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ABSTRACT Representation learning is one of the fundamental issues in modeling articulatory-based
speech synthesis using target-driven models. This paper proposes a computational strategy for learning
underlying articulatory targets from a 3D articulatory speech synthesis model using a bi-directional long
short-term memory recurrent neural network based on a small set of representative seed samples. From a
seeding set, a larger training set was generated that provided richer contextual variations for the model to
learn. The deep learning model for acoustic-to-target mapping was then trained to model the inverse relation
of the articulation process. This method allows the trained model to map the given acoustic data onto the
articulatory target parameters which can then be used to identify the distribution based on linguistic contexts.
The model was evaluated based on its effectiveness in mapping acoustics to articulation, and the perceptual
accuracy of speech reproduced from the estimated articulation. The results indicate that the model can
accurately imitate speech with a high degree of phonemic precision.

INDEX TERMS Acoustic-to-articulatory inversion, deep learning, articulatory model, articulatory target
acquisition

I. INTRODUCTION

IN speech production, speakers convey messages to lis-
teners in acoustic form by moving multiple articulators

in specific patterns. These movement patterns are learned
and are utilized regularly in everyday communications. By
observing speech and visible articulations, a child gradu-
ally learns to speak with minimal specific instructions on
articulatory movements [1]. Later, a child can mimic other
speech by observing only a few samples and then practicing
producing them. This learning phenomenon suggests that
one of the key components in an early stage of language
learning is the ability to recognize the potential articulatory
movements and test them by producing similar instances
and improving their correctness. Understanding this learning
process will provide a critical answer to a question on how
speech production learning should be represented. This will

provide a framework for creating a better learning algorithm
for speech synthesis systems that can automatically learn
from observations and interactions, and other speech related
applications [2]–[9].

One way to address this issue is to use a corpus-based
analysis-by-synthesis method that learns underlying articu-
latory targets through an iterative exploration of candidate
targets by comparing synthesized and original signals and
using them to adjust the targets [10]. This modeling method
simulates iterative learning of articulatory movements by the
speaker where the speaker iteratively synthesizes the speech
and then generalizes to estimate the movement pattern. While
this approach allows the computational learning process to
generate the targets, a sizable corpus with enough contextual
variations is required to cover all the possible utterances.
Also, it is computationally complex because of the large time
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complexity of optimization. Moreover, it can only estimate
a single utterance at a time. While this strategy is analogous
to mimicking, it still does not address how a trained speaker
can recognize or estimate the movement patterns of newly
introduced speech utterances immediately after perceiving a
few samples.

To address the latter issue, the learning process should be
able to quickly estimate the articulatory targets once a few
speech examples are received. This can be done by using
an acoustic-to-articulatory inversion model [11] where the
model learns the mapping from the acoustic to articulatory
trajectories. After learning, this model can be used to quickly
recognize the plausible articulatory trajectories and assimi-
late either acoustic or articulatory differences as an interac-
tive learning strategy. However, the problem is complicated,
as the solutions are non-linear, non-unique, and ambiguous
[12], due to characteristics of speaker vocal tract shape [13],
environmental noise [14], coarticulation [15], and speaking
rate [16]. Different methods have been proposed to address
the problem of learning the association between acoustic
and articulation [17]–[19]. The most recent advances were
methods that use deep learning models, which have achieved
low error rates [20]–[26].

Deep learning [27] is a learning method by using an
artificial neural network with the gradient-based optimization
to approximate a complex function [28]. To accurately ap-
proximate the complex function, a large amount of learning
samples are required. However, the process of gathering data
is expensive and not always possible. The common strategy
to increase the quality of the learning process without the
need to acquire additional data is data augmentation, i.e.,
generating additional samples based on existing data [29]–
[31]. Common strategies for a speech data augmentation are
vocal tract length perturbation [32], speech perturbation [33],
pitch-shifting [34], speech rate modification [35], speech’s
feature masking [36], and data synthesis [37] using a gen-
erative model. To utilize this strategy in target learning for
articulatory synthesis, the augmentation should reflect the
variabilities in speech production.

In recent developments of articulatory targets estimation,
an analysis-by-synthesis approach using a distal learning
strategy has been used [10], [38]. Conceptualizing learning
by imitation, gradient descent optimization, and swarm op-
timization were used as a learning strategy to acquire the
target articulation. A three-dimensional articulatory synthesis
model [39] was used to generate the speech signal from dif-
ferent parameter sets. The results suggest that the optimizer
can imitate single vowel utterances. Further improvement of
the optimization process using genetic algorithms and long
short-term memory (LSTM) neural networks has also been
developed which showed promising results [40], [41].

Two kinds of articulatory spaces have been studied for
acoustic-to-articulatory inversion methods: 1) the actual ar-
ticulatory spaces using electromagnetic articulography [25],
[26], and magnetic resonance imaging [24], and 2) a theoreti-
cal human articulatory space of a two-dimensional [42], [43]

and a three-dimensional vocal tract model [44], [45]. Of these
two, the theoretical space represented by a vocal tract model
is more accessible for understanding speech production and
has been much studied in recent years. One example is
speech imitation via acoustic-to-articulatory inversion on a
two-dimensional vocal tract synthesizer using distal learning
[42] and chain metrics [43]. The results of these studies show
that the differences between synthesized speech and human
speech pose a major constraint on the modelling process.
To improve the synthesis quality, a data generating method
called babbling generator was proposed that uses an HMM
to estimate realistic articulatory trajectories [46]. Further
studies have used VocalTractLab, a three-dimensional vocal
tract model [39] to improve the naturalness of the synthesized
speech, and reinforcement learning using a reward function
as a learning strategy [44] on a preset vowel samples, al-
though there were no quantitative assessments of the synthe-
sis quality. In addition, the learning process is not end-to-
end, and the human was involved to select optimized tokens
during the vowel’s refinements process. There was also a
proposal for implementing an imitation algorithm based on
Echo State Network to refine synthetic syllables generated by
VocalTractLab with preset gestural scores [45]. However, the
results showed that the improvement due to the refinements
was limited, trading off the 12% deteriorated intelligibility
with only 40% improvement while others are not improved.
Therefore, much more work is needed to improve the intel-
ligibility of the synthesized speech from the model, and to
close the generalization gap, i.e., the difference between the
ability to re-synthesize speech with a high intelligibility of
an utterance from learning samples and an utterance from
unseen speakers.

This study proposes a speech acquisition strategy for
learning the underlying articulatory targets that can gener-
ate synthetic Thai vowels using a three-dimensional vocal
tract model. The strategy uses deep learning to directly
map an acoustic vowel representation to an underlying ar-
ticulatory target, and then uses the VocalTractLab, an ar-
ticulatory synthesizer with a three-dimensional vocal tract
model, as a forward function to reproduce speech utterances
from the retrieved representations. The training samples were
monosyllabic and disyllabic vowel-only utterances that were
synthesized by interpolating and augmenting from a few
observed samples. The quality of the re-synthesized speech
by the model was evaluated using a perceptual recognition
test, where the model re-synthesizes a vowel speech from the
unseen human vowel utterance.

II. METHOD
A. OVERVIEW
Our proposed underlying articulatory target acquisition
strategy applies deep learning to model the acoustic-to-
articulatory targets mapping and a three-dimensional vo-
cal tract model to both generate learning samples and re-
synthesize speech from the estimated articulatory targets
from the model, as illustrated in Figure 1. The deep neural
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network maps the observed target speech to the underlying
articulatory target. Next, the three-dimensional vocal tract
model, designed by Birkholz et al. [47], maps estimated artic-
ulatory targets into motor commands to reproduce the speech.
In the acoustic domain, the target is a surface acoustical
pattern that a speaker aims to produce, while in the articu-
latory domain, the underlying target is a set of parameters
used to control the models of the vocal tract and the vocal
folds. This corresponds to the motor commands in speech
production. The deep learning model analogous an auditory-
to-motor mapping, which is a neural connection in the cortex
of the human brain. To extract multiple representations from
an observed sample, the data generator module was designed,
generating a large speech and articulatory target corpus by
using interpolation and augmentation.

The model was evaluated by comparing the reproduced
speech with the observed target speech vowels (as part of
disyllabic utterances). Two observed target speech vowel
samples were used, 1) an observed pair of a speech and an
articulatory target acquired from the VocalTractLab applica-
tion, and 2) an observed disyllabic speech signal recorded
from 12 native Thai speakers. To determine the effectiveness
of the proposed learning strategy, a listening test, which
included 25 native Thai participants, was used to recognize
a disyllabic Thai vowel utterance which re-synthesized from
the recorded speech of the native Thai speaker.

B. VOCALTRACTLAB
The VocalTractLab 2.2 (VTL), an articulatory speech syn-
thesizer, is the core speech production model [48]. The
application provided a 3D vocal tract model and a prede-
fined articulatory parameter of German vowels and some of
German consonants. The 3D vocal tract model used in the
VocalTractLab was developed based on the volumetric MRI
of a German native male speaker [49]. The VocalTractLab
can synthesize a full range of speech sounds based on the set
of articulatory parameters. For the aero-acoustic simulation,
the 3D vocal tract shape is mapped to an enhanced area
function and its equivalent transmission-line circuit represen-
tation, which is numerically simulated in the time domain
[50]. The target approximation model implemented in Vocal-
TractLab simulates continuous articulatory trajectories [51].
The model simulates dynamic articulation movements in the
same way that tones in Thai have been successfully simulated
[52]. The VocalTractLab generates speech waveforms with a
sampling rate of 22.05 kHz with 16 bits resolution.

The shape of the vocal tract is controlled by 23 articulatory
parameters, as shown in Table 1. These parameters control
jaw angle, velum shape, velopharyngeal port, lips, tongue,
and additional constraint parameters. The minimum and
maximum parameter ranges are restricted as a soft constraint
to prevent abnormal anatomic shapes.

Dynamic articulatory movements generated by Vocal-
TractLab are controlled by gestural scores, which specify the
underlying targets of each articulator in terms of their geo-
metrical shapes and positions in a specified temporal speech

TABLE 1. Articulatory parameters of the VocalTractLab 2.2

Description Symbol Min. Max. Unit
Horizontal hyoid position HX 0.0 1.0
Vertical hyoid position HY -6.0 -3.5 cm
Horizontal jaw displacement JX -0.5 0.0 cm
Jaw angle JA -0.7 0.0 deg
Lip protrusion LP -1.0 1.0
Vertical lip distance LD -2.0 4.0 cm
Velum shape VS 0.0 1.0
Velic opening VO -0.1 1.0
Tongue body center X TCX -3.0 4.0 cm
Tongue body center Y TCY -3.0 1.0 cm
Tongue tip X TTX 1.5 5.5 cm
Tongue tip Y TTY -3.0 2.5 cm
Tongue blade X TBX -3.0 4.0 cm
Tongue blade Y TBY -3.0 5.0 cm
Tongue root X TRX -4.0 2.0 cm
Tongue root Y TRY -6.0 0.0 cm
Tongue side elevation 1 TS1 -1.4 1.4 cm
Tongue side elevation 2 TS2 -1.4 1.4 cm
Tongue side elevation 3 TS3 -1.4 1.4 cm
Tongue side elevation 4 TS4 -1.4 1.4 cm
Min area tongue back region MS1 0.0 0.3 cm2
Min area tongue tip region MS2 0.0 0.3 cm2
Min area lip region MS3 0.0 0.3 cm2

interval. The motor commands for the individual articulators
are then calculated based on the target approximation model
[51], [53]. Beside articulatory parameters, pitch targets of
the produced speech are also defined in terms of underlying
targets [51].

C. DATA GENERATOR
Data generator module was designed to generate a high
variation of the speech from a few observed samples. The
acoustics were generated from the VTL, using 1) articulatory
parameters, 2) speaker’s vocal tract model, and 3) gestural
score. The high degree of freedom of the three-dimensional
vocal tract model resulted in many-to-many mapping be-
tween articulatory parameters and acoustics. The boundary
of the interpolation function was defined from a predefined
articulatory target of German vowels from the VTL. The
linear interpolation of the articulation is defined as follows:

R = uP + (1− u)Q, u ∈ (0.6, 1) (1)

P and Q are a vector consisting of 23 articulatory param-
eters from a randomly selected predefined articulatory target
of German vowels.R is a generated articulatory target vector.
u is an interpolation parameter indicating the interpolating
range from P to Q. The interpolating range was constrained
around P , which prevents oversampling of the central part of
the vowel space produced from average articulations between
P and Q.

Similarly, the speakers’ vocal tract model was constructed
using linear interpolation between the existing adult and a
child vocal tract model from VTL, where the child vocal tract
was transformed from an adult vocal tract model [54]. The
function is defined as follows:
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FIGURE 1. The overview of the proposed underlying target articulatory acquisition strategy

Vintpl = jVadult + (1− j)Vchild, j ∈ (−0.3, 0.3) (2)

The terms Vintpl , Vadult , and Vchild are vectors of
anatomical parameters of the interpolated, adult, and child
speakers, respectively. The j is an interpolation factor, where
the range of j was perceptually selected to ensure the natu-
ralness of the synthesized speech.

Generated articulatory targets were then scaled using min-
max articulation range of the new interpolated speaker vocal
tract model, defined as follows:

ŷjk =
yk −min(Ŷjk)

max(Ŷjk)−min(Ŷjk)
(3)

The term yk is an articulatory k, where k ∈ (1, 23). Ŷjk is
a generated target articulatory parameter k of the interpolated
speaker vocal tract model j.

To simulate an articulatory movement, the gesture score
was generated where gestures that related to the production
of the vowel utterance were randomly selected from a dis-
tribution of a possible dynamic movement, while gestures
related to the consonants (lip, tongue, and velic gesture)
were left blank. The glottal shape gesture was fixed to modal
phonation. The syllable duration of both monosyllabic and
disyllabic vowel-only utterances was randomly selected from
the uniform distribution between 0.5 and 1.5 seconds. For
the disyllabic utterance, the transition between the first and
second syllable was randomly selected, the uniform distri-
bution between -20% and 20% from the half of the total
duration. The time constant was uniformly sampled from a
range of C ∈ [0.015, 0.020] seconds. The glottal pressure
was uniformly sampled from a range of G ∈ [9000, 12000]
dPa. This range of parameter values was chosen based on
a perceptual evaluation of the intelligibility of the synthetic
speech without distortion.

The speech was resampled to a 16 kHz with 16-bit reso-
lution. The disyllabic vowel data along with its correspond-

ing generated underlying articulatory target data were split
into the first and second syllables. The split point was a
midpoint of the disyllabic vowel speech sequence regardless
of the transition time. These split syllables were treated as
individual data. The amplitude of the speech was normalized
into a range between -1 and 1. The learning samples were
augmented into multiple representations per sample.

The speech augmentation methods included: 1) random
noise injection, 2) volume perturbation, 3) pitch shifting,
and 4) feature masking. The vocal tract length perturba-
tion was excluded because it produces the same effect as
in the speaker simulation method. All parameters of the
augmentation function were perceptually selected to prevent
a loss of intelligibility and a speech distortion from over-
augmentation. In random noise injection, a sequence of noise
A(t) was generated at random from a continuous amplitude
range of A ∈ (0.001, 0.01). Given X(t) is an normalized
speech signal with an amplitude between -1 and 1 at time t,
the noise injection is defined as follows:

Xaug(t) = X(t) +A(t)X(t) (4)

For volume perturbation, a perturbation factor α was ran-
domly selected from a continuous range α ∈ (1.5, 3),
defined as follows:

Xaug(t) = αX(t) (5)

The pitch shifting augmentation was based on the PSOLA
algorithm [34] implemented in the Librosa Python package
[55]. The shifting factor β was randomly selected from a
continuous range of β ∈ (−1.0, 4). The range of α and β
were perceptually selected to ensure the naturalness of the
synthesized speech. The feature masking method was based
on SpecAug [e1] where the masking was applied in 1) one of
a random mel-frequency cepstral coefficient, and 2) a random
segment of a speech feature time frame where the masking
length was set to 10.
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D. PRE-PROCESSING METHOD
The speech signal was represented as Mel-frequency cepstral
coefficient (MFCCs) [56] with 13 cepstral coefficient and an
additional velocity and acceleration resulting in a total of 39
features per time frame. The spectrum was computed using a
Hanning window with a window length of 32 ms and a frame
step of 10 ms, then applying a filter bank frequency followed
by the discrete cosine transformation to decorrelate a filter
bank frequency. Normalization was applied using cepstral
mean and variant normalization (CMVN) [57], which was a
feature compensation method using the z-scoring and scaling
per coefficient. The mean and variance were inferred from
their distribution. The CMVN is defined as follows:

Xij [c] =
Xij[c]−X[c]

SD(X[c])
(6)

The mean X[c] and standard deviation SD(X[c]) of cth

coefficients are defined as follows:

X[c] =
1

N

k=N∑
k=0

m=J∑
m=0

Xkm[c] (7)

SD(X[c]) =

√∑k=N
k=0

∑m=J
m=0 Xkm[c]−X[c]

N − 1
(8)

The Xij [c] is a ith th input feature of cth coefficient at a
frame jth . N is the total number of samples. J is the total
number of timeframes.

The target articulatory parameters were min-max scaled
into a range between 0 and 1, using equation 3, where the min
and max value was inferred from the training distribution.
The JX, VO, TRX, TRY, MS1, MS2, and MS3 were excluded
from the model estimation and set to a constant that is
appropriate for all vowels. The TRX and TRY parameters
were automatically calculated in VTL based on the tongue
body, TCX, and TCY. The parameter VO controlling the velic
opening was fixed for a closed velo-pharyngeal port. The JX,
MS1, MS2, and MS3 were defined as a zero constant because
its boundary is very close to zero and have little effect on a
vowel articulation.

E. DEEP LEARNING
A bidirectional LSTM recurrent neural network (BiLSTM)
[58], [59] was used as the deep learning model architecture.
The BiLSTM was composed of five LSTM layers with 128
hidden units each with a backward recurrent direction. The
output layer was a fully connected layer that mapped the
extracted feature representation from BiLSTM to the articu-
latory representation. The dropout [60] with a 50% drop rate
was applied. The simple multiple linear regression without
any feature extraction layer was used as a baseline. Both
BiLSTM and baseline take MFCC features as an input, and
estimate 23 articulatory target parameters of the input as an
output.

The model was trained by supervised learning using the
gradient-based optimization, Adam optimizer [61], minimiz-
ing a mean square error (MSE) between estimated articu-
latory targets and generated articulatory targets, defined as
follows:

MSE =

∑k=N
k=1

∑j=M
j=1 (ykj − ŷkj)2

NM
(9)

The ykj and ŷ kj are a target underlying articulatory targets
(labels) and estimated underlying articulatory target values
of a parameter j at data-point k from the model. M is the
total number of parameters. N is the total number of data in
a mini-batch. The learning rate used in the optimization was
0.0001 , the batch size was 64 . Hyperparameters of the Adam
optimizer were 0.9 and 0.999 for β1 and β2 respectively. The
weight was initialized using the Kaiman initialization method
[62]. Models were trained with 150 epochs with the early
stopping mechanism monitoring the loss computed from the
development set to prevent the overfitting problem [63].

F. POST-PROCESSING METHOD
The articulatory targets estimated by the deep neural network
were inverted with min-max rescaling, using the same min
and max parameter from the training distribution. Then, the
parameters JX, WC, TRX, TRY, MS1, MS2, and MS3 were
added, where JX and WC were 0.0., and MS1 to MS3 were
−0.05.. These settings were based on a distribution of the
predefined vowels in VTL. TRX and TRY were imputed us-
ing the equation from the VocalTractLab synthesizer, defined
as follows:

TRX = 0.938TCY − 5.1100 (10)

TRY = 0.831TCX − 3.0300 (11)

G. PREDEFINED VOWEL DATASET
To test the model generalization on unseen speeches from the
known speaker, and to evaluate the model in the articulatory
domain, observed samples which is a predefined German
vowel from the VocalTractLab were excluded from the train-
ing dataset and used as a model evaluation dataset instead.
The predefined German vowel includes /a:/, /i:/, /u:/, /e:/, /E:/,
/o:/, /@:/, /Œ:/, /O:/, /A:/, /ø:/, and /U:/. These vowels were
composed into both monosyllabic predefined vowel dataset
and disyllabic predefined vowel dataset, where the later result
in 144 disyllabic vowel utterances.

H. RECORDED THAI VOWEL DATASET
The speech material consisted of disyllabic Thai vowel-only
utterances produced by 6 male and 6 female native Thai
speakers with no reported speech and hearing disorders. The
audio signals were recorded in a room without noticeable
environment noise and some noticeable reverberation. The
sampling rate of the recordings was 44.1kHz with a 16 bits
resolution. The utterances consisted of the nine Thai vowels
/a:/, /i:/, /u:/, /e:/, /E:/, /W:/, /7:/, /o:/, and /O:/ composed into
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disyllabic utterances, which resulted in a total of 81 disyllabic
vowel utterances per recorded set (one set per speaker). Thus,
a total of 12 x 81 = 972 disyllabic vowel utterances were
recorded. Seven additional sets were recorded by another
native Thai speaker, which then were used as additional data
to train the speech recognition model, as will be described
later. Some transformations were performed by hand prior
to data processing, which are 1) resampling, 2) amplitude
rescaling, and 3) syllabic transition marking. Resampling was
performed to reduce the speech sample rate from 44.1 kHz to
16 kHz. The amplitude of the recorded audio was scaled to
match the distribution of a training synthetic speech by mul-
tiplication with a constant factor. The transition time between
syllables in the disyllabic vowel utterances was manually
marked based on visual inspection of the waveform.

I. DESIGN OF EXPERIMENT
The model was trained on two synthetic training sets from
the generator, which were a monosyllabic vowel utterance
and a disyllabic vowel utterance. To prevent overfitting from
training the model too long, the dataset was split into a
training, validating, and testing dataset, where the validating
dataset was used for performance monitoring during training,
and the testing dataset was used for a final performance test.
After the training, the model performance was evaluated both
in the articulatory domain and acoustic domains using the
predefined vowel dataset. Lastly, the model was evaluated on
the acoustic domain using the recorded disyllabic Thai vowel
samples. Since the acoustic from different speakers cannot
be directly compared, the model performance was evaluated
in a phonemic domain using a listening test, described in the
following section.

The effect of the proposed generator, e.g., speaker sim-
ulation and data augmentation during the data generating
process, was studied in four experiments each using a differ-
ent dataset: 1) the originally proposed dataset; 2) the dataset
without speaker simulation; 3) the dataset without data aug-
mentation; 4) the dataset without both speaker simulation and
speech augmentation. The training on all four models used
the same experimental setting. The performance of the train-
ing was evaluated by resynthesizing the recorded disyllabic
Thai vowel samples, and then measuring the performance
in terms of phoneme recognition accuracy using a speech
recognition model.

J. EVALUATION METRICS
This study evaluated models in the articulatory domain and
the acoustic domain using both visual and numerical as-
sessment. In the articulatory domain, the root means square
error (RMSE) and R-squared (R2) were used to measure
the error between the observed underlying articulatory target
and estimated underlying articulatory target by the model.
For the acoustic domain, F1, F2, F3 formant errors between
the target speech and the reproduced speech by the model
were measured using a mean absolute percentage formant
error. Formants were extracted using the Praat script [64].

The mean absolute percentage formant error is defined as
follows:

MAPE =

∑
(|Fi−Fa

Fa
|100)

N
(12)

where Fi is a formant of an imitated speech. Fa a is a
formant of a target speech. N is a total amount of a formant
sample in the speech data. For the phonemic domain, the
precision metric was used as a numerical score. The precision
is defined as follows:

Precision =
TruePositive

TruePositive− FalsePositive
(13)

The TruePositive is a number of correct predictions. The
FalsePositive is a number of incorrect predictions, where the
actual target is negative.

K. LISTENING TEST
The listening test was conducted with 25 native Thai listeners
who participated in this experiment. 14 listeners are female,
and others are male. The listener’s age is distributed around
23 to 27 years old. The listener was asked to identify the
phoneme of the given set of disyllabic vowel utterances
reproduced by the proposed model. These utterances were
composed of vowels as described in Subsection II-H consist-
ing of 81 utterances. The utterances were presented to the
participants in a random order.

L. RECOGNITION TEST USING SPEECH RECOGNITION
To measure the effect of the proposed generator, the recogni-
tion test using a speech recognition model was used to eval-
uate the intelligibility of a reproduced speech in a phonemic
domain. The speech recognition model was trained on the
recorded disyllabic Thai vowel speech. This test assumes that
if the reproduced speech was intelligible enough, the speech
recognition trained from Thai vowels should be able to iden-
tify phonemes correctly. The model architecture was defined
as a shallow LSTM recurrent network consisting of two
LSTM layers and 64 hidden units per layer. The output layer
was a fully-connected layer with nine units representing the
phonemic target class. The model was trained by supervised
classification learning, where the MFCCs representation was
used as a speech feature and its phonemic representation was
used as a learning target. The cross-entropy loss was used as
an objective function to train this model, defined as follows:

L(ẑ, z) = −
C∑

c=1

zlog(ẑ) (14)

Softmax(a) =
eac∑C
d=1 e

ad

(15)

where ẑ is a predicted probability produced by the
Softmax(a) function. C is the total number of classes. a
is an activation from the previous layer. z is a ground truth
of a predicted class. The permutation test and bootstrapping
subsampling method were used to ensure the model’s fitness.
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M. DATA VISUALIZATION
A uniform manifold approximation and projection (UMAP)
[65] was used to visualize the cluster of phonemes from the
speech and articulatory targets in a two-dimensional space.
UMAP reduces dimensions of the input by constructing high-
dimensional topological space from the input using simpli-
cial complexes, and then using an optimization to find a
topology of a lower dimension that is similar to the ini-
tial high-dimensional topology. UMAP preserved both local
structure and global structure, meaning that similar data are
clustered together, and similar categories of data are shown
close to each other.

III. RESULTS
A. DATA EXPLORATION ANALYSIS
Figure 2 shows the plot of articulatory targets from the
training dataset where articulatory parameters were projected
into a two dimensional space using UMAP. As can be seen,
there is a clear separation of the clusters of the phoneme
groups, indicating that the training samples are well-defined.
The bottom left clusters are articulations that have a wide
open lip. The top right clusters are articulations with a closed
lip. The articulations toward the top right have a rounded lip
and a raised tongue back, and vice versa.

FIGURE 2. The underlyinh articulatory targets space using UMAP

Figure 3 shows the visualization of the phoneme groups of
the recorded speech from the MFCC features using UMAP.
As can be seen, /i:/, /e:/, /E:/, /a:/, and /O:/ are clearly separated
from others. Both /u:/, /o:/, and /7:/, /W:/ were clustered
together but still separable. /O:/ and /u: o:/ formed one big
cluster, representing the vowels with rounded lips. /i:/, /e:/.
/7:/ and /W:/ form another big cluster, representing speech
produced with wide to median opened mouth without lip
rounding. Speaker variations present in the speech samples
may have caused the overlaps between the clusters. The
sources of these variations are likely to be: 1) individual
speakers; 2) gender differences; 3) and phoneme contexts.

B. MODEL PERFORMANCE ON SYNTHETIC DATASET
Table 2 shows the result of the model performance evaluated
on the synthetic samples. The error in the articulatory domain

FIGURE 3. MFCCs feature plot of a recorded Thai vowels dataset using
UMAP

shows that the BiLSTM performed better than the baseline
on both monosyllabic and disyllabic vowel utterances. Next,
the models were evaluated on the predefined vowel dataset.
The results are shown in Table 3. The BiLSTM achieved
small RMSEs for both monosyllabic and disyllabic vowel
utterances, indicating that the model can estimate the artic-
ulation of the unseen speech sample from a known speaker.
To further analyze the model performance, the mean absolute
percentage formant error with a 95% confidence interval was
used to measure the resynthesizing error between the target
speech from predefined vowels and the re-synthesized speech
from the model in the acoustic domain. As shown in Table 4,
the BiLSTM achieved a low percent error rate, indicating that
the model can accurately reproduce the unseen target speech
from a known speaker.

TABLE 2. The model performance evaluation results on learning samples

Monosyllabic vowels utterance
Train Samples Test Samples

Model RMSE R2 RMSE R2
baseline 0.3441 0.5117 0.3348 0.5344
BiLSTM 0.1172 0.9440 0.1385 0.9202
Disyllabic vowels utterance

Train Samples Test Samples
Model RMSE R2 RMSE R2
baseline 0.3575 0.4795 0.3462 0.5048
BiLSTM 0.1220 0.9395 0.1428 0.9147

TABLE 3. The model performance evaluation results on predefined vowels on
an articulatory domain

Monosyllabic vowels Disyllabic vowels
Model RMSE R2 RMSE R2
baseline 0.3857 0.5923 0.4043 0.5381
BiLSTM 0.1968 0.8564 0.1434 0.9258

The model performance of each estimated articulatory
parameter on a predefined monosyllabic vowel is shown in
Table 5. The result shows that the BiLSTM was weak in
estimating TTX and TS1 parameters. While TS1 has little
effect on the produced speech, TTX, the tongue tip, may
cause a slight error when reproducing a speech.

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3166922, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4. The formant MAPE results on predefined vowels

Monosyllabic vowels utterance
Model F1 % Error F2 % Error F3 % Error
baseline 77.38 ± 16.03 151.50 ± 27.09 161.87 ± 31.03
BiLSTM 7.90 ± 0.62 7.60 ± 0.55 14.21 ± 1.90
Disyllabic vowels utterance
Model F1 % Error F2 % Error F3 % Error
baseline 119.23 ± 4.55 171.34 ± 5.99 226.90 ± 8.22
BiLSTM 2.73 ± 0.04 7.74 ± 0.19 8.38 ± 0.15

TABLE 5. The RMSE and R2 of the estimated underlying articulatory targets
on predefined monosyllabic vowels

Articulatory
Parameter RMSE R2 Articulatory

Parameter RMSE R2

HX 0.153 0.950 TTX 0.385 0.645
HY 0.260 0.767 TTY 0.281 0.775
JA 0.124 0.931 TBX 0.144 0.923
LP 0.236 0.853 TBY 0.292 0.756
LD 0.193 0.936 TS1 0.473 0.514
VS 0.171 0.945 TS2 0.173 0.882
VO 0.243 0.913 TS3 0.180 0.905
TCX 0.138 0.958 TS4 0.094 0.949
TCY 0.141 0.957

The model performance of each resynthesize vowel in an
acoustic domain measured by absolute percentage formant
error is shown in Table 6. The re-synthesized speech of
the phoneme /i:/, /u:/, /o:/, and /ø:/ from the BiLSTM had
a higher F1 error compared to other vowels. Using a t-
statistical test, F1, F2, and F3 have p-values larger than 0.1, as
shown in Table 7. Thus, the null hypothesis of having similar
speech does hold. Therefore, these errors did not cause the
target speech and re-synthesized speech to be significantly
different.

TABLE 6. Absolute percentage formant error result on predefined
monosyllabic vowels

Phonetic F1 %Error F2 %Error F3 %Error
/a:/ 1.41 1.64 4.38
/i:/ 15.47 1.79 5.72
/u:/ 17.38 4.19 1.09
/e:/ 5.93 0.06 1.24
/E:/ 8.20 5.18 1.32
/o:/ 12.62 2.82 2.67
/@:/ 0.67 3.17 0.41
/Œ:/ 8.81 1.32 0.64
/O:/ 2.16 5.72 1.77
/A:/ 0.54 0.17 0.50
/ø:/ 14.70 2.80 2.81
/U:/ 6.86 2.80 0.67

TABLE 7. Statistical comparison between the target speech and the
re-synthesized speech of a monosyllabic vowel

F1 F2 F3
t-test 0.151 -0.059 -0.088
p-value 0.882 0.954 0.930

Table 8 shows the model performance of each estimated
articulatory parameter on predefined disyllabic vowels. The
model estimated articulation of a disyllabic vowel better than

that of a monosyllabic vowel, where most of the estimated
articulatory parameters have lower RMSE and higher R2.
Table 9 shows the average F1, F2, and F3 formant error
between target and the re-synthesized disyllabic vowel utter-
ance, where the first and the second syllables of disyllabic
vowel utterance were measured separately. From the result,
the model noticeably has a high F2 error on the vowel /u:/
for both halves of the disyllabic vowel. Using the t-statistical
test to test the difference between target and re-synthesized
disyllabic vowel speech, both speeches were not significantly
different where the p-value for F1, F2, and F3 of both parts
are more than 0.1, as shown in Table ??.

TABLE 8. The RMSE and R2 of the estimated underlying articulatory targets
on predefined disyllabic vowels

Articulatory
Parameter RMSE R2 Articulatory

Parameter RMSE R2

HX 0.152 0.950 TTX 0.259 0.840
HY 0.158 0.914 TTY 0.192 0.895
JA 0.109 0.946 TBX 0.136 0.931
LP 0.178 0.916 TBY 0.166 0.922
LD 0.139 0.966 TS1 0.290 0.817
VS 0.165 0.948 TS2 0.156 0.904
VO 0.176 0.954 TS3 0.148 0.936
TCX 0.083 0.985 TS4 0.109 0.931
TCY 0.091 0.982

TABLE 9. The formant MAPE results on predefined disyllabic vowels

Label First syllable Second syllable
F1
%Error

F2
%Error

F3
%Error

F1
%Error

F2
%Error

F3
%Error

/a:/ 1.79 2.11 2.45 1.66 1.94 2.10
/i:/ 3.99 0.69 1.40 2.63 0.41 1.41
/u:/ 2.95 15.46 1.15 4.27 11.10 1.58
/e:/ 2.30 0.15 0.32 1.75 0.36 1.51
/E:/ 3.10 1.47 1.84 3.91 3.05 1.81
/o:/ 3.85 2.31 0.75 4.28 2.38 1.13
/@:/ 0.55 0.49 0.37 0.92 1.06 0.17
/Œ:/ 2.34 6.49 1.74 3.24 5.62 2.21
/O:/ 1.67 4.87 0.40 1.22 1.38 0.75
/A:/ 0.37 1.10 0.91 0.98 2.40 0.44
/ø:/ 5.59 0.47 2.08 5.37 0.81 1.44
/U:/ 1.49 4.70 1.39 5.40 7.98 1.35

TABLE 10. Statistical comparison between the target and the reproduced
speech formant of a disyllabic vowel utterance

First syllable Second syllable
F1 F2 F3 F1 F2 F3

t-test -0.027 0.029 -0.169 0.023 0.080 -0.248
p-value 0.978 0.977 0.867 0.981 0.937 0.806

Figure 4 shows the estimated articulation from the model
when reproducing monosyllabic vowels (top) and disyllabic
vowels (bottom) visualized from the VocalTractLab. These
estimated articulations from the model were behaved accord-
ing to the international phonetic alphabet chart (IPA) [66],
where /a:/ had tongue towards front and month open, /i:/ had
a tongue towards the front and mouth slightly close, and /u:/
had tongue towards back and mouth slightly close.
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FIGURE 4. Average disyllabic vowel articulation according to the IPA chart

C. MODEL PERFORMANCE ON THE RECORDED THAI
VOWEL DATASET

Table 11 shows the mean absolute percentage formant error
between the target disyllabic Thai vowel speech and the re-
synthesized speech from estimated underlying articulatory
targets by the model. Figure 5 shows the similar arrangement
of formants between target and re-synthesized speech. The
result in Table 12 from the t-statistical test also shows that
average F1 and F2 frequencies were not statistically signif-
icantly different, where the p-value for F1, F2, and F3 of
both first and second syllable of a disyllabic vowel are larger
than 0.1, as shown in . While the t-statistical test shows that
average F3 was statistically significantly different, only F1
and F2 are enough to identify vowels [67]. As shown in
both numerically and visually, while it is not statistically
different, the error seems large. However, the formant from
the different speakers cannot be directly compared because
it is affected by the shape of the vocal tract. Therefore, for-
mants of the re-synthesized speech were compared with the
empirical formant [68] range. Figure 6 illustrates that most
of the average formants are within the empirical formant
range, indicating that the model accurately re-synthesized
target speeches which were recorded by the actual human.

Figure 7 shows the comparison result between the spectro-
grams of the target speech recorded by the Thai speaker and
re-synthesized speech by the model. The red contour shows
the speech formants. Visually, the F1 and F2 formants of
both target and re-synthesized speech signals are comparable,
while F3 in some speeches were different, e.g., /E:O:/ and

TABLE 11. The formant MAPE results on recorded disyllabic Thai vowel data

Label First syllable Second syllable
F1
%Error

F2
%Error

F3
%Error

F1
%Error

F2
%Error

F3
%Error

/a:/ 25.45 15.20 17.05 26.86 17.35 17.06
/i:/ 18.78 27.56 14.71 31.11 32.97 14.57
/u:/ 16.82 32.54 10.96 21.79 36.91 13.96
/e:/ 19.56 21.36 15.99 22.53 21.47 15.76
/E:/ 18.48 28.97 16.13 24.56 26.75 17.15
/W:/ 12.79 12.73 16.06 17.55 15.72 16.28
/G:/ 14.05 11.58 15.98 21.42 13.20 16.23
/o:/ 21.36 25.64 12.25 23.65 22.90 12.16
/O:/ 15.54 20.82 15.09 23.32 21.51 15.69

FIGURE 5. Average formant plot comparing recorded Thai vowel and a
reproduced speech

/W:o:/. Figure 8 shows the group of estimated underlying
articulatory targets from the model where the color represents
the phoneme of the target speech. The articulatory parame-
ters were projected into a two-dimensional space using the
UMAP. Articulations of the same phoneme were clustered
together. However, while there was a clear distinction be-
tween some groups, some mixture between phonemes were
presented.

Figure 9 shows articulations of an estimated underlying
articulatory target from the recorded disyllabic Thai vowel.
The visualization is shown as an estimation of the first and

TABLE 12. Statistical comparison between the recorded and the reproduced
speech of a disyllabic vowel utterance

First syllable Second syllable
F1 F2 F3 F1 F2 F3

t-test -0.718 -0.506 -5.253 -0.847 -0.708 -3.765
p-value 0.483 0.620 0.000 0.410 0.489 0.002
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FIGURE 6. F1 and F2 Comparison between reproduced speech and the empirical formant range

the second syllable from the disyllabic vowel. The position
of a tongue and the mouth of each vowel were according
to the Thai phonetic chart [69]. The top right shows the
tongue towards the back and mouth close, and the bottom
left shows the articulation with the tongue forward and mouth
open. Figure 10 shows a lip’s shape of the /a:/, /i:/, and /u:/
vowel to visualize the roundedness. The lip’s shape of /u:/
was rounded, while /a:/ and /i:/ are unrounded.

Figure 12 shows the phoneme recognition rate, where the
participants were asked to identify the Thai phoneme of the
re-synthesized speech from the target recorded Thai speech
by the model. The high recognition rate meant that the re-
synthesized speech by the model was intelligible enough to
be classified correctly. The result shows that most of the
vowels were correctly identified by participants. Overall,
the model achieved more than 80% classification accuracy
for re-synthesizing disyllabic vowel utterances, except for
/a:/ with the recognition rate slightly below 80% and /O:/
with a recognition rate below 40%. The only difference in
the articulation of /a:/ and /O:/ is the rounding of the lip
where the articulation for /O:/ is rounder than /a:/. Figure 11
shows the table where each row is a vowel that the model
tried to reproduce, and each column is the vowel that was
recognized by the participants. The diagonal represents the
correct recognition. Most of the incorrect identifications were
from a pair of vowels that having similar phoneme, which are
/a:/ and /O:/.

D. EFFECTS OF THE DATA GENERATOR
The effect of the proposed data generator module was eval-
uated by measuring the model target speech re-synthesizing

performance on recorded disyllabic Thai vowel dataset. The
result shown in Table 13 indicates that applying both speaker
simulation and augmentation methods improved the model
performance. The result clearly shows that the performance
significantly dropped without both speaker simulation and
data augmentation.

TABLE 13. The model performance trained on different dataset evalutated
using recognition test

Model trained with different speech dataset Avg. Precision
With purposed data generation 0.826
dataset without speaker simulation 0.714
dataset without data augmentation 0.683
dataset without both
speaker simulation and data augmentation 0.587

IV. DISCUSSION
Results showed in both visually and numerically indicate
that the deep learning model can estimate the underlying
articulatory targets from monosyllabic and disyllabic vowel
utterances by both known and unknown speakers. The model
was trained with synthetic samples generated by VocalTract-
Lab combining with both interpolation and data augmenta-
tion methods using a few observed samples as a seed. The
model evaluation result on the dataset with label articulatory
information showed that the model could learn the acoustic
and the underlying articulatory targets relationship from the
synthetic training dataset, and it can generalize this knowl-
edge to the unseen vowel utterances speaked by the same
speaker from the synthetic dataset. The model evaluation
result on the recorded Thai vowel speech dataset, where the

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3166922, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Spectrogram comparing recorded Thai vowel and a reproduced speech. The red line is a formant contour, and the blue line is a pitch contour

FIGURE 8. The group of estimated underlying articulatory targets from the
model visualized using UMAP

model was trained on the synthetic samples, showed that
the model could generalize the acoustic to the underlying
articulatory targets relationship to unseen utterances speaked
by unseen native Thai speakers as well. The variations from
the speaker simulation and data augmentation increased the
model’s knowledge about the acoustic-to-underlying articu-
latory targets relationship, leading to the better estimation
of the underlying articulatory targets. The data augmentation
method affected the model performance more than speaker
simulation. This is because the speaker simulation only in-
creased the variation in terms of speaker characteristic, where
the vocal tract area was interpolated from the same vocal

tract model thus the overall shape of the vocal tract did not
change much, while the data augmentation augmented pitch,
volumn, and added random noise which reduce the model
overfitting. The result from the listening test showed that
the proposed strategy provides a nearly perceptually accurate
mapping between the Thai vowel speech with the German vo-
cal tract configurations provided in VocalTractLab, indicating
the ability to decouple the articulatory mechanisms from the
linguistic information. Thus, the generalization of the strat-
egy and the learned targets should provide evidence that this
learning strategy can also provide a potential means of target
learning besides a general supervised learning approach.

The advantage of the proposed strategy over the previous
study [10] is that the model performed well although its
training was based on only a few observed samples. While
only trained with synthetic samples, the model can esti-
mate the underlying articulatory targets from the recorded
Thai speech from various native Thai speakers, which are
unknown to the model, with actual minimum background
noise. Therefore, it shows a promising result to apply these
underlying articulatory targets acquisition strategies on the
real-world application.

Further improvement of this model is highly needed. First,
the model assumed that the perceptual segmentation of the
speech was learned before the learning of speech production.
Second, the effect consonants were not studied. Future work
should explore how humans segment speech, e.g., how many
syllables are in the target speech, and then learn to imitate
those signals. The attention model for machine learning
has proved very useful for speech recognition [70], [71],
where a speech utterance was translated into a sequence
of characters. Therefore, the attention model could also be
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FIGURE 9. Average reproduced vowel articulation fsplit into a first syllable (left) and a second syllable (right) of a disyllabic vowel utterance

FIGURE 10. The front view of an average reproduced vowel articulation of
/a:/, /i:/, and /u:/

FIGURE 11. Confusion matrix result between recorded Thai vowel and a
reproduced vowel from the model

applied to estimate a set of underlying articulatory targets
from the given speech utterance. Next, the method could be
modified to be able to estimate articulatory targets related to
consonants. In addition, to improve estimation performance
and generalization, self-supervised methods [72] are worth
exploring on how the speech is featured without any explicit
target.

V. CONCLUSION
This study explored the estimation of underlying articula-
tory targets by learning the mapping between acoustic and
the underlying articulatory targets of Thai vowels using a
bidirectional long short-term memory recurrent neural net-
work. The VocalTractLab was used as a generative model
to generate acoustic data from articulatory parameters, and
the deep learning approach was used to model the acoustic-
to-articulatory relationship. Using a few data points as rep-
resentative of Thai vowels, the speech data augmentation
and a speaker simulation method allowed us to extract more
information from the data and improve the estimation of
the underlying articulatory targets. The results demonstrated
that the proposed strategy was able to accurately reproduce
speech from a given target utterance from unseen Thai speak-
ers. Thus, the model represents an effective strategy for rapid
mapping of acoustic data to articulatory target parameters.

The caveats of this study are: 1) the proposed method re-
quired a predefined syllable segmentation of the input speech,
and 2) this study excluded consonants. Therefore, the rec-
ommended improvements from this study are to include the
estimation of underlying articulatory targets of consonant-
vowel utterances, and to explore methods which can directly
estimate the sequence of speech syllables without a need for
the predefined speech segmentation.
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