turning points of pursuit curve at sylla-
ble boundaries. (Natural contour in blue, qTA fitted contour in
green, pursuit curve in red.)

these discontinuities may not be important. This is because,
once the targets are learned, we will still use qTA to generate
the contours from the targets, free of discontinuities at syllable
boundaries.

In the next section we will compare the pursuit function
with qTA-based analysis-by-synthesis in terms of quality of fit
using a small corpus of utterances.

3. Pitch target learning
3.1. Data

480 utterances recorded from a female native Mandarin Chinese
speaker were used to explore the fit of the target approximation
model. This corpus was originally collected to examine the ef-
fects of lexical tones and focus on the formation and alignment
of FO contours [9]. The corpus consists of 24 sentences, each of
them was said with four different focus locations and repeated
five times. Every sentence consists of three Chinese words, the
first and the third are bisyllabic and the second is monosyllabic.
So there are five syllables in each sentence (Table 1). Further,
the second, third and fourth syllables have varying lexical tones,
which were the target syllables for the current experiment. The
four focus conditions are: neutral focus (no focus), initial fo-
cus (on word 1), medial focus (on word 2) and final focus (on
word 3). When a syllable is on-focus, its preceding syllable is
pre-focus and its following syllable is post-focus.

Table 1: Tone patterns and corresponding sentences used as
recording material. H, R, L, and F represent high, rising, low,
and falling tones, respectively.

Word 1 Word 2 Word 3

HH maomi
LH madao

HH maom1 H mo
HR maomi R na
HL maomi F mai
HF maomi

3.2. Method

The goal of the experiment was to learn the optimal pitch tar-
get slope and height, for each lexical tone in each focus con-
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dition, using pitch targets learned by both qTA-based analysis-
by-synthesis and the pursuit curve function. Results are then
compared in terms of similarity of the discovered targets, over-
all quality of fit.

Both methods were implemented in Python. In the case of
qTA, the exhaustive local search algorithm proposed by [2] was
used, with rate of target approximation () held constant at 41.0.
The algorithm read the data and parameter constraints, and then
iteratively tested all combinations of target values using a set
of possible values for target height and target slope for each
utterance separately. The parameters that showed the lowest
sum square error between the generated and natural FO contours
for each utterance were chosen as the target. The optimal targets
for each utterance were then averaged to derive different targets
for each tone and focus condition.

For testing the pursuit function, the time lead of the pursued
(1) was fixed at 0.075s. Like the qTA approximation rate param-
eter, the pursued time lead controls the rate at which approxi-
mation takes place and might be considered a characteristic of
the speaker or speaking style [8, 10].

To fit the pursuit function, a linear least squares method was
used over the whole data set. Each observed FO measurement
was expressed in terms of a number of coefficients applied to a
vector of 32 unknowns, being the target height and slopes of the
4 tones in the 4 focus conditions. The least squares fit derives
the values of the 32 unknowns that minimise the squared error
of prediction of the data by the model.

3.3. Results and evaluation

The value of the pursuit function is that it provides a direct
means to determine the optimal pitch targets from the measured
FO. We would still like those targets to be compatible with qTA,
since as mentioned above, the pursuit function has some intrin-
sic inadequacies for FO contour generation.

Table 2: Learned functional pitch targets. For focus function,
PRE, ON, and POS stand for pre-focus, on-focus, and post-
focus regions, respectively.

Focus  Tone Target slope (st/s)  Target height (st)

qTA pursuit qTA pursuit

PRE H 2.1 7.4 19.0 18.2
R 30.7 17.7 11.6 12.9
L -16.4 -40.9 16.5 20.1
F -29.5 -27.3 21.5 21.6
ON H 2.5 33 19.4 19.3
R 28.7 12.5 10.8 13.0
L -79.1 -108.4 21.6 27.0
F -56.4 -43.2 28.3 27.1
POS H -11.6 -16.8 16.4 17.3
R 11.9 -1.9 11.3 13.1
L -79.7 -119.0 20.4 273
F -36.8 -35.5 20.1 20.4

As shown in Table 2, the pitch target heights found using
the pursuit function were very similar to those found using qTA.
There are greater differences between the estimated pitch target
slopes, but they are broadly of similar sign and size.

Figure 7 illustrates FO contours generated from the qTA tar-
gets and pursuit targets shown in Table 2 for an utterance con-
taining a “LHL” syllable sequence with focus on the second syl-
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Figure 7: Contour generated with pursuit targets is very close
to the one with qTA targets. (Natural contour in blue, contour
generated with qTA targets and pursuit targets are in green and
red, respectively.)

lable. The generated contours for qTA and the pursuit function
are similar to each other and to the measured FO.

The quality of the targets obtained by the two methods was
evaluated by measuring the root-mean-square error (RMSE) of
prediction of the data set using the qTA model and the dis-
covered targets. For the targets found by qTA-based exhaus-
tive search, the RMSE of prediction is 1.83 semitones (Pearson
r = 0.8453). For the targets found by the pursuit function, the
RMSE is 1.81 semitones (Pearson » = 0.8458). Thus the new
method of estimating underlying targets is as least as good as
using the qTA model directly for inversion.

In terms of learning efficiency, although the linear least
squares with pursuit function can get target parameters in a
blink of time, we didn’t expect it to be a replacement of sim-
ulated annealing as implememnted in PENTAtrainer2. Instead,
we hope in future work, it is possible that further improvements
can be made, perhaps by seeding the qTA model with pursuit
function found targets and then applying some iterative hill-
climbing method to find a local minimum error of prediction.

4. Conclusion

In this study, we have shown how a pursuit function can be used
in place of the qTA function for the problem of finding under-
lying pitch targets from measured FO. From the results we can
see that the pursuit function enabled a direct means of finding
the pitch targets, and more importantly, that the learned targets
could be reused by the qTA model for FO contour production.
This finding provides support for our hypothesis that without
fully replicating the mechanical process itself, articulatory con-
trol parameters for prosody can be learned with simpler learning
process which is more conceivably developed in motor control
by the human brain.

S. Acknowledgments

We would like to thank Dr. Mark Huckvale (UCL) for originally
suggesting the study. The content of the paper has been greatly
improved by his helpful comments.

Campbell, Gibbon, and Hirst (eds.)

Speech Prosody 7, 2014 1020



SP-7 Conference Programme

6. References

[1] Xu, Y., “Speech melody as articulatorily implemented com-
municative functions,” Speech Communication, vol. 46, no. 3,
pp. 220-251, 2005.

[2] Prom-on, S., Xu, Y., and Thipakorn, B., “Modeling tone and into-
nation in Mandarin and English as a process of target approxima-
tion,” The Journal of the Acoustical Society of America, vol. 125,
p. 405, 2009.

[3] Xu, Y. and Prom-on, S., “Toward invariant functional representa-
tions of variable surface fundamental frequency contours: Syn-
thesizing speech melody via model-based stochastic learning,”
Speech Communication, vol. 57, pp. 181-208, 2014.

[4] Xu, Y. and Prom-on, S., “PENTAtrainerl.praat. Available from:
http://www.phon.ucl.ac.uk/home/yi/PENTAtrainer1/.”

[S] Prom-on, S. and Xu, Y., “PENTAtrainer2: A hypothesis-driven
prosody modeling tool,” ExLing 2012, p. 93, 2012.

[6] Stevens, K. N. and Halle, M., “Remarks on analysis by synthesis
and distinctive features,” Models for the Perception of Speech and
Visual Form, pp. 88-102, 1967.

[7]1 Boole, G., A treatise on differential equations. Macmillan & Com-
pany, 1859.

[8] Prom-on, S., Liu, F, and Xu, Y., “Post-low bouncing in Man-
darin Chinese: Acoustic analysis and computational modeling,”
The Journal of the Acoustical Society of America, vol. 132, p. 421,
2012.

[9] Xu, Y., “Effects of tone and focus on the formation and alignment
of FO contours,” Journal of Phonetics, vol. 27, no. 1, pp. 55-105,
1999.

[10] Xu, Y., “Fundamental frequency peak delay in Mandarin,” Pho-
netica, vol. 58, no. 1-2, pp. 26-52, 2000.

Campbell, Gibbon, and Hirst (eds.) Speech Prosody 7, 2014 1021



