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ABSTRACT 
 
This paper presents the first version of AMtrainer 
that can computationally parameterize tonal 
categories of the AM Theory of intonation. The 
parameterization was done by specifying each tonal 
category as the mean F0 of all the individual tokens 
of the category in a corpus. We trained AMtrainer 
on a 192-sentence corpus in American English and 
used the learned parameters to synthesize the 
prosody of those sentences. The numerical accuracy 
of the synthetic prosody and listener judgments of 
focus, sentence type and naturalness indicate that the 
learned categorical parameters can generate fairly 
natural F0 contours that convey pragmatic meanings 
such as sentence type and focus. More importantly, 
this new development in AMtrainer makes AM 
theory more directly comparable than before to other 
computationally implemented theories of prosody.  
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1. INTRODUCTION 

Technological advances have prompted a movement 
to computationally implement prosodic theories to 
the extent that they can automatically learn 
numerical parameters from speech data and apply 
the learned parameters to generate intonational 
configurations for novel utterances [5, 7-8, 13, 20]. 
The Common Prosody Platform (CPP) was 
developed to facilitate this movement by making 
various prosodic theories directly comparable to 
each other in terms of their capacity to predict 
prosodic configurations [16]. Among the theories 
implemented was the well-known Autosegmental-
Metrical (AM) theory [3, 14], in the form of the 
computational program AMtrainer [1]. However, 
this and another early version of AMtrainer [11] 
were only able to perform direct fitting of local F0 
contours, so that different instances of a tone 
category have different F0 values rather than sharing 
a category-specific common value. Such a model 
therefore still lacks predictive power. 

There have also been other computational models 
of intonation that implement the concepts of the AM 
theory. But they vary to the extent that they adhere to 
the core notion that intonation consists of contrastive 

tonal targets realized as prominent F0 turning points 
connected via target-transition [3-4, 14]. Some have 
implemented this core notion literally [15], while 
others have added additional algorithms such as 
smoothing filters [2]. There have also been wide uses 
of the ToBI system of intonation annotation [17] in 
which the tonal elements are derived from AM 
theory. However, none of those applications has 
implemented the theory’s core concept of target-
transition. Most critically, there have been a lack of 
open-access systems that allow direct quantitative 
comparison of AM theory to other theories. 

The aims of the present study are to 1) develop an 
enhanced version of AMtrainer with the capacity to 
learn numerical parameters of tone categories of AM 
theory that can be used to generate continuous F0 
configurations for sentences that have been tonally 
annotated, and 2) use the results of this updated 
AMtrainer to test the validity of the fundamental 
assumptions of AM Theory. 

2. METHODOLOGY 

2.1 Developing AMtrainer 

The AM theory posits that English intonation consists 
of tones that are either H (high) or L (low) that are 
manifested as turning points in surface F0 contours, 
and transitions between them that are either linear or 
curvilinear [3, 14]. This scheme was faithfully 
implemented in a previous version of AMtrainer [11]. 
In that version, however, there was no categorization 
of, or ways to empirically define the tones, because 
each F0 target, including both its height and 
alignment, remains the same as in the original speech 
sample, and are directly taken from the annotated 
targets even during synthesis. This makes that version 
of AMtrainer largely a curve fitting program. To 
make the program predictive, it is necessary to 
achieve categorical parameterization of the tones. 

At least two aspects of a tone can be 
parameterized: F0 and temporal alignment. Of the 
two, the first is relatively well defined in the theory, 
i.e., it specifies both the tone category itself and the 
pitch range determined by either a baseline or a 
reference line [2-3]. For alignment, however, there 
are no clear theory-motivated specifications. There 
have been reports from empirical research on 
consistent alignment of F0 turning points for some 



tonal accents [4, 9-10], but so far there is no 
consensus. 

For the present study, we tested parameterization 
of only tone height; and even for this we tested only 
that of tone-specific target height, without 
implementing a baseline or reference line [2]. One 
motivation for this choice is that our prior modelling 
with PENTAtrainer did not show clear detrimental 
effects of lack of explicit declination [20]. 

The parameterization of tone-specific target 
height is straightforward. We define the height of a 
tone as the mean F0 of all the individual tokens of 
the same tone category in a corpus. In terms of the 
inventory of tone categories, we considered only 
those for which there is a clear consensus. In 
particular, composite tones like LH* and HL* were 
not included, due to difficulty of distinguishing them 
from singleton tones. Also not included were L- and 
H-, whose implementational definitions are not 
clear. The F0 between the tonal targets are either 
straight lines or parabolic curves, following [15]. 
Technically, AMtrainer is implemented as a Praat 
[6] script and is openly accessible at [1].  

2.2. The corpus 

The corpus consists of a total of 192 utterances 
produced by a female speaker in the experimental 
corpus collected in a study of American English 
intonation [12]. It includes 6 unique sentences, each 
said in two sentence types (declarative vs. question) 
and two focus conditions (medial vs. final). As 
shown below, each target utterance is preceded by a 
leading sentence (in parentheses) that elicited a 
specific focus (by boldface) and sentence type (by 
punctuation) condition. Each sentence was repeated 
8 times, resulting in a total of 192 utterances.  
 
1. (Not an internship./?) / (Not La Massage./?) 

You want a job with Microsoft./? 
You want a job with Microsoft./? 

2. (Not an internship./?) / (Not Microsoft./?) 
You want a job with La Massage./? 
You want a job with La Massage./? 

3. (It’s not fate./?) / (It’s not you./?) 
There’s something unmarriable about me./? 
There’s something unmarriable about me./? 

4. (It’s not fate./?) / (It’s not me/you./?) 
There’s something unmarriable about May./? 
There’s something unmarriable about May./? 

5. (It’s not Sears./?) / (It’s not Elaine./?) 
You’re going to Bloomingdales with Alan./?) 
You’re going to Bloomingdales with Alan./?) 

6. (It’s not Sears./?) / (It’s not Alan./?) 
You’re going to Bloomingdales with Elaine./?) 

 

Each utterance was manually labeled in AMtrainer, 
under the Interactive view task, for 7 tone categories: 
%, L, L*, L%, H, H* and H%. The % tone is unique 
to AMtrainer, but its inclusion is obligated by the 
need for an onset F0 point that specifies the 
transition to the very first tonal target. The alignment 
of each tone with its respective position in each 
sentence remains the same during resynthesis. 

2.3. Model training and synthesis 

The training was done under the Get ensemble files 
task in AMtrainer. The procedure All_AM_means 
was called to calculate mean F0 (in semitones) of 
each of the tones across the whole corpus based on 
the annotated tone labels. The resulting tonal 
parameters are shown in Table 1. 
 

Table 1: AM tonal means obtained by AMtrainer from 
the present corpus. 

Tone 
Name 

Tone 
Height 

% 93.52 
L 89.20 
L* 91.24 
L% 80.19 
H 93.73 
H* 93.72 
H% 101.19 

 
These parameters were then used to generate fresh 
F0 contours that were used to resynthesize all the 
sentences in the corpus. In addition, resynthesis was 
also done with an early version of AMtrainer that 
performed only local fitting. An example of the 
resynthesized F0 contour is shown in Figure 1. 

2.4. Listening experiment 

Ten native speakers of English, 7 males and 3 
females, all students at University College London 
(UCL), were recruited as subjects in a listening 
experiment. They heard 3 versions of each of the 24 
sentences: the original recording, prosody generated 
by the previous version of AMtrainer that generated 
F0 via local contour fitting, and prosody generated by 
the new version. The listening tests were done in a 
quiet room at UCL, and the presentation of the stimuli 
was administered via Praat’s ExperimentMFC 
interface. Subjects were shown the question 
corresponding with the experimental task at hand, 
along with a set of buttons representing the different 
choices they had to make.  

Only one of the 8 repetitions of each of sentence 
type and focus combination was used, such that 24 
of the original 192 utterances were played in each of 
the three conditions. Each version of these 24 
utterances was replicated 3 times, so that each 
listener heard a total of 216 randomized utterances. 



For sentence type judgment, subjects were asked if 
the sentence was a statement or a question. For focus 
judgment, they were asked which word in each 
utterance, or none of them, was emphasized. For 
naturalness judgment, Mean Opinion Score (MOS) 
was used, and subjects were asked to rate how 
natural they felt each sentence sounded, with 1 being 
“completely unnatural” and 5 being “very natural.”  

3. RESULTS 

3.1. Synthesis Accuracy 
 
Table 2 shows the RMSE and correlation values for 
AMtrainer’s local fitting and global fitting by 
stimulus subgroup. Figure 1 shows one example of 
the globally synthesized F0 curves as compared to the 
F0 curves of the natural sounds. A repeated measures 
ANOVA showed that there was significant difference 
between local and global fitting in both RMSE and 
correlation (RMSE: F(1,191) = 11.821, p = 0.001, 
Partial Eta Squared = 0.058; Correlation: F(1,191) = 
173.302, p < 0.001, Partial Eta Squared = 0.476). 
From local fitting to global fitting, RMSE increased 
and correlation decreased, indicating that synthesis 
accuracy significantly decreased, as expected. 
 

Table 2: Mean RMSE & Pearson correlation for each 
stimulus subgroup for both local and global synthesis 

Sentence 
Type 

Focus Local fitting Global fitting 
RMSE r RMSE r 

Question Final 1.267 0.901 1.881 0.788 
Medial 1.407 0.941 3.256 0.725 

Sub-avg. 1.337 0.921 2.569 0.757 
Statement Final 1.759 0.848 2.8 0.731 

Medial 3.195 0.775 9.724 0.584 
Sub-avg. 2.477 0.812 6.262 0.658 

Grand average   2.218 0.866 4.415 0.707 
 
 
Figure 1: Globally synthesized F0 curve and natural 
F0 curve for the sentence “You want a job with 

Microsoft.” Blue dotted line: Natural F0 curve; Red solid 
line: synthesized F0 curve. 

 

 
Both types of fittings have significantly decreased 
accuracy for medial focus, and especially for medial 
focus statements.  However, this decrease in accuracy 
is much more pronounced in global fitting than in 
local fitting.  
 

3.2. Sentence type judgment 
 
Table 3 shows percentages of correct judgment of 
sentence type on stimulus sentences with 3 
difference sources of F0 contours.  
 
Table 3: Percentages of correct responses to the sentence-

type judgment by stimulus group 

Sentence 
 Type 

Focus Natural  Local 
fitting 

Global 
fitting 

Mean 

Question Final 98.89 98.33 97.22 98.15 
Medial 100 99.44 96.11 98.52 
Sub-perc. 99.44 98.89 96.67 98.43 

Statement Final 75 82.22 68.33 75.18 
Medial 88.33 93.89 91.11 91.11 
Sub-perc. 81.67 88.05 79.72 82.96 

Grand mean 90.56 93.47 88.05 90.74 
 
A one-way repeated measures ANOVA showed a 
significant effect of pitch source (F(2,18) = 6.733, p = 
0.007, Partial Eta Squared = 0.428). The most 
prominent difference is between local fitting and 
global fitting (t(24) = 3.00, p = 0.002), while there 
were no significant differences between the natural 
sounds and either synthetic fit (t(24) = -2.40, p = 
0.076; t(24) = 0.600, p = 1.00). It is also notable that 
the overall judgments on local fittings were better 
than those of natural stimuli, which could be 
explained by some targets being mistakenly given 
very low F0 due to inaccuracy of F0 extraction in 
Praat, which might have actually assisted listeners’ 
judgments. Regardless of pitch source, judgments for 
questions were overall more accurate than for 
statements. It seems that for this corpus, statements 
are more mistakable for questions. It could be the 
case that the presence of both medial and final focus 
has given listeners the impression that the speaker 
was producing rhetorical questions. It is also possible 
that since most of the subjects were British English 
speakers, it was difficult for them to make judgments 
about American English prosody.  
 
3.3. Focus judgment 
 
The results of focus judgment are shown in Table 4, 
broken down by subgroups. Errors of judgment were 
much more common in statements than in questions, 
and especially when the focus was final. But this 
drop-off is consistent across natural and synthetic 
conditions, indicating that focus is generally less 
detectable in statements. 

An ANOVA (F(2,18)=6.225, p = 0.009, Partial Eta 
Squared = 0.409) showed that there was a significant 
difference between natural utterances and global 
fitting (t(24) = 3.00, p = 0.015), but not between 
natural utterances and local fitting (t(24) = 1.90, p = 
0.082). Therefore, even if the effect of the synthetic 



conditions is not overwhelming, it cannot be 
dismissed. 
 

Table 4: Percentages of correct responses to the focus 
judgment task by stimulus subgroup 

Sentence 
Type 

Focus Original  Local  
Synthesis 

Global  
Synthesis 

Average 

Question Final 95.56 94.44 92.22 94.07 
Medial 95 93.89 89.44 92.78 

Sub-avg 95.27 94.17 90.83 93.42 
Statement Final 75.56 71.11 76.67 74.45 

Medial 88.33 82.78 78.89 83.33 
Sub-avg 81.94 76.94 77.78 78.89 

Grand average 88.61 85.56 84.3 86.16 
 
3.4 Naturalness judgment 
 
The naturalness judgment results are shown in Table 
5. There is a clear trend of decrease in naturalness 
from natural to synthetic stimuli, and from local 
fitting to global fitting. An ANOVA showed a 
significant effect of pitch source (F(2,18) = 20.825, 
p < 0.001, Partial Eta Squared = 0.698). 
 
Table 5: Mean naturalness ratings by stimulus subgroup 

Sentence  
Type 

Focus Original  Local  
fitting 

Global  
fitting 

Average 

Question Final 4.128 3.311 3.022 3.487 
Medial 4.222 3.778 3.022 3.674 
Sub-avg 4.175 3.544 3.022 3.580 

Statement Final 4.172 3.694 3.522 3.796 
Medial 4.127 3.339 2.85 3.439 
Sub-avg 4.15 3.517 3.186 3.618 

Grand average 4.162 3.427 3.104 3.564 

4. DISCUSSION 

The results of both numerical comparisons and 
perception tests show that the new version of 
AMtrainer with global fitting based on categorical 
parameterization of tones can approximate the 
essential F0 contours of English intonation that 
convey focal and sentential meanings. 
Unsurprisingly, its performance is not as good as the 
early version of AMtrainer with only local fitting of 
F0 contours, which is expected as a model becomes 
predicative. Also unsurprisingly, even F0 
configurations generated by local fitting were not as 
good as those of natural speech in terms of both focus 
and sentence type judgment and naturalness rating. 
But the development of AMtrainer has at least made 
such comparisons possible by computationally 
parameterizing tonal categories of the AM theory. 

The development of AMtrainer also makes it 
possible to compare AM-theory based modeling with 
models based on other theories of intonation. For 
example, Table 6 shows mean RMSE and correlation 
values from [20], which can be compared to the grand 
averages obtained in the present study shown in Table 
2. That study applied PENTAtrainer to the full corpus 

from which the sub-corpus in the present study was 
drawn. It used PENTAtrainer to categorically 
parameterize focus and sentence type through global 
optimization. In terms of both RMSE and correlation, 
AMtrainer with local fitting performed largely similar 
to PENTAtrainer. However, the performance of the 
new global fitting was lower than that of 
PENTAtrainer even in the cross-validation condition, 
where each speaker’s prosody is generated by 
parameters trained on all other 7 speakers. 

 
Table 6: Mean RMSE & Pearson correlation reported in 
Xu [20] for all the speakers in the same English corpus 

Accuracy 
Learning mode 

RMSE Correlation 

Speaker dependent 2.07 0.836 
Group average 2.77 0.772 
Cross validation 2.98 0.757 

 
The comparison of Table 6 and Table 2 is not entirely 
appropriate, however, because the full potential of 
AM theory is by no means adequately reflected by the 
current version of AMtrainer. Clearly missing are 
composite tones like LH* and HL*, phrase tones like 
H- and L-, baseline or reference line, and possibly 
pitch range specifications [9]. Also missing is 
parameterization of tone alignment [4，10], which is 
potentially critical for naturalness. For these nuanced 
aspects of the theory, however, we will need insights 
or direct collaborations from researchers with greater 
familiarity with AM theory than us. 

5. CONCLUSIONS 

This paper has presented the first version of 
AMtrainer that can perform predictive synthesis with 
categorically parameterized tone targets in American 
English. Despite the simplicity of the 
parameterization (global averaging of F0 heights), 
fairly natural sounding F0 configurations could be 
generated that bear both focus and sentence type 
information, showing that AM Theory has some 
promise as a model for predictive speech synthesis. 
This is a step forward toward full quantification of 
AM theory. It also further enriches the Common 
Prosody Platform [16].  

These results also have interesting implications 
about AM Theory. Since the AM labels are abstract 
representations of tones, and abstractions must be 
made concrete in order to make predictive synthesis 
possible. To this day, AM tones are labeled manually 
based on observed F0 events. So the theory provides 
no way to predict where exactly tonal targets will 
actually occur. To fully computationalize the AM 
Theory, theorists must at least agree on where the AM 
tones should occur based on theoretical predictions. 
More work is therefore needed in future research. 
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