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Abstract 

This study is a user report on modeling and predicting the F0 
contour of Japanese utterances with PENTA Model and AM 

Theory. Through a 2640-word corpus of Japanese, the two 
models were compared using two versions of PENTAtrainer, as 

well as newly developed AMtrainer, respectively. The 
respective modelling and synthesis accuracies of different 
models are discussed with reference to the type of input they 

require. The satisfactory results achieved by these tools 
demonstrate their potential in offering a fair and direct 
comparison between the two models. We call for more 

collaborative effort in comparative modeling to achieve this 
goal. 

Index Terms: AM Theory, PENTA Model, Pitch accent 

1. Introduction 

One challenge faced by researchers working on speech prosody 
is the ‘lack of reference problem’ [1]. That is, the study of 

prosody does not have a reference like word identity in the case 
of studying segments (except in the case of lexical tone). The 
resulting inadequate understanding of the meaning 

communicated through prosody has led to rival theories of 
intonation coexisting over the past decades. 

Computational modeling is a rigorous way of testing our 

predictive knowledge of prosody. However, little work has 
been done on comparing the effectiveness of different models, 

using comparable data and evaluation protocols, with a few 
exceptions [2], [3]. For Japanese intonation, one of the 
prevailing models is the Autosegmental-Metrical (AM) Theory 

[4], [5], which we will compare with the Parallel Encoding and 
Target Approximation (PENTA) model here in terms of their 
learning accuracy. 

1.1. PENTA Model 

Proposed by Xu [6], PENTA assumes that speech prosody 

conveys multiple communicative functions simultaneously, 
each with a unique encoding scheme. Unlike other functional 

(as opposed to formal) theories, PENTA assumes that 
functional encoding is done through an articulatory mechanism 
of target approximation [7], and that such an articulatory 

mechanism is responsible for the final production of both 
lexical tones and intonation. 

A number of theoretical assumptions set PENTA apart from 

other theories – first, it leaves no tone-bearing unit (e.g. syllable) 
unspecified for pitch target (contra the sparse tones assumption 
in AM); second, phrasing is but a communicative function e.g. 

[8] encoded in parallel with others like sentence type and lexical 
tone, rather than being part of an abstract superordinate 

hierarchy; third, F0 turning points such as ‘peaks’ and ‘valleys’ 
are not targets themselves, but are merely byproducts of target 
approximation.  

1.2. AM Theory 

AM is a theory of intonational phonology, based mainly on 
Pierrehumbert [5] and subsequent work.  In AM, intonation is 

viewed as a linear series of H and L tones, which correspond to 
prominent F0 maxima and minima. Alignment (timing in 
relation to segments) and scaling (height) are the two principle 

dimensions characterizing the phonetic realization of tones. 
AM differs from PENTA in many ways. Notably, AM 

assumes sparse tones specification, i.e. not all syllables need to 

be specified for tone targets. Unlike target approximation in 
PENTA, AM assumes linear or non-linear interpolation 

between surface F0 turning points to be the core mechanism of 
generating continuous F0 contours. Moreover, other factors 
being held constant, AM assumes temporal alignment of tones 

relative to segments to be phonologically specified; whereas 
PENTA has no ‘alignment’ specification other than full 
synchrony of pitch target with the syllable. Most importantly, 

whereas pitch targets in PENTA are articulatory-based 
parametric representation of communicative functions, in AM 

pitch accents and boundary tones are symbolic representation 
of autonomous phonological elements.  

2. Methodology 

2.1. The corpus 

The corpus used in the present study was previously reported in 
Lee et al. [9]. A total of 33 Japanese words were chosen as 

stimuli (see Table 1). The target words varied in length (1-4 
morae), accent condition (unaccented and initial/medial/ 
penultimate/final accent), and syllable structure (CVCV, CVn, 

CVV). From eight speakers, altogether 2,640 utterances (33 

target words  8 speakers  5 repetitions   2 speech rates) 

were collected. The target words are framed in the carrier 
sentence Jiten-ni X-mo nottemasu ‘The word X too is found in 

the dictionary’.  

1-mora CV   
UA (L-H) ne   
1 (H*-L) `ne   

2-mora CV CVV CVN 

UA (LH-H) mane mai  
1 (H*L-L) `memo `mei `men 
2 (LH*-L) mu`ne   

3-mora CV CVV CVN 

UA (LHH-H) mimono mimei, neimo momen 
1 (H*LL-L) `menami `meimu, `nimei ̀ ninmu 
2 (LH*L-L) na`name me`mai ni`man 
3 (LHH*-L) mimo`no nui`me  

4-mora CVCV CVV CVN 
UA (LHHH-H) monomane meimei nennen 
1 (H*LLL-L)  `muumin `nannen 
2 (LH*LL-L) mi`namina   
3 (LHH*L-L) nama`nama mei`mei men`men 
4 (LHHH*-L) anoma`ma nimai`me ninen`me 

Table 1. List of stimuli used in the present study 
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2.2. PENTAtrainer 

PENTAtrainers are two semi-automatic software packages for 
analysis and synthesis of speech melody based on 
communicative functions and Target Approximation model [6], 

[7]. They are both in the form of Praat [10] scripts. The basic 
idea of PENTAtrainers is to extract the underlying pitch targets 

defined in height (b), slope (m), and strength ( ) by means of 

automatic analysis-by-synthesis based on the quantitative 
Target Approximation (qTA) [11]. 

PENTAtrainer1 extracts target parameters locally unit by 

unit through exhaustive search. For each target interval 
(typically the syllable), PENTAtrainer1 compares all possible 

combinations of b, m, and  within the search ranges and finds 

the parameter combination that generates F0 contours with the 
least difference from the original. It also records learning 
accuracy in terms of Root-Mean-Square Error (RMSE) and 

Pearson’s r for each labeled interval, as well as the mean RMSE 
and global r for all the labeled intervals. 

 

Figure 1. Extraction of model parameters for each labeled 
interval by PENTAtrainer1 (Jiten-ni me`mai-mo nottemasu 

‘The word “memai” too is found in the dictionary’). In order, 

the second to the fifth tiers show slope, height, strength, and 
duration of the labeled intervals. The parameter numbers in 

Tiers 2-5 are extracted rather than manually entered. 

PENTAtrainer2 extracts qTA targets globally from an 
entire corpus by means of analysis-by-synthesis based on 
simulated annealing [12]. To apply it, users need to annotate 

each interval with labels for the functions being modeled, as 
illustrated in Figure 2. The result of the target extraction will be 

globally optimal values of b, m, and  for each of the 

functional combinations. Like PENTAtrainer1, PENTAtrainer2 
records RMSE and r values as indicators of modeling 
performance.  

 
Figure 2. Functional annotation in PENTAtrainer2 (same sentence as 

in Fig. 1). The labeled functions are Tone and Demarcation.  

 
With both PENTAtrainers, predictive F0 contour generation 

can be performed with categorical target parameters. With 
PENTAtrainer2, the categorical parameters are extracted 

directly. With PENTAtrainer1, the categorical parameters are 
the mean parameters of all the individual tokens of the same 
category. F0 contours generated with the categorical parameters 

can then be compared to those of the natural utterances. 

2.3. AMtrainer 

AMtrainer is a Praat-based training model newly developed by 
the second author. It provides a similar user interface as 
PENTAtrainer1, but the parameters extracted are location and 

height. Built upon algorithms proposed in [13], AMtrainer take 
as input point tier labels (see Figure 3), which correspond to 
specific F0 turning points on the surface; the rest of the F0 

contours are assumed to result from linear or sagging 
interpolation between the turning points.  

 
Figure 3. ToBI annotation for AMtrainer (Sentence as Fig. 1) 

The present analysis follows the standard J-ToBI 
annotation convention [14] for Japanese lexical prosody. The 
annotation of an unaccented word consists of boundary tone 

(L%), and phrasal tone (H-), whereas that of an accented word 
contains also pitch accent (H*+L). Note that for simplicity’s 
sake here the phrasal tone (H-) is omitted in cases where pitch 

accent occurs in the first or second mora of the word. See 
Venditti [14]  for more information regarding J-ToBI. 

Annotation for AMtrainer was performed in three steps. 
First, continuous F0 contours were obtained from ProsodyPro 
[15]. Then, from these data the F0 turning points corresponding 

to %L, H-, H*+L, and L% were identified for each utterance; 
and subsequently, converted to Praat TextGrid files to be used 
as the input for AMtrainer. The criteria for identifying F0 

turning points were as follows: 
Tone Definition 
H-
(#1) 

This tone corresponds to the beginning of the case 
marker –ni, which is part of the carrier sentence that 
precedes the target word. The inclusion of this tone is 
to allow for interpolation with the following %L. 

%L This tone corresponds to minimum F0 in the first mora 
of the target word.  

H-
(#2) 

This tone corresponds to the maximum F0 velocity 
value in the second and third morae of the target word. 

H* This tone corresponds to maximum F0 in the accent host 
mora and the ensuing one. 

L This tone corresponds to the minimum F0 velocity value 
in the first two post-accent morae. 

L% This tone corresponds to minimum F0 in the mora after 
the target word (i.e. no-). 

Table 2. Label extraction criteria for AMtrainer 

Annotation files generated under Table 2 were then fed into 
AMtrainer for further analyses, of which results will contain the 
height and the location of each tone, as well as RMSE and 

Pearson’s r between the original and model-generated F0 
contours for each utterance.  

2.4. Analyses 

The accuracy of PENTAtrainers depends on both the target 
approximation algorithm and how well the 

annotation/categorization scheme represents the sources of 
variation of the data. Here we consider two schemes –Mora, 

and Syllable. 
The analysis will be presented over three subsections below.  

PENTAtrainers assess the goodness of fit between the 

synthesized and original F0 contours using two measurements, 
namely, learning accuracy and synthesis accuracy. Although 
the two measurements are highly similar in nature, the design 

of AMtrainer renders it only possible to yield the former, in 
terms of which, in Section 3.1, we will compare AMtrainer and 
the PENTAtrainers, before proceeding to our discussion of the 

synthesis accuracy results of PENTAtrainer1 and 
PENTAtrainer2. In Section 3.2, we consider the accuracy of 

speaker-dependent synthesis – synthesis of the F0 contours of a 
given speaker using the global parameters learned from his/her 
own utterances. In Section 3.3, the results of predictive 
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synthesis accuracy is presented. Here we adopt the Jackknife 
procedure [16], where the global parametric values of all 
speakers save one are averaged and used to predict F0 contours 

of the speaker being left out. The procedure is repeated eight 
times such that all eight speakers’ data are assessed. 

 Mora Syllable 
Tone H,M,L H,M,L,F 

Demarcation 
C1,L,M,R, 
P,LP,C2 

C1,L,M,R, 
P,LP,C2 

TBU Mora Syllable 

Table 3. Functional labels used in the three annotation 

schemes for PENTAtrainer1 and PENTAtrainer2. 

3. Results 

3.1. Learning accuracy 

Table 4 shows the learning accuracy of AMtrainer, 
PENTAtrainer1, and PENTAtrainer2. Both annotation schemes 
under PENTAtrainer1 (second and third groups from top) 

yielded higher Pearson’s r (0.998 and 0.994) and lower RMSE 
(0.101 and 0.122) than the other groups, suggesting that 

synthesized F0 contours from PENTAtrainer1 differed less from 
the original. AMtrainer reached similar learning accuracy to 
PENTAtrainr2. 

 Segmentation 
Accented Unaccented Overall 

RMSE r RMSE r RMSE r 
AMTrainer 0.623 0.972 0.727 0.765 0.654 0.909 

P1 
Mora 0.112 0.998 0.075 0.992 0.101 0.996 
Syllable 0.136 0.997 0.09 0.985 0.122 0.994 

P2 
Mora  1.117 0.960 1.021 0.804 1.088 0.913 
Syllable 1.129 0.958 1.006 0.743 1.092 0.893 

Table 4. Learning accuracies of AMtrainer, PENTAtrainer1 

and PENTAtrainer2. 

 

Figure 4. Mean Pearson’s r of by all three trainers. 

An interesting pattern emerged after subsetting data 
according to accent conditions (accented vs. unaccented). As is 

obvious in Table 4, learning accuracy was considerably lower 
in unaccented words than in accented words for AMtrainer and 
PENTAtrainer2; for PENTAtrainer1 accent condition did not 

improve learning accuracy much. Moreover, for 
PENTAtrainer2, learning accuracy of unaccented words was 
higher with mora being the tone-bearing unit than otherwise. 

3.2.  Speaker-dependent predictive synthesis 

In this subsection synthesis accuracy results are reported. 

Assessment of accuracy is based on all the original F0 contours 
of a given speaker compared with those generated from the 

global parametric values learned from all the utterances of the 
same speaker. Note that since PENTAtrainer1 only extracts 
local parametric values of individual utterances, here the global 

values used for PENTAtrainer1 are the result of averaging over 
individual local values. 

Table 5 shows that PENTAtrainer2 has an advantage over 
PENTAtrainer1 in synthesis accuracy. This difference is to be 
solely attributed to the sources of global parametric values used 

for generating F0 contours – for PENTAtriner1, the global 

parametric values are the averages of local b, m, and , 

whereas for PENTAtrainer2, the global values are directly 

obtained through optimizations over an entire corpus. The 
present results thus show the effectiveness of global 
optimization for predictive synthesis. 

 Segmentation 
Accented Unaccented Overall 

RMSE r RMSE r RMSE r 

P1 
Mora  1.786 0.924 1.796 0.674 1.789 0.849 

Syllable 1.746 0.941 2.054 0.628 1.839 0.846 

P2 
Mora 1.117 0.962 1.021 0.804 1.088 0.914 

Syllable 1.129 0.960 1.006 0.748 1.092 0.896 

Table 5. Accuracies of speaker-dependent synthesis by both 

PENTAtrainers. 

Figure 5 shows the synthesis accuracy of the 

PENTAtrainers under different accent conditions. Similar to 
what was observed in Table 4, unaccented words consistently 
achieved weaker Pearson’s r than their accented counterparts. 

Note that PENTAtrainer1 achieved much weaker r than it did 
in Table 4, because here F0 contours were synthesized using 

averaged global values, whereas in Table 4 synthesis was based 
on local parametric values, and did not have to capture cross-
repetition variations. 

 
Figure 5. Mean Pearson’s r of speaker-dependent synthesis 

by both PENTAtrainers. 

Finally, in an attempt to improve the synthesis accuracy of 
unaccented words, we tested an additional function ‘Word 

Length’ (i.e. 1-4 morae), alongside ‘Tone’ and ‘Demarcation’. 
Despite using more predictors (11à32 for moraic segmentation, 

15à41 for syllabic segmentation), and the known effect of 
word length on F0 in Japanese [17], we did not see considerable 
improvement in synthesis accuracy for unaccented words, with 

RMSE=0.952, r=0.797 (down from 0.804) for moraic 
segmentation, and RMSE=0.958, r=0.793 (from 0.748) for 
syllabic segmentation. This suggests that ‘Word Length’ was 

not effective in capturing the remaining variation in the data. 

3.3. Speaker-independent Predictive synthesis 

 

 

Segmentation 
Accented Unaccented Overall 

RMS
E 

r 
RMS

E 
r 

RMS
E 

r 

P
1 

Mora 1.761 0.925 1.807 0.668 1.775 0.847 

Syllable 1.938 0.932 2.307 0.585 2.050 0.826 

P
2 

Mora 1.726 0.921 1.767 0.696 1.739 0.853 

Syllable 2.088 0.877 2.547 0.608 2.227 0.796 

Table 6. Accuracies of speaker-independent predictive 

synthesis  

Using the Jackknife procedure, the predictive power of the 
global articulatory parameters of PENTAtrainers was assessed 
for each speaker in the corpus. As can be seen from Table 6, 
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once recordings of the speaker being assessed is excluded from 
the training corpus, PENTAtrainer2 no longer showed absolute 
advantage over PENTAtrainer1. This is especially the case with 

unaccented words. 

 
Figure 6. Mean Pearson’s r of speaker-independent 

predictive synthesis (Jackknife procedure) 

4. Discussion 

AM and PENTA differ in terms of several theoretical 
assumptions, which have implications on their predictive power. 

Notably, in the former a tone target is a point in the surface 
contour but an underlying linear trajectory in the latter. In 
addition, for AM the temporal alignment of a tone in relation to 

segments is flexible and has to be specified. For PENTA pitch 
targets and the tone-bearing units are synchronized and so no 
further alignment specification is needed. 

We are unable to assess whether AM or PENTA is superior 
in the present study because tone labelling for AMtrainer was 

performed post-hoc based on the actual location of acoustical 
landmarks whereas the categories used in PENTAtrainers were 
pre-defined. The goodness of fit by AMtrainer only reflects the 

effectiveness of linear and sagging interpolation as an F0 
contour generation mechanism; in contrast, both 
PENTAtrainers perform predictive synthesis based on 

functional categories. That AM labels were extracted from the 
actual location of acoustical landmarks limits the comparability 

between the tools here. To render AM more comparable to 
models that take categorical input like PENTA, the height value 
and temporal alignment of its labels need to be predicted by an 

algorithm rather than added post-hoc. To do so, one may first 
find out the segmental anchoring behavior of each tone [18] and 
then calculate the temporal alignment of the tones in each 

utterance; whereas for scaling there is no simple way of 
prediction yet. Once the issue of post-hoc annotation for 
AMtrainer is overcome, it would be ideal to test the 

assumptions of temporal alignment vs. target approximation 
using a dataset that controls for speech rate, like the one used in 

the present study.  
Nonetheless, this paper has shown that both AM and 

PENTA can fit Japanese word prosody non-predictively with 

satisfactory accuracy. The fact that both models do almost 
equally well means that AMtrainer and PENTAtrainer can 
serve as a platform for direct comparisons between the two 

theories if used properly. We call for collaborative efforts to 
reach this goal by investigating more types of speech data and 

devising a protocol of annotation for unbiased contrast of the 
models.    

5. Conclusions 

This paper has presented a user report of AMtrainer and the 

PENTAtrainers. We aim to set a fair platform for further 
comparison between PENTA Model and AM Theory in 
modeling and predicting the F0 contours. Both PENTAtrainer1 

and PENTAtrainer2 reached an accuracy of predictive synthesis 

as high as r>0.9, showing that PENTA is an effective tool in F0 
modeling. The high accuracy achieved by AMtrainer reflects 
the effectiveness of sagging and linear interpolation as a means 

of contour generation. Meanwhile, the similarity between the 
results from AMtrainer and PENTAtrainers suggests that there 
is a potential for AMtrainer to predictively generate F0 contours 

with functional and categorical input. But a more objective way 
of generating the input for AMtrainer is needed before a full 

comparison between the two theories is possible. 
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