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Abstract—This paper introduces a paradigm shift regarding
vocal learning simulations, in which the communicative func-
tion of speech acquisition determines the learning process and
intelligibility is considered the primary measure of learning
success. Thereby, a novel approach for artificial vocal learning
is presented that utilizes deep neural network-based phoneme
recognition in order to calculate the speech acquisition objective
function. This function guides a learning framework that involves
the state-of-the-art articulatory speech synthesizer VocalTract-
Lab as the motor-to-acoustic forward model. In this way, an
extensive set of German phonemes, including most of the con-
sonants and all stressed vowels, was produced successfully. The
synthetic phonemes were rated as highly intelligible by human
listeners. Furthermore, it is shown that visual speech information,
such as lip and jaw movements, can be extracted from video
recordings and be incorporated into the learning framework as
an additional loss component during the optimization process.
It was observed that this visual loss did not increase the overall
intelligibility of phonemes. Instead, the visual loss acted as a
regularization mechanism that facilitated the finding of more
biologically plausible solutions in the articulatory domain.

Index Terms—Vocal learning simulation, articulatory speech
synthesis, automatic phoneme recognition.

I. INTRODUCTION

A rticulatory synthesis is a promising candidate for future
speech synthesis systems as this type of synthesis aims

to mimic the speech generation process that happens within
a human vocal tract during speech production. Thus, it has
the potential to provide both natural sounding speech and, in
contrast to current state-of-the-art neural synthesis systems,
the ability to control every aspect of speech generation [1].
However, a major problem in using articulatory synthesis is
its control, which is not known a priori, i.e. speech can only
be generated with expert knowledge. Without such knowledge,
the synthesizer can only be controlled randomly or according
to certain patterns, whereas the acoustic consequences are
observable. This is similar to the situation human vocal
learners face when they start to explore their vocal tract.
Consequently, computational simulations of vocal learning
appear to be a promising tool in order to technically solve
the control problem of articulatory synthesizers, as well as to
answer questions in phonetics and child speech development.

A. Role of Visual Cues and Scientific Relevance

It is well known that congenitally blind children learn to
speak without significant problems [2], while congenitally
deaf children have difficulties learning to speak and require
special training to obtain such ability [3]. This indicates that
the main objective function that guides early vocal learning
must be based on acoustic information rather than visual
information. However, it was reported that sighted speakers
have a finer control over articulatory speech movements [4]
and that congenitally blind speakers show less lip rounding
than speakers with normal vision [5]. Lip rounding, however,
is an important factor influencing the quality of certain vowels
such as /o, u/. Computational simulations suggest that fine
adjustments of the lip rounding are necessary, e.g. to produce
a clear vowel /u/ [6]. It is therefore reasonable to assume that
computer simulations of the speech acquisition process may
benefit from a multi-modal (audio-visual) observation space
in terms of quality or efficiency. Nevertheless, it has not yet
been demonstrated that natural measurements of the visible
articulators can actually be incorporated into an appropriate
simulation in order to learn an extensive set of phonemes.
With the present study the current state of research is extended
by the following contributions: (i) A set of German vowels and
syllables was generated via vocal learning simulation using
the state-of-the-art [1] articulatory synthesizer VOCALTRACT-
LAB (VTL) [7]. Thereby, a novel method was used, which
incorporates phoneme recognition as the objective function.
(ii) Jaw and lip movement related information corresponding
to vowels and syllables was extracted from audio-visual data
and used in the vocal learning simulation to test the impact of
visual information on the learning process. (iii) The resulting
synthetic speech was evaluated both in terms of intelligibility
as quantified by human listeners and in terms of the biological
plausibility of the resulting articulatory states.

II. METHODS

A. Artificial Vocal Learning

In the context of this study and in general, let an artificial
vocal learning scenario be defined as follows: (i) Vocal
learning is performed by an agent, which is an entity that
has access to a motor space and an observation space. The
latter encodes the (acoustic) consequences of actions executed
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Fig. 1: Time (left plots) and frequency (middle plots) differences between two realizations of the word “bad” uttered by a
female (top plots) and a male (bottom plots) speaker. The right plot shows realizations of “bad” (top) and “dad” (bottom) by a
single speaker uttered with two distinct f0 contours. If the former utterance was to be imitated and the latter was an attempt of
imitation, the major part of spectral difference would not come from the (incorrect) consonant but from the (actually correct)
vowel part due to the strongly unequal distribution of the spectral information in the individual phoneme segments.

within both the agent’s motor space and other motor spaces,
i.e. speech by external speakers. (ii) The vocal learning process
is characterized by the agent trying to acquire motor space
states that correspond to certain observation states. If such
observation states originate from external speakers, one may
speak of imitative learning. A successful imitation preserves
the communicative intent of the utterance, but may change
its acoustic realization. On the other hand, if the observation
state of interest is a result of a motor command initiated by
the agent itself, an {action, consequence} pair can be obtained.
In that case, one may speak of the acoustic-to-motor inverse.
Such an inverse provides the possibility for a true re-synthesis
of the observation state. (iii) The learning process must be
explorative, which means it is un- or semi-supervised, as it
can only be guided by observables. The action states of action-
consequence pairs produced by possible teachers, e.g. external
speakers, however, are mostly hidden. Hence, vocal learning
can only be guided by acoustic information, visual information
and sensory feedback. Approaches like direct inversion based
on action-consequence pairs crafted by experts, i.e. copy
synthesis as done in [8]–[10] may be pragmatic and expedient
but such methods can not be referred to as vocal learning. Note
however that it would be legitimate in this frame to establish
a direct inversion between actions and consequences if the
respective pairs were previously determined by exploration,
e.g. as proposed in [11], [12].

1) Related Work: Numerous papers on the simulation of
speech acquisition have been published in recent years [6],
[12]–[21], see [22] for a more in-depth comparative review.
Some of these studies deal explicitly with phonetic and child
development issues, while the motor optimization problem it-
self is of secondary importance. Other studies, however, focus
on the level of motor learning and acoustic-to-articulatory
inversion. This is usually done by goal-directed babbling
(which means that the explorative process is not totally random
but is driven towards a target state by some kind of loss or
reward function) and involves the implicit or explicit creation
of a mapping between motor space and observation space [18].
In the explicit case, neural networks are often trained for direct
inversion from consequence to action. Sometimes a composite
consisting of a trained inverse and a trained forward model
is used [12]. This is usually referred to as distal learning

[11]. Both the defined motor and observation spaces may
differ greatly among the mentioned studies. While the motor-
to-consequence models are mostly articulatory synthesizer-
based frameworks with varying degrees of realism, such as
VOCAL LINEAR ARTICULATORY MODEL [23], DIRECTIONS
INTO VELOCITIES OF ARTICULATORS [16] or VTL [7], the
observation spaces are mostly based on spectral acoustic fea-
tures such as formants, spectrograms, mel spectrograms [24],
mel-frequency cepstral coefficients (MFCC) [25], or abstracted
features obtained by embedding or dimension reduction of
acoustic or spectral input [21]. The performance of vocal
learning models is then usually evaluated by distance metrics
defined in the observation spaces, such as formant differences
or spectral distances. Sometimes it is also evaluated by the
quality of the motor trajectories or distances in the motor space
[26], although this is rather difficult because the true motor
trajectories are usually unknown. In some cases, subjective
auditory impressions are mentioned for evaluation purposes,
but none of the listed works reported systematic listening tests
with human listeners evaluating intelligibility.
With this in mind, in the context of the definition of ar-
tificial vocal learning given here, it can be said that the
aforementioned works are incomplete in the broadest sense
or ignore important conceptual prerequisites. I.e. it is often
assumed that the goal of vocal learning is imitation through
acoustic matching [12]. However, this may be a fundamental
misconception, for the following technical and conceptual
reasons: First of all, three main technical issues occur when
trying to calculate differences between spectral features, see
Figure 1. (i) There may be non-linear time distortions among
the goal speech and imitated speech. (ii) There will be
intrinsic frequency mismatches between goal and imitated
utterances due to differences in the vocal tract geometries of
the target speaker and imitating speaker. This is often referred
to as speaker normalization problem. (iii) There will be
spectral weighting issues that occur from the widely differing
amount of spectral information among different phonemes
even if target and imitating utterances originate from the
same speaker, e.g. see right plot in Figure 1. All these issues
reduce the correlation between the spectral difference and
actual perceptual difference in the general case. While these
problems may be dismissed as cosmetic, since they could
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be circumvented through complicated engineering, such as
time and frequency warping and spectral weighting, they are
actually a symptom of a deeper conceptual problem: Acoustic
matching is not the goal of vocal learning, but rather that of
(true) re-synthesis. In order to achieve re-synthesis with an
articulatory model, the underlying vocal tract geometry of the
target speech material must be known prior to exploration, e.g.
either derived from magnetic resonance imaging (MRI) scans,
or somehow determined from acoustics. Whether a mapping
from acoustic material to this geometry can be established
is an open question for future research. However, it is clear
that this procedure does not apply to human vocal learning,
since humans develop their own vocal tract and do not copy
those of others. Instead, it is reasonable to assume that a
primary goal of vocal learning is to acquire motor states that
fulfill a communicative function. This may be motivated in
the context of evolution, as humans apparently developed the
complicated process of speech in order to be understood by
others. Successful communication requires this and successful
communication is a basic prerequisite for human survival.
Nevertheless, in terms of artificial vocal learning this means:
(i) Imitation is not the goal but may be a path, i.e. the
fundamental paradigm of vocal learning may not be described
by “How can I reproduce an utterance I just heard?”, but
by “How can I produce an utterance in a way that I am
understood?”. (ii) The main measure of vocal learning success
should therefore be intelligibility. In previous works, however,
this measure usually plays no role. A notable exception in
this regard is the work of Rasilo and Räsänen [19], where
intelligibility is in fact included in the objective function.
However, their work involves human subjects who guide
the learning process as “caregivers” and thus is not fully
automated, which is inconvenient.

2) Approach: This work presents a simple and elegant
solution to these technical and conceptual problems. By using
automatic speech recognition (ASR) with a recurrent deep
neural network, acoustic time series inputs can be transformed
into probability distributions representing the input utterances.
The fundamental advantage over previous work is the implicit
speaker normalization gained by training on multi-speaker
data. At the same time, the computation of the loss function is
considerably simplified by the fact that it is now only based on
probability vectors which can be directly compared with each
other. On the other hand, this means that a separately trained
speech recognition model is used for the learning process.
ASR models may be used in two different ways within the
vocal learning framework. (i) A model may be used to en-
code target and imitative utterances into respective probability
distributions. Subsequently, a distance between both vectors
would be calculated and used as a loss in the learning process.
(ii) No target utterances are used explicitly and the model
is used to encode the acoustic signals uttered by the agent
only. Subsequently, the encodings are evaluated against the
probability unit vectors, which represent the phonetic or word-
level categories that the ASR model was trained to map to.
In this work only the second option was used, as this scenario
ideally guarantees that the categorical communicative function
of learned utterances is equal to the desired phonetic identities.
In this study a single-phoneme recognition model (described

in Section II-B) was used in order to guide the vocal learning
process. Synthetic utterances were produced using VTL with
its standard speaker model, accessed via the PYTHON front-
end VTL-PYTHON1. VTL is an articulatory synthesizer that
provides a one-dimensional aero-acoustic simulation of sound
propagation within the human vocal tract, whereby the vocal
tract shape is described through its tube cross-sectional area
function. The simulation can be controlled via a parameterized
three-dimensional vocal tract model that was derived from
MRI data, as well as three types of glottis models: a geometric
glottis, a triangular glottis and a two-mass model. Throughout
this work, the geometric glottis model was used. VTL provides
high-level control such as phoneme-to-speech via articulatory
presets representing the German phoneme inventory derived
from MRI data. However, the synthesizer also allows direct
control over the motor level, which is a prerequisite for simu-
lating speech acquisition. In the configuration used here, VTL
provides 19 supra-glottal parameters , see Table I. While the
vocal tract dynamics in high-level control are always governed
by the TARGET-APPROXIMATION-MODEL [27]–[29] (TAM),
low-level control can in principle be executed arbitrarily, e.g.
by Dynamic Movement Primitives [30], as done in [21].
However, throughout this work the TAM was used exclusively
to drive the VTL synthesis on the motor level. A complete
overview of the vocal learning framework used in this study is
given in Figure 2. On the left side, the optimization procedure
itself is visualized, which is performed using the Whale
Optimization Algorithm [31] (WOA), see Section II-D. At
each time step of the optimization, this algorithm receives a
single value as input (loss) and outputs a parameter vector
containing the respective state of the articulatory variables to
be optimized. Subsequently, supra-glottal states are then tested
with regards to an externally set constriction constraint. This
means specifically, the minimum of the tube area function
Tmin corresponding to the respective articulatory state is
calculated. Supra-glottal states are referred to as open, if
Tmin ≥ 0.3 cm2, tight, if 0.3 cm2 > Tmin > 0.001 cm2 or
closed, if Tmin ≤ 0.001 cm2. Successful learning of clear
vowels requires, for example, open vocal tract states, while
learning fricatives requires tight states, since the fricative noise
sources in the VTL simulation are only activated beyond
a certain level of narrowness. Plosives require a closure
within the vocal tract, i.e. a closed state. If the calculated
constriction does not match the constriction required by the
phonetic category being learned, a large loss value of 100
(arbitrary) is directly returned to the optimization algorithm,
bypassing the residual chain of processes. This constraint
is justified by the computationally expensive synthesis of a
state. As a consequence, the computational efficiency of the
simulation is increased. Nevertheless, if a state does fulfill the
constriction constraint, a motor score is calculated. This is a
set of parameter curves describing the temporal deformation
of the 3D vocal tract model and the dynamics of the geometric
glottis within VTL. Starting from the motor score, VTL can
calculate the time evolution of the one-dimensional tube cross-
sectional area function and finally produce a synthetic speech
waveform. Mel spectrograms are then calculated from the

1https://github.com/paul-krug/VocalTractLab-Python
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Fig. 2: Schematic block diagram of the implemented framework for artificial vocal learning guided by phoneme recognition.

audio signal, which serve as input features for the phoneme
recognition model. This model in turn outputs a probability
distribution that describes the predicted phonetic identity of
the input utterance. The similarity of the probability vector to
a corresponding previously externally determined unit vector
(intent of the agent) is then calculated via categorical cross-
entropy for each phoneme j to be included in the loss function
during the optimization process:

LP =
∑
j

(
−

nC∑
i=1

yij · log(ŷij)
)
, (1)

whereby the number of phonetic categories is nC = 37. The
values yij and ŷij denote the i-th component of the phonetic
identity vector corresponding to a phoneme j and the related
phoneme recognition model output vector, respectively. The
phoneme loss LP is then passed to the optimization algorithm
which closes the process loop. In the case where visual infor-
mation is used, however, a second loss value is calculated from
the three visually accessible VTL parameters jaw angle, lip
protrusion and lip distance. For this purpose, the corresponding
values determined by the optimization algorithm are extracted
and compared with measured values obtained from video
recordings of speech movements (see Section II-E for details)
via the mean-square error (MSE):

LV =
1

3

∑
i∈V

(xi − x̂i)
2, (2)

where V = {JA,LP,LD} describes the set of visually
accessible VTL parameters and xi and x̂i denote the measured
values and the values proposed by the optimizing agent,
respectively. Finally, a total loss is obtained from the sum:

L = LP + LV. (3)

The described framework was implemented in the PYTHON
programming language and published open source2.

2https://github.com/paul-krug/artificial-vocal-learning

Description Name Min Max Unit

Supra-glottal parameters

1 Hyoid position (horz.) HX 0.0 1.0 cm
2 Hyoid position (vert.) HY -6.0 -3.5 cm
3 Jaw position (horz.) JX -0.5 0.0 cm
4 Jaw angle JA -7.0 0.0 deg.
5 Lip protrusion LP -1.0 1.0 cm
6 Lip distance LD -0.5 2.0 cm
7 Velum shape VS 0.0 1.0
8 Velic opening VO -0.1 1.0 cm2

9 Tongue body (horz.) TCX -3.0 4.0 cm
10 Tongue body (vert.) TCY -3.0 1.0 cm
11 Tongue tip (horz.) TTX 1.5 5.5 cm
12 Tongue tip (vert.) TTY -3.0 2.5 cm
13 Tongue blade (horz.) TBX -3.0 4.0 cm
14 Tongue blade (vert.) TBY -3.0 5.0 cm
15 Tongue root (horz.) TRX cm
16 Tongue root (vert.) TRY cm
17 Tongue side elevation 1 TS1 0.0 1.0 cm
18 Tongue side elevation 2 TS2 0.0 1.0 cm
19 Tongue side elevation 3 TS3 -1.0 1.0 cm

TABLE I: Supra-glottal VTL control parameters.

B. Phoneme Recognition

A deep recurrent neural network with the architecture in-
troduced in [32] was used as the phoneme recognition model.
This model consists of five consecutive bi-directional gate
recurrent unit layers (Bi-GRU) with 256 neurons each (with
tanh activation functions), followed by a dense layer of 37
neurons with softmax activation. Each dimension of the 37-
dimensional output corresponds to a single phoneme category.
In this way, the model acts as an encoder that maps the
input time series directly to a phoneme probability distribution.
The model was trained on single phoneme samples with a
preceding and succeeding temporal context of τC = 32ms
extracted from the combined German KIEL and BITS-US cor-
pora, as described in [32]. Categorical cross-entropy was used
as the loss function during the training process. Logarithmized
mel-scaled spectrograms with 80 frequency bands were used
as input features. For their calculation the underlying audio
samples were resampled to 16 kHz. For the subsequent short
time Fourier transformation, a window length of 256 samples
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(16ms) and a hop length of 40 samples (2.5ms) were used.

C. Vocal Learning Simulations

Within the scope of this study, sets of motor states cor-
responding to the German tense vowels /a, e, i, o, u, E,
2, y/3 and German consonants /p, t, k, b, d, g, f, v, s, z,
S, j, C, x, R, m, n, l/ in the context of /a/ were acquired
via vocal learning simulations using the previously presented
framework. Although the system is in principle capable of
learning all 37 phoneme categories the recognizer was trained
on, only tense vowels and the listed consonants were consid-
ered in order to simplify the subsequent listening experiment
design. Naı̈ve listeners are usually not familiar with categories
such as lax vowels or consonants such as /Z, N/ and the
question of visual information can be addressed without this
aspect. The phoneme /h/ was excluded, since it would not
involve the optimization of supra-glottal parameters. During
the vowel learning, single static articulatory parameter vectors
were optimized including the supra-glottal parameters within
the limits as defined in Table I, excluding VO, TRX and TRY.
VO was set to −0.1 cm2, as an optimization of this parameter
is only needed if nasality is desired. TRX and TRY can be set
to arbitrary values, as VTL allows for an automatic calculation
of these values if the standard speaker file is used [26]. For
the glottal parameters, the modal voice quality settings of the
geometric glottis in VTL-Python were used. The VTL motor
score was then computed from a single articulatory TAM target
vector and the target duration was set to 200ms which is long
enough to produce a meaningful utterance and at the same
time short enough to ensure computational efficiency of the
simulation. The calculation of the VTL motor score is more
complicated in the case of consonants, because they have to be
embedded in a syllable. This means each parameter dimension
features two consecutive articulatory targets, one for the con-
sonant and one for the vowel. Following the idea of Krug et al.
[26], consonant related states were acquired individually, but in
acoustic accompaniment with a following vowel, which means
only consonant related parameters were optimized, while both
the acoustic realizations of the consonant and vowel contribute
to the total phoneme loss. Compared to the joint optimization
of a consonant with a vowel, e.g. as done in [25], this process
has the advantage of higher computational efficiency due to
the much smaller scope of the motor space by the reduced
number of required target parameters. The 16 supra-glottal
parameters (as described earlier) were then optimized in case
of all consonant learning simulations. The parameter VO was
included in the optimization for the nasals /m, n/. For the
voiced consonants a single modal target described the glottal
dynamics, except for /R/, which required aspiration from the
glottis in order to sound plausible. Therefore, the glottis was
slightly opened by changing the lower and upper rest displace-
ment of the vocal folds (XB and XT, respectively) from their
modal setting to 0.05 cm. In that case, glottal dynamics would
be described by two consecutive glottal targets similar to the
supra-glottal domain, whereby the glottal target onset times
were synchronous with the supra-glottal target onset times.

3For phonetic symbols, X-SAMPA notation is used throughout this work.

In the case of the voiceless consonants, however, the supra-
glottal and glottal onset times must be set asynchronously,
otherwise glottis-induced artifacts may occur in the acoustics
due to implausible voice-onset times. The onset times of the
glottal vowel targets were set to −30ms, +50ms and +60ms
relative to the onset time of the supra-glottal vowel target
for /f, s, S, C, x/, /p, t/ and /k/, respectively. The supra-
glottal target durations were 50ms and 150ms in case of the
consonant and vowel targets, respectively. For the voiceless
plosives, the duration of the respective vowel target was set
to 225ms, which was needed due to the larger voice-onset
time. For all voiceless consonants, the glottal parameters XB
and XT were set to 0.1 cm, the chink area (CA) was set
to 0.1 cm2 and the relative amplitude (RA) was set to 0.
Finally, the acoustic window, which corresponds to the input
of the phoneme recognition system needed to be defined.
This is not trivial, because even though the articulatory target
boundaries are known, the acoustic phoneme boundaries are
not. With the used TAM time constant of 12ms the acoustic
signal is following the articulatory target onset with a delay of
approximately τD = 50ms. The acoustic window for a specific
phoneme was then reasonably estimated from the respective
target boundaries plus τD ± τC.

D. Optimization Method

The vocal learning process described in this study is un-
derstood as an optimization problem, where the goal is to
achieve an optimal state in a high-dimensional motor space
via the minimization of an observable objective function.
Such a high-dimensional search problem may be solved by
gradient-free, metaheuristic optimization algorithms of which
many have been published in recent years. In order to find an
algorithm well suited for the vocal learning process, a number
of candidate algorithms were tested in advance. The PYTHON
library PYMETAHEURISTIC was used for this purpose. The
algorithms defined in [31], [33]–[36] were used to find optimal
articulatory states corresponding to the vowels /a, e, i, o,
u, E, 2, y/ using the vocal learning framework previously
described, without the visual loss component. The algorithms’
hyperparameters were not specifically tuned. The optimiza-
tions were performed 20 times for each vowel. Each run
was stopped after 100 synthesis steps within the optimization.
Both the phoneme loss as well as the computation time
were monitored. The results for the algorithms are shown in
Figure 3. It can be seen that the runs calculated via WOA
gave the overall smallest loss values, as well as the lowest
computation time. Hence, it was selected as the optimization
algorithm in the following experiments. First, however, the
WOA hyperparameters hunting party and spiral parameter
were optimized in a grid search over the values [100, 300]
in steps of 100 and [0.0, 1.0] in steps of 0.1, resulting in
optimal values of 200 and 0.5, respectively.

E. Visual Data Acquisition

The calculation of the visual loss introduced in Equation
2 requires the input of phoneme category-related visual tar-
get parameters. Such parameters were derived from video
recordings of a speaker uttering respective speech sounds.

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2023.3264454

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 06,2023 at 07:35:23 UTC from IEEE Xplore.  Restrictions apply. 



6

Whale
Optimization

Algorithm

Sine-Cosine
Algorithm

Simulated
Annealing

Differential
Evolution

Flow
Direction
Algorithm

0.0

2.5

L P

Whale
Optimization

Algorithm

Simulated
Annealing

Flow
Direction
Algorithm

Differential
Evolution

Sine-Cosine
Algorithm

225
250
275

T
im

e
[s

]

Fig. 3: Results for different metaheuristic algorithms.

To accomplish this, an audio visual data set was recorded
containing vowels and syllables spoken by a 26 year old native
German male speaker. Since the visual measurements had to
be normalized to the dimensions of VTL for the calculation
of LV, it was sufficient to record a single speaker. Multiple
speakers would have been normalized to the same ranges and
sufficient variability among the parameter distributions was
already generated for a single speaker, due to the intra-speaker
variance during the phoneme and viseme production. The
previously mentioned vowels and consonants in the context
of vowel /a/ were recorded individually 10 times each.
Additionally, the facial extreme positions, e.g. jaw and lips
fully closed/open, as well as lips fully spread/rounded were
recorded multiple times. The subject was required to stand
still and in a fixed position in order to avoid movements
of the recorded face in three-dimensional space, such as
rotations of the head, which would complicate the subsequent
calculation of distances based on the video material. The video
data was recorded with a resolution of 1080x1920 pixels at
a frame rate of 120 frames per second on an Apple Inc.
iPhone 11, audio was thereby recorded at a sample rate of
48 kHz. The separate audio stream was used exclusively for
the manual segmentation of the speech material. Based on
the segmentation, the relevant video frames were extracted.
Subsequently, 68 facial landmarks (following the Multi-PIE
[37] or IBUG [38] standard) were extracted from each frame
using a convolutional pose machine [39] in the exact same way
as described in [40]. The model was trained using supervision-
by-registration [40] because this technique allows temporally
coherent trajectories to be determined across consecutive video
frames. Thereby, the intrinsic stability of the landmark pre-
dictions is enhanced by using optical flow as a loss function
in addition to the landmark detection loss [40]. The training
material consisted of the 300-W landmark data set [38], [41]
for the landmark detection loss and the recorded video material
for the optical flow-based loss.
The raw detected landmarks were processed as follows. The
landmarks have a standard numbering, e.g. see [38], hence,
individual landmarks are identified by the numbers 1 to 68.
Four observable pixel-coordinate-based distances Ωi (i ∈
{JVD,LHD,LVD, IOD}, see Figure 4) were calculated: a

Fig. 4: Exemplary plot of observable distances on obtained
landmarks. Right: JVD. Middle: LHD and LVD. Left: IOD.

horizontal lip distance (LHD) from the left corner of the mouth
(center of landmarks 49 and 61) to the right corner (center
of landmarks 55 and 65), a vertical lip distance (LVD) from
the upper lip (center of landmarks 51, 52, 53, 62, 63, 64)
to the lower lip (center of landmarks 57, 58, 59, 66, 67,
68), a vertical jaw distance (JVD) from the chin (center of
landmarks 8, 9, 10) to the nose (center of landmarks 28, 29,
30, 31) and an inter-ocular distance (IOD) from the left eye
(center of landmarks 37, 38, 39, 40, 41, 42) to the right eye
(center of landmarks 43, 44, 45, 46, 47, 48). Thereby, distances
were calculated between the centers of coordinate ensembles
in order to increase robustness against detection noise. Nor-
malized distances Ω̂j = Ωj · Ω−1

IOD, j ∈ {JVD,LHD,LVD}
were calculated. The division by IOD was done in order
to account for small drifts of the subject along the camera
axis, which may change the overall size of the recorded face.
The VTL parameters x ∈ {JA,LP,LD} are then calculated
from j ∈ {JVD,LHD,LVD}, respectively, via a linear min-
max-scaling, which is appropriate in case of LD, and a valid
approximation in case of JA and LP:

x(t) = m ·
|Ω̂j(t)− Ω̂min

j

∣∣∣∣Ω̂max
j − Ω̂min

j

∣∣ + b, (4)

whereby Ω̂min
j and Ω̂max

j denote the normalized minimum
and maximum distances measured from the facial extreme
positions. The slope m and offset b are determined by:

m = δx · (|xmax − xmin|+ αx) , b =

{
xmin −m, if δx = −1

xmax −m, if δx = 1.
(5)

Thereby, xmin and xmax denote the minimal and maximum
VTL values of the respective dimension x. The factor δx
was introduced to preserve the correct sign in the specific
dimensions, e.g. in case of the observables JVD and LHD
large measured values (which mean open jaw or spread lips,
respectively) correspond to negative JA and LP values, respec-
tively. Hence, δJA,LP = −1 and δLD = 1. The constant αx

allows for an additional dimension specific rescaling, which
was used for the consonants only. Thereby, αLD was set to
0.05 to ensure that the lip distance is negative for the labial
closures /p, b, m/. Further, αJA was set to 5.0 to ensure that
the JA values are close to zero in case of /s, z/. In all other
cases αx = 0. Figure 5 shows the distributions of measured
visual parameters for the different phonemes as a boxplot. The
median values of respective distributions were used as visual
target parameters during optimizations with the proposed vocal
learning framework.
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F. Experiments

First, vowel and consonant learning simulations were car-
ried out as described in Section II-C. The simulations were
repeated 100 times for each of the 26 phonemes, as the explo-
ration based optimization process is non-deterministic. Hence
different outcomes were obtained for each run, which provided
an adequate statistical basis for the subsequent evaluation.
Each run was stopped after a total amount of 1000 steps that
actually involved synthesis. During optimization, each state
whose acoustic outcome was identified as the desired phoneme
category was saved for subsequent articulatory analyses. For
the purpose of consonant learning, the state with the lowest
phoneme loss corresponding to the vowel category /a/ was
selected from the set of solutions obtained from the vowel
learning experiment and used as the fixed vowel state during
the syllable production. Both experiments, vowel and conso-
nant learning, were then repeated with the additional LV loss
component to test the impact of visual information on the
learning success. All parameter settings were identical to the
experiments without visual information.
The intelligibility of the generated samples was then assessed
in a perceptual experiment. The selection of audio stimuli for
such an experiment is non-trivial for the following reasons:
(i) Since the size of the listening experiment should be kept
small in order to allow the subjects to concentrate as much
as possible during the entire participation, a representative
assessment of all the states recorded during the optimizations
is not possible due to the large articulatory and acoustic scope
of these states. (ii) During optimization, a large number of
individual (articulatory) solutions are found by the optimizing
agent. Some of these solutions may preserve the intended
phonetic category while others do not, e.g. due to recognizer

misidentification. The individual solutions may also differ
significantly in their biological plausibility. While it was
found that a separation of these individual solutions in the
high-dimensional articulatory space is in principle possible
by dimensionality reduction and clustering, this technically
challenging approach was left open for future work.
With this in mind, the solutions presented in the perceptual test
were selected as follows: First, the Q1.0, Q0.75, Q0.5, Q0.25,
Q0.0 quantiles of the total loss distribution were calculated for
each phoneme within the data from optimizations both without
and with visual information. Then, for each phoneme, the
five articulatory states whose corresponding total loss values
were closest to the respective quantile were selected. That
means e.g. the samples belonging to Q1.0, Q0.5 and Q0.0

are the ones with the highest, the median and the lowest
total loss. This procedure is motivated by the fact that the
loss scale itself can be tested this way, i.e. whether, or, to
what extent lower loss values are actually related to higher
intelligibility or whether there exists a kind of overfit at very
low loss values. In addition, a complete set of optimized
phonemes was selected from the non-visual and visual data,
based on subjective auditory impressions of the 100 samples
with the lowest total loss from each run of the respective
phonemes. This manual selection M was included to estimate
the maximum achievable quality of the simulation. In addition,
the MRI-based VTL preset states were tested as a baseline.
The preset states of the phonemes were synthesized together
with the same glottal states that were also used during the
optimizations. Thus, the obtained motor scores for the VTL
presets had exactly the same lengths and time constants, as
well as glottal offsets in the case of unvoiced consonants,
which is useful for comparison. All stimuli were newly syn-
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thesized with vowel target durations of 300ms and 250ms for
single vowels and syllables, respectively. Additionally, 50ms
of silence were added to the beginning of each sample. Both
modifications were done to allow for a more pleasant listening
experience during the experiment. The perception experiment
was carried out as an online multiple choice listening test.
Thereby, participants heard one of the vowels or syllables at a
time and had to choose which one they heard from the set of
8 vowels or the set of 18 syllables, respectively. Participants
could also choose the category “other” in case they did not
understand the given utterance. In total 20 subjects (13 male,
7 female) aged between 18 and 49 years (median: 28.5, mean:
29.6± 7.8) participated in the test. Participants were required
to be German native speakers.
Beside the perceptual test, the optimization results were also
analyzed within the domain of articulatory distributions. Fig-
ure 6 shows the distributions of articulatory parameters JA,
LD, TCX obtained from states that were identified by the
phoneme recognizer as the category /i/ during vowel learning.
It can be seen that the distributions from optimizations with
visual information are significantly closer to the biologically
plausible values obtained from the respective VTL preset. This
is expected to a certain degree for the visual parameters but
it is an interesting observation in case of other parameters.
To quantitatively test the degree of biological plausibility of
the baseline and visual distributions, the mean absolute errors
(MAE) between the distributions and the VTL preset values
were calculated in each dimension. Then, for a certain group
G of articulatory parameters and group P of phonemes, a
coefficient can be calculated via:

CP
G =

1

nG

1

nP

∑
i∈G

∑
j∈P

MAEVisual
ij

MAEBaseline
ij

. (6)

For this purpose, phonemes were grouped into vowels, voiced
and voiceless plosives, voiced fricatives plus lateral, voiceless
fricatives, nasals, and a group containing all phonemes. VTL
parameter groups were the visual parameters, all parameters,
TCX only, as well as groups of important dimensions. The
latter are of interest, since not all dimensions have an equal
impact on the obtained phonetic categories, e.g. changes in an
important dimension such as TCX may turn an /a/ into some-
thing else, while changes in a rather unimportant parameter,
such as VS, may not. Parameter importances were determined
by training a simple feed-forward neural network (three layers
with 32 neurons each and relu activation function followed
by a layer with 37 neurons and softmax activation function)
to map between the 19 dimensional supra-glottal articulatory
states and the 37 dimensional unit vectors representing the
intended phonetic category that the respective articulatory state
was optimized for. Performance was measured via F1 score
during 10-fold cross-validation. In each split, the permutation
feature importance [42] was calculated in terms of F1 score
decrease on randomly shuffling the input matrix 10 times. Sub-
sequently, the features were decreasingly ordered after their
importance and the knee-point (point of maximum curvature)
of the importance curve was determined using the Kneedle
algorithm [43]. Features below the knee point were regarded
as important dimensions.
Complete visualizations of all articulatory distributions, as

0 200 400 600 800 1000
Synthesis Steps

10−1

100

101

L P

Baseline

Visual

Fig. 7: Phoneme loss averaged across all categories and runs
shown for the baseline and visual optimizations.

well as all audio samples used in the listening experiment
can be found in the supplementary materials4.

III. RESULTS

Figure 7 shows the phoneme loss component of the to-
tal loss averaged across all optimization runs as a function
of synthesis steps performed during optimization. The loss
curves are shown for the baseline and optimizations with
additional visual information. It can be seen that the latter
had systematically higher loss values than the baseline, which
underlines the regularizing effect of the visual constraints.
Even though Figure 7 shows an average, this pattern was ob-
served consistently across phoneme categories. Figure 8 shows
the recognition rates R calculated from the answers given
by the participants of the perception experiment. Thereby,
answers were separated into several stimuli groups that were
tested during the experiment. It can be seen that the recogni-
tion rates of stimuli corresponding to Qx are monotonically
increasing when x is decreasing which validates the used
phoneme loss. This effect is more prominent in the visual
data, which shows a significant difference of recognition rates
(p < 0.05 based on two-sided t-tests) between Q0.75 and Q0.0,
whereas the baseline does not. Further, one can see that the
average recognition rates for the manual selection of stimuli
M are (96.9 ± 5.0)%5 and (94.2 ± 7.6)% for the baseline
and visual stimuli, respectively. Hence, these are significantly
higher than recognition rates corresponding to Q0.0, which
are (75.0 ± 6.8)% and (83.9 ± 8.7)%, respectively. They
also outperform the VTL baseline which was, on average,
recognized correctly (87.7 ± 7.6)% of the time. Overall, no
significant difference was observed among the recognition
rates for stimuli generated with and without visual information.
From the articulatory analysis, TCX could be identified to be
the most relevant VTL parameter for the model to discriminate
between phoneme categories based on the articulatory state
input vectors, see Table II. This result seems reasonable,
given the strong impact of TCX on the tube area function.
Furthermore, the visual parameters, especially lip distance,
are often present among the important dimensions. Table II
also shows the VTL preset distance coefficients calculated
for different category groups and VTL parameter groups.
For the groups of visual dimensions and all dimensions, all
obtained coefficients are below 1.0, indicating that the visual
distributions are closer to the VTL preset shapes than the

4https://github.com/paul-krug/visual-vocal-learning
5Given uncertainties describe the 1σ interval throughout this work.
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Group F1
[
10−2

]
Important Dimensions CTCX CImportant CVisual CAll

Vowels 96.0 ± 0.2 TCX, LP, LD, HY, JA, TCY 0.74 ± 0.28 0.85 ± 0.15 0.77 ± 0.20 0.94 ± 0.09
Plosives 97.4 ± 0.4 TCX, TTY 1.09 ± 0.55 1.07 ± 0.38 0.71 ± 0.27 0.94 ± 0.14
Plosives† 89.5 ± 0.4 TCX, TCY, TS2, LD, TTY, TTX, LP 1.15 ± 0.72 0.94 ± 0.21 0.67 ± 0.22 0.97 ± 0.15
Fricatives 97.5 ± 0.2 TCX 1.13 ± 0.61 1.13 ± 0.61 0.70 ± 0.18 0.99 ± 0.13
Fricatives† 95.4 ± 0.2 TCX, TTX, TTY, LD, JA, TS3, LP, TCY 1.01 ± 0.42 0.89 ± 0.14 0.68 ± 0.16 0.96 ± 0.11
Nasals 98.9 ± 0.1 TCX, VO, LD 1.04 ± 0.57 0.90 ± 0.29 0.56 ± 0.26 0.93 ± 0.17
All 80.6 ± 0.6 TCX, LD, TTY, JA, LP, TCY, TS3, VO, TTX, HY, TS2 0.98 ± 0.20 0.92 ± 0.07 0.70 ± 0.09 0.96 ± 0.05

TABLE II: Results from the articulatory analysis. Groups of voiceless phonemes are indicated by †. Listed F1 scores refer to
the accuracy of the described forward model measured via 10-fold cross-validation (without feature permutation).

Q1.0 Q0.75 Q0.5 Q0.25 Q0.0 M VTL
0.0

0.5

1.0

R

Fig. 8: Recognition rate results from the perception experiment
with human listeners. Solid: baseline, outlined: visual stimuli.

baseline distributions, on average. For the group of important
dimensions, the coefficients are largely below 1.0. For TCX
they are below 1.0 only for the vowels. The coefficients for
the visual dimensions are significant in case of the group of
voiceless fricatives as well as the group of all phonemes in
the sense that 1.0 lies outside the 1.96σ interval around the
respective measured values.

IV. DISCUSSION

A. Conclusion

In this work a novel framework for vocal learning simula-
tions was presented. The following key results were obtained
from the experiments carried out:

• Single phoneme recognition constitutes a sufficient mech-
anism to formulate a loss function that correlates with the
intelligibility quantified by human listeners.

• By using the said loss as an objective during artificial vo-
cal learning, highly intelligible vowels and CV syllables
(context vowel /a/) could be generated.

• The main influence of visual information on the optimiza-
tion process can be understood as regularization – leading
to a higher degree of biological plausibility among the
optimized states.

The last point is particularly interesting as it reveals the
actual articulatory impact of the regularizing effect caused
by the visual information. This effect is reasonable, due
to the compensation possibilities through the different vocal
tract dimensions. I.e. implausible configurations of certain
dimensions can be compensated by implausible configurations
of other dimensions in such a way that still results in highly
intelligible speech. E.g., for the vowels in the baseline, a fully
open jaw angle is preferred, which is rather unusual for vowels
such as /i, e/. Since the visual information forces certain
configurations, this limits the possibilities for compensation

in other dimensions, so that more plausible configurations
were found on average, as demonstrated by the obtained VTL
distance coefficients.

B. Limitations and Future Work

This work has the following limitations. First, consonants
were only produced in the context of vowel /a/. However, to
generate continuous speech, the coarticulation model of the
VTL uses consonants in the three different contexts /a, i, u/
[7]. It can be assumed that consonants in a single context
are not sufficient to generalize to continuous speech. With
the vocal learning model presented here, the generation of
consonants in any context is possible, but /a/ is the vowel
that is easiest to generate. Consequently, consonants in the
context of other vowels may require more simulation effort.
Nevertheless, the generation of consonants in only one vowel
context is a considerable limitation and future work has yet to
show that consonants can be produced in any context.
Another limiting factor is the quality of phoneme recognition,
as worse models cause stronger confusion between individual
phoneme categories. As a result, solutions are allowed during
the simulation which do not correspond to the communicative
intent. This problem will occur especially in the case of low-
resource languages, where there is not much training material
for phoneme recognition models. Whether this problem can
be avoided by analyzing the articulatory distributions with
the help of appropriate constraints would be conceivable. For
example, consistency and minimal effort criteria could be used
to select plausible solutions from the ensemble of correct
and incorrect solutions a posteriori. Finding suitable criteria
remains an open topic for future work.
Another problem often encountered in the simulation of syl-
lables were articulatory artifacts or discontinuities that form
between consonants and vowels, see Figure 9. As a conse-
quence, the resulting syllables often sounded like clusters,
e.g. /fa/ sounding like /fRa/ or /Sa/ sounding like /Sga/.
The reason for the occurrence of these artifacts may be the
single phoneme recognition. Due to the context independence,
the following phoneme is rather unimportant and therefore
the presence of an artifact may not be evaluated negatively.
On the articulatory level, however, artifacts typically arise
if consonant states predominantly match the vowel but are
not completely appropriate. Whether the use of phoneme
recognition systems trained on a larger acoustic intervals
such as syllable-based or continuous phoneme recognition can
cause a stronger rejection of such states has to be tested in
future work. Such systems would also be interesting in general
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Fig. 9: Two exemplary audio amplitudes A, representing
syllables /fa/ (top) and /Sa/ (bottom). Different articulatory
artifacts are visible.

to enable vocal learning simulations of larger speech units like
words or sentences. It can be assumed that in these cases a
feedback mechanism on the word or sentence level may be
helpful or even necessary.
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[15] B. J. Kröger et al., “Towards a neurocomputational model of speech
production and perception,” Speech Commun., vol. 51, no. 9, pp. 793–
809, 2009.

[16] J. A. Tourville and F. H. Guenther, “The DIVA model: A neural theory
of speech acquisition and production,” Lang. Cognit. Process., vol. 26,
no. 7, pp. 952–981, 2011.

[17] H. Nam et al., “Computational simulation of CV combination prefer-
ences in babbling,” J. Phon., vol. 41, no. 2, pp. 63–77, 2013.

[18] A. K. Philippsen et al., “Goal babbling of acoustic-articulatory models
with adaptive exploration noise,” in Proc. ICDL-EpiRob, 2016, pp. 72–
78.

[19] H. Rasilo and O. Räsänen, “An online model for vowel imitation
learning,” Speech Commun., vol. 86, pp. 1–23, 2017.

[20] I. S. Howard and P. Birkholz, “Modelling vowel acquisition using the
Birkholz synthesizer,” Studientexte zur Sprachkommunikation: Elektro-
nische Sprachsignalverarbeitung 2019, pp. 304–311, 2019.

[21] A. Philippsen, “Goal-directed exploration for learning vowels and syl-
lables: A computational model of speech acquisition,” KI-Künstliche
Intelligenz, vol. 35, no. 1, pp. 53–70, 2021.

[22] S. Pagliarini et al., “Vocal imitation in sensorimotor learning models: A
comparative review,” IEEE Trans. Cogn. Develop. Syst., vol. 13, no. 2,
pp. 326–342, 2020.

[23] S. Maeda, “Compensatory articulation during speech: Evidence from
the analysis and synthesis of vocal-tract shapes using an articulatory
model,” in Speech production and speech modelling. Springer, 1990,
pp. 131–149.

[24] P. K. Krug et al., “Modelling microprosodic effects can lead to an
audible improvement in articulatory synthesis,” J. Acoust. Soc. Am., vol.
150, no. 2, pp. 1209–1217, 2021.

[25] D. R. van Niekerk et al., “Finding intelligible consonant-vowel sounds
using high-quality articulatory synthesis,” in Proc. Interspeech, 2020,
pp. 4457–4461.

[26] P. K. Krug et al., “Efficient exploration of articulatory dimensions,”
Studientexte zur Sprachkommunikation: Elektronische Sprachsignalver-
arbeitung 2022, pp. 51–58, 2022.

[27] Y. Xu and Q. E. Wang, “Pitch targets and their realization: Evidence
from Mandarin Chinese,” Speech Commun., vol. 33, no. 4, pp. 319–337,
2001.

[28] S. Prom-On et al., “Modeling tone and intonation in Mandarin and
English as a process of target approximation,” J. Acoust. Soc. Am., vol.
125, no. 1, pp. 405–424, 2009.

[29] P. Birkholz et al., “Model-based reproduction of articulatory trajectories
for consonant–vowel sequences,” IEEE Trans. Audio Speech Lang.
Process., vol. 19, no. 5, pp. 1422–1433, 2010.

[30] S. Schaal, “Dynamic movement primitives-a framework for motor con-
trol in humans and humanoid robotics,” in Adaptive motion of animals
and machines. Springer, 2006, pp. 261–280.

[31] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Adv.
Eng. Softw., vol. 95, pp. 51–67, 2016.

[32] P. K. Krug et al., “Articulatory synthesis for data augmentation in
phoneme recognition,” in Proc. Interspeech, 2022, pp. 1228–1232.

[33] S. Kirkpatrick et al., “Optimization by simulated annealing,” Science,
vol. 220, no. 4598, pp. 671–680, 1983.

[34] S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization
problems,” Knowl.-Based Syst., vol. 96, pp. 120–133, 2016.

[35] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” J. Glob.
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[36] H. Karami et al., “Flow direction algorithm (FDA): A novel optimization
approach for solving optimization problems,” Comput. Ind. Eng., vol.
156, p. 107224, 2021.

[37] R. Gross et al., “Multi-PIE,” Image Vis. Comput., vol. 28, no. 5, pp.
807–813, 2010.

[38] C. Sagonas et al., “300 faces in-the-wild challenge: The first facial
landmark localization challenge,” in Proc. ICCVW, 2013, pp. 397–403.

[39] S.-E. Wei et al., “Convolutional pose machines,” in Proc. CVPR, 2016,
pp. 4724–4732.

[40] X. Dong et al., “Supervision-by-registration: An unsupervised approach
to improve the precision of facial landmark detectors,” in Proc. CVPR,
2018, pp. 360–368.

[41] C. Sagonas et al., “300 faces in-the-wild challenge: Database and
results,” Image Vis. Comput., vol. 47, pp. 3–18, 2016.

[42] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.
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