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This study uses connectionist modeling to explore whether and how infants might learn prosodic
focus directly from continuous speech input. Focus is a communicative function that serves to put
emphasis on a particular part of an utterance, and it is mainly encoded by pitch variations. The
acquisition of focus entails two major difficulties. The first is that focus-related pitch patterns are
confounded by other linguistic functions that also use pitch for their encoding, such as lexical tone in
a tone language. Second, speakers have different pitch ranges, which further confounds the focus
related pitch patterns. In three simulations using self-organizing neural networks, we explored how
focus may be learned from continuous acoustic signals in Mandarin that were produced with co-
occurring lexical tones and by multiple speakers. We used sentence-sized F0 contours as well as
their velocity profiles (D1) as training input. Results show that both F0 and D1 contours provide
information for focus learning, but only the D1-trained network adequately handled the variability
introduced by cross-gender differences. The recognition rate was analogous to human performance.
Implications of these findings for theories of language acquisition and adult speech perception are
discussed.

INTRODUCTION

During language acquisition, infants face the task of learning multiple linguistic functions, all of
which are carried by a single speech signal. One important type of linguistic function to be
learned is known as focus, which is a prosodic means to highlight (emphasize) a particular part
(e.g., a word or phrase) of an utterance against the rest of the components (Cooper, Eady, &
Mueller, 1985; Ladd, 1996; Xu, 2005). Detecting which element in an utterance is focused is
particularly useful for language learners, since focused elements bring relevant information to
the child’s attention (Lœvenbruck et al., 2007). Focus can also be used as some form of verbal
pointing for teaching a child a new word, consistent with the fact that mothers emphasize target
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LEARNING PROSODIC FOCUS 95

words with exaggerated pitch peaks (Fernald & Mazzie, 1991). The acquisition of focus has so
far received little attention in the field of language development, however. In this study we
examine one particular issue about this developmental process, namely, whether adult speech
contains sufficiently informative phonetic structure corresponding to word-level focus catego-
ries such that it is possible for infants to acquire them via unsupervised learning.

Focus can be expressed with the use of word order, e.g., topicalization, or the addition of a
word particle specifically used for indicating focus. In Mandarin for example, the focus particle
shi can be placed before a word that is intended to be emphasized (Li & Thompson, 1981).
Another common linguistic device used in many languages for contrasting important parts of a
message is prosody. Prosody highlights the word “cat” in “The CAT ate the mouse” in response
to the question “Who ate the mouse?”, mainly by expanding the pitch range of the focused com-
ponent, compressing and lowering the pitch range of the postfocus components, but leaving the
pitch range of the prefocus components largely intact (Cooper et al., 1985; Rump & Collier,
1996; Xu, 1999; Xu & Xu, 2005). Thus, the relative pitch differences of the whole utterance
must be considered for the decoding of word-level focus. Focus also involves changes in duration,
intensity, and vowel quality (de Jong, 1995; Turk & White, 1999; Xu, 1999; Xu & Xu, 2005),
although F0 is generally considered to be the primary cue for perceiving focus (Dahan &
Bernard, 1996).

Before infants develop enough syntactic knowledge to learn focus through word order, they
could use prosody to learn about word-level focus. A few studies exist in the literature that
investigate children’s processing of prosodic focus. These studies have concentrated on older
children’s speech production. For example, Ménard and colleagues (Ménard, Lœvenbruck, &
Savariaux, 2006) recently explored the acoustic and articulatory correlates of focus in French-
speaking children and adults. They found that 4- to 8-year-old children produce the neutral/
focus contrast at the level of F0. This finding is consistent with previous production work show-
ing that prosodic focus is acquired by 3- to 4.5-year-old children (Allen & Hawkins, 1980;
Hornby & Hass, 1970).

However, given infants’ acute sensitivity to speech prosody, it is reasonable to believe that
children may profit from perceptual cues to focus before they can produce those cues in their
own speech. Abundant evidence from developmental speech perception research indicates that
early in life, infants process intonational and rhythmic properties of input speech (Jusczyk,
1997). For example, newborns can distinguish between utterances produced in their native
language versus those produced in a foreign language (Moon, Cooper, & Fifer, 1993), and,
crucially, this ability is maintained when the signal is low-pass filtered, which eliminates phonetic
and phonotactic cues (Mehler et al., 1988). Prosodic information thus seems to guide newborns’
preference for their native language, an ability that most likely results from prenatal exposure to
suprasegmental features. Infants’ early sensitivity to prosody is not surprising, as it is known
that the auditory system is functional from about 22 to 24 weeks of gestational age (Slater,
1998). Sensitivity to the sound structure of speech has indeed been observed in 33- to 38-week-
old fetuses (DeCasper, Lecanuet, Busnel, Granier-Deferre, & Maugeais, 1994; Lecanuet &
Granier-Deferre, 1993; Lecanuet et al., 1987). Further research indicates that newborns’ capacity
to distinguish between broad language classes is specifically based on rhythmic information
(Nazzi, Bertoncini, & Mehler, 1998). In fact, as early as 1 month of age, infants distinguish
between different stress locations based on durational differences alone and on the other acoustic
correlates of stress (F0 and intensity) (Spring & Dale, 1977).
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96 GAUTHIER, SHI, AND XU

Other studies also suggest that infants rapidly develop sharp sensitivities to the intonation
structure of their native language (e.g., Kaplan, 1969; Morse, 1972). Jusczyk and colleagues
(Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993) showed that 6-month-old English-
learning infants listen longer to lists of English than Norwegian (low-pass filtered) words, the
former differing from the latter with respect to the pitch contour of final syllables (Haugen &
Joos, 1972) and the pitch height of stressed syllables (Peters, 1997). English-learning infants are
sensitive to the predominant stress patterns of English words at between 6 and 9 months old
(Jusczyk, Cutler, & Redanz, 1993). During this period, infants also start using stress to segment
words in continuous speech (Jusczyk, Houston, & Newsome, 1999), as adult English speakers
do (Cutler & Norris, 1988). The role of prosody in language acquisition is further exemplified in
studies showing that infants as young as 6 months of age use their sensitivity to prosody for
marking syntactic units (Hirsh-Pasek et al., 1987; Nazzi, Nelson, Jusczyk, & Jusczyk, 2000;
Soderstrom, Seidl, Nelson, & Jusczyk, 2003).

These findings suggest that infants pay attention to prosody at a young age. The question that
we address is whether the information in the sound stream is sufficiently rich to allow the child
to abstract word-level focus. Different sources of variability complicate the surface realization
of various linguistic functions (Perkell & Klatt, 1986), and focus cannot be an exception.
Among the recognized sources of variability, cross-speaker differences have received the most
attention (e.g., Johnson & Mullennix, 1997). Cross-speaker differences have also been shown to
affect the acoustic manifestations of emphatic accent in French (Dahan & Bernard, 1996). In
Dahan and Bernard, although all speakers’ pitch increased on the target word and the increase
spread from the peak-bearing syllable to the whole word, speakers’ productions differed with
respect to the location of the F0 peak within the target word. One pervasive characteristic of
cross-speaker variability concerns the impact of anatomical differences on the speech output,
most notably between children and adults or between men and women (e.g., Ménard, Schwartz, &
Boë, 2004). The different sizes and shapes of the vocal tract affect the vowel acoustic space,
for example, merging the formants of different speech sounds together while creating separate
formant clusters for the same vowel category (Hillenbrand, Getty, Clark, & Wheeler, 1995;
Peterson & Barney, 1952). With respect to intonation, female pitch is about three quarters of an
octave higher than male pitch (Peterson & Barney, 1952). Figure 1a shows the F0 contours (in
hertz) of three-word declarative sentences (five syllables) produced by four male and four
female native speakers of Mandarin, with either no focus or focus on word 1, word 2, or word 3
(data from Xu, 1999). While some within-gender variability can be observed, a similar pattern
stands out for each focal condition. Between-gender variability is much larger, however. Not
only did females produce higher pitch registers than males, but they also produced much wider
pitch excursions on the focused components. Given the impact of between-gender variability on
the surface realization of focus, it is unknown whether focus can be learned solely on the basis
of F0 when produced by multiple speakers.

A further complication to learning word-level focus from F0 is that, in tone languages, F0 is
also crucial for perceiving lexical tones. The use of one acoustic cue for two or more linguistic
functions may in principle cause particular challenges for the perceptual system. For example,
because both word-level focus and question intonation raise F0 at the sentence-final position,
recognition of focus by adults is harder when it occurs at the end of a sentence than when it
occurs at other sentence locations (Liu & Xu, 2005). On the other hand, adults can simulta-
neously perceive both focus and tones from the speech input (Liu & Xu, 2005). This is because
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LEARNING PROSODIC FOCUS 97

FIGURE 1 Variability in prosodic focus. (a) Variations in F0 contours
of declarative sentences induced by cross-speaker and cross-gender
variability (four male and four female speakers) in sentences produced
with neutral focus (top panel), focus on word 1 (second from top), focus
on word 2 (third from top), and focus on word 3 (bottom), each panel
containing 40 exemplars. (b) Variability induced by the simultaneous
encoding of focus and lexical tones (High, Rise, and Fall) on the second
word preceded by High, Rise, Low and Fall (from top to bottom, respec-
tively), each panel containing 120 exemplars.

(a) (b)
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98 GAUTHIER, SHI, AND XU

in adult speech production in Mandarin, local F0 contours of syllables in an utterance are mostly
determined by lexical tones, while focus globally modulates the pitch range of the entire utter-
ance (Xu, 1999).1 The larger-scale pitch range modulations that signal focus operate in parallel
with local pitch contours that encode lexical tones (Xu, 2005). It remains to be tested whether
and how a naive learning system could learn focus when the same acoustic cue also signals
varying lexical tones within the same utterances.

In Gauthier, Shi, and Xu (2007a, 2007b), unsupervised artificial neural networks were pre-
sented with syllable-sized F0 contours and their velocity profiles as input. The results showed
that, despite extensive variability due to cross-speaker differences, contextual variations, and
simultaneous focus encoding, the system could still learn lexical tones and that velocity
profiles provide better perceptual cues than F0 contours. A velocity profile consists of a con-
tinuous instantaneous rate of change of the corresponding F0 contour. It is shown in Gauthier
et al. (2007a) that the mathematical process of deriving velocity profiles automatically
removes a large portion of speaker differences in terms of individual pitch heights, which
makes velocity profile a more direct indicator of phonetic categories. In fact, velocity profile
by definition should be consistent across speakers. However, it remains unknown as to how an
unsupervised learning system may simulate word-level focus acquisition under comparable
circumstances of variability as in the previous tone-learning studies. Figure 1b shows the
variability that lexical tones can add to F0 contours, thus making it more difficult to abstract
word-level focus.

The goal of this study is to investigate whether unsupervised neural networks can learn word-
level focus from continuous dynamic speech signal produced by multiple speakers in various
lexical tone conditions. We tested the hypothesis that dynamic F0 information (i.e., velocity profile)
is useful not only for learning lexical tones, as shown in Gauthier et al. (2007a, 2007b), but also
for learning word-level prosodic focus. Three simulations using unsupervised artificial neural
networks were performed. In each simulation, natural speech data were used for training and
testing self-organizing maps (SOMs; Kohonen, 1982, 1995). If dynamic F0 information indeed
provides robust cues for learning word-level focus, the networks should develop clusters corre-
sponding to the focal categories produced by the speakers. If the networks cannot extract any
meaningful structure from F0 patterns or their velocity profiles, this would indicate that other
sources of information may be necessary for learning word-level prosodic focus.

METHODS

The Self-Organizing Map

The SOM is widely applied as a method of statistical analysis in different research areas. It was
first proposed for modeling topographic mapping of sensory input in the brain, for example the
tonotopic representation of sound frequencies in the primary auditory cortex (Kohonen, 1982).
The advantage of using the SOM for studying learning processes lies not only in its self-organizing
principles but also in its visualization and abstraction properties: by mapping a high-dimensional

1More specifically, the pitch range of the focused component is expanded, the pitch range of the postfocus compo-
nents is lowered and compressed, and the pitch range of prefocus components remains largely intact (see Figure 1a).
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LEARNING PROSODIC FOCUS 99

input space onto a lower-dimensional grid, the SOM compresses information while preserving
important geometric relationships in the data (Kohonen, 1998). The Kohonen networks can be
designed to contain a large number of units (e.g., several hundred). This makes it possible to
examine whether the units on the maps, which initially have no relationship with one another,
gradually form neighborhood structures during training. In other words, one can observe
whether clusters of units sharing similar characteristics can be developed based on the properties
of training input (e.g., acoustic information), whether the clusters correspond to categories being
learned (e.g., tones), and whether clusters show any further internal structure. This process is
comparable to category formation in early language development. Since the number of map
units does not a priori correspond to the number of categories to be learned, this type of design
reflects closely the initial state of naïve learning. Recently, unsupervised methods similar to the
SOM have been adopted for testing various hypotheses in language acquisition, for example, to
evaluate the role of statistical learning in language acquisition and to examine specific mecha-
nisms underlying early speech/language development (e.g., Behnke, 1998; Guenther & Gjaja,
1996; Shi, 1996; Shi, Morgan, & Allopenna, 1998; Shi, 2006). In the present study, the SOM
was used to explore what cues are essential for deriving word-level focus categories and whether
focus may be learned directly from the speech input without any feedback. The detailed algo-
rithm of the SOM is presented in the Appendix.

In our previous SOM modeling of the acquisition of lexical tones, we used syllable-sized
input (Gauthier et al., 2007a, 2007b) because the temporal domain of tone production is known
to be the syllable (Xu, 1999, 2005). The temporal domain of focus, in contrast, is the entire utter-
ance rather than just the focused word, as described earlier. The acquisition of focus thus
requires sentence-sized rather than syllable-sized input. To evaluate the impact of cross-speaker
and cross-gender variability on word-level focus, we conducted three simulations that varied in
the amount of variability in the input. In the first simulation, the networks were trained with
sentences produced by a single adult female speaker. Simulation 2 presented the network with
input produced by four male speakers. Finally, Simulation 3 involved the most natural input
corpus, produced by four male and four female speakers.

Input corpus and representation. The global input corpus contains 3,840 declarative
sentences produced by four adult male and four adult female native speakers of Mandarin
(speaking to adults) at a normal speech rate (about 5.6 syllables per second on average) (data
from Xu, 1999). Each sentence is composed of three words (subject, verb, object). Each word
contains one or two CV syllable(s) where C is a sonorant (/m,n/), except when the Low (L) tone
occurs on the fourth syllable, which starts with /d/. The subject and object are disyllabic and the
verb is monosyllabic [subject: ‘maomi’, with the High tone (H) on the first syllable and four
different tones on the second syllable: ‘kitty’ — H-H, ‘cat-fan’ — H-Rising (R), ‘cat-rice’ —
H-Low (L), or ‘cat-honey’ — H-Falling (F); verb: ‘mo’ — H, ‘na’ — R, or ‘mai’ — F (‘stroke’,
‘take’, ‘sell’); object: ‘maomi’ — H-H or ‘madao’ — L-H (‘kitty’, ‘saber’)]. The sentences were
produced in various focal and tonal conditions: (a) neutral focus (focus0), (b) focus on word 1
(focus1), (c) focus on word 2 (focus2), and (d) focus on word 3 (focus3), with an equal number
of occurrences in each focal condition. These four different conditions were elicited with focus-
inducing leading questions (e.g., “Who is stroking Kitty?” to elicit focus on the first word of the
sentence “THE SUBJECT strokes Kitty”; see Xu, 1999, for details). Inspection of the input data
prior to the simulations revealed that for the initial focus (i.e., the subject word) and the final
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100 GAUTHIER, SHI, AND XU

focus (the object word), both syllables in each word carried focus information, and since the first
and last syllables always carried the High tone, they were excluded from the training and testing
tasks. The second, third, and fourth syllables were produced with varying tones (H, R, L, F on
the second syllable; H, R, F on the third syllable; and H, L on the fourth syllable, as just
described), for a total of 24 different tonal patterns, each produced an equal number of times. To
summarize, eight speakers each produced five repetitions of 4 focal and 24 tonal patterns, for a
total of 8 × 5 × 4 × 24 = 3,840 sentences.

To simulate the learning of word-level focus, we used as input sentence-sized F0 contours
that contained no syllable boundary information. Each input token corresponded to the global F0
contour of a sentence, represented by a 30-data point vector, i.e., equally distanced discrete val-
ues taken from the time-normalized syllable-sized F0 curves of the three middle syllables. The
F0 extraction procedure consisted of manually segmenting the sentences at syllable boundaries,
converting vocal pulses into F0 values, smoothing the resulting F0 contours, and taking a pre-
defined number of discrete F0 values from each syllable (see Xu, 1999). These contours were
quasi-continuous in the sense that, at the sampling frequency of 10 points per syllable, for a
male voice of 120 Hz, there was one representative point every two vocal periods in a syllable of
180 msec in the dataset (Xu, 1999). The F0 contours were minimally if at all interrupted by vocal
tract closures during production (at least in the middle three syllables) since only sonorant conso-
nants were used (e.g., see Lehiste & Peterson, 1961). There were no pauses within any of the
sentences. F0 input vectors were in hertz. The velocity profiles of F0 were generated according to:

which yields the discrete first derivatives of F0. The computation of velocity by every three points
is known as central differentiation and is commonly used in data analysis because of its speed,
simplicity, and accuracy (Bahill, Kallman, & Lieberman, 1982).2 To illustrate the effect of the
F0 to D1 transformation, Figure 2 shows a minimal pair of three-word sentences (five syllables,
all with High tones) with focus on word 1 and focus on word 2. The sentences were produced by
a male and a female speaker saying ‘maomi mo maomi’ (‘kitty strokes kitty’3) in answering the
questions ‘Who is stroking Kitty?’ (prompting focus on word 1) and ‘What is Kitty doing to
Kitty?’ (prompting focus on word 2). Note that the large differences between the male and
female speakers clearly visible in the F0 patterns (Figure 2a) virtually disappear in the velocity
profiles (Figure 2b). This is due to the differentiation process, which eliminates the constant
term of a function (Gauthier et al., 2007a).

Training and testing phases. To recapitulate, the simulations involved six distinct networks
corresponding to three training conditions (Simulations 1 to 3 with increased variability) and
two types of training/testing data (F0 and D1). The training corpora of Simulations 1, 2, and 3,
respectively, contained 240, 960, and 1,920 stimuli (half of the input corpus), which were

2Note that here D1 is computed based on time-normalized F0 contours for which duration information is partially
lost. Although this reduction in duration accuracy may in turn affect the accuracy of D1 profiles, it is unlikely that this
reduction in accuracy would affect the simulation outcome, judging from the results of Gauthier et al. (2007a, 2007b).

3The use of the same word in the sentence initial and final positions in Xu (1999) was based on multiple considerations,
including ease of segmentation, tonal composition, and, most crucially, lack of alternative real words. The sentence in
Mandarin clearly distinguishes the subject and the object as different entities.
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LEARNING PROSODIC FOCUS 101

randomly presented to the networks 30 times each. During training, the SOM implemented a
recursive regression algorithm that mapped the continuous input distribution P(x), xi e X, onto a
discrete output space composed of multiple processing units. A basic SOM is illustrated in the
Appendix (Figure 7) as a linear array of four units (filled dots) connected to a one-dimensional
input space. Each unit is pointing to a specific location in the input space with a scalar-valued
connection weight vector, or receptive field center (empty dots). Each unit also defines a recep-
tive field (bold horizontal lines) that encompasses all data points closer to its center than to any
other unit’s center. The neural maps in our simulations were much larger. They were each
squared arrays of 900 units (30×30), and thus did not entail a predefined number of (four) catego-
ries. Each unit was connected to the input space with a 30-dimensional (i.e., 30-point) weight
vector, so as to correspond to the 30 F0 or D1 points from each input utterance. Each unit was ini-
tiated with a connection weight vector that represents a linear (F0 or D1) trajectory in the form
ax + b, whose minimum and maximum values fell within the range of the input space. Note that
the initiated vector values on the units were totally random, bearing no direct relation to the val-
ues of any input utterances. Training began after the initialization step, and the connection weight
vectors were gradually transformed into representative contours of the input in the following way.
Each time an input token was presented to the network, it was compared to each weight vector to
determine the closest unit in terms of the Euclidean distance. The winning unit and its neighbor-
ing units on the map were shifted to better fit the data based on the learning algorithm (see details
in the Appendix). This process proceeded according to the learning step size, which decreased
exponentially from 0.7 to 0.01 during the learning task. The neighborhood function, which imple-
mented lateral activation between units, initially included all map units, went through exponential
decay, and activated only a single unit at the end of training. As mentioned earlier, the trained
SOM can be used for revealing the neighborhood structure of multidimensional input spaces.4

4Note again that each unit on the 2-dimensional map contained a 30-dimensional vector analogous to a whole F0 or D1

contour (see Kohonen, 1989, for details on the compression from a high-dimensional input space to a low-dimensional map).

FIGURE 2 Examples of velocity profiles transformed from F0 contours.
(a) F0 contours of a sentence consisting of only the High tone in Mandarin,
spoken by a male (bottom curves) and a female (top curves), with focus
on word 1 ‘maomi’ (magenta) or word 2 ‘mo’ (cyan). (b) D1 profiles
obtained from the F0 contours in (a) using equation (1). (This figure
appears in color online.)
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102 GAUTHIER, SHI, AND XU

The testing corpora used in Simulations 1, 2, and 3, respectively, involved 480, 1,920, and
3,840 stimuli. Half of these stimuli were used during the training and the other half were novel
so as to verify the network’s generalization capacity. During the recall task of the test phase,
each input token was presented once to the network and was assigned to the closest unit. The
testing set contained as much variability as the training set and was presented in an orderly fash-
ion (all exemplars of neutral focus, focus on word 1, focus on word 2, and focus on word 3). The
number of input tokens projected onto each unit was indexed into a global firing frequency
matrix. Units that responded at least once during the recall task were treated as operable units,
while those that did not respond to any input vector were nonoperable units and were not further
considered. Categorized units were defined as operable units that responded to a single focus
category at least 68% of the time during recall. This criterion was based on a chi-square test,
according to which the null hypothesis stipulates that all units respond equally to more than one
category, thus to the four focus categories with an equal probability of 25%. Any different out-
come would in principle allow us to reject this chance-level hypothesis. However, our goal was
to determine the observed firing frequency for a category that would offer enough evidence to
reject the null hypothesis to a much more strict level, namely, a level that determined those units
sensitive to one focus category more than any combination of the three others. The critical value
at a 0.001 confidence level was found to be χ2(3) = 12.84, above which the firing probability of
a unit to a single focal category is >0.68. Units responding to multiple focal categories, none of
which was dominant, corresponded to ambiguous units.

Measures

The performance of the trained networks was first evaluated in terms of rate of success for cate-
gorized units, which corresponded to the percentage of input tokens from one focus category
landing on the same-class categorized units. This performance is independent of the one for tone
categorization, which has previously shown to be effective for the same corpus using syllable-
sized F0 and D1 profiles as input (Gauthier et al., 2007b) as discussed earlier. To assess whether
categorized units were grouped into clusters corresponding to focus categories, the neural maps
were quantitatively colored by associating distinct categories with distinct colors. The coloring
of the maps reveals the distribution of the testing input corpus to the outside observer. If focus
categories were well separated in the data, the color map should be divided into regions by
classes that group similar units together, and we could thus infer that within-cluster variability is
trivial. Finally, the similarity of within-cluster units on which the network could rely to infer
focus information was shown in the internal maps. An internal map after training is a graphic
display of a unit’s connection weight vector showing F0 or D1 trajectory as a function of time,
analogous to the input tokens shown in Figure 2. By plotting on the same graph the trajectories
of multiple units responding to the same category, we were able to examine the internal repre-
sentation of each externally identified focus cluster developed by the networks.

RESULTS

The results of Simulation 1 (Figure 3a) show high performances for each focus condition in both
F0 and D1, suggesting that sentences with distinct focus locations can be distinguished solely on
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LEARNING PROSODIC FOCUS 103

the basis of global F0 contour produced by a single speaker. In contrast, the results of Simulation
2 with four male speakers (Figure 3b) show that both F0 and D1 networks responded positively
to only focus1 and focus2 conditions, while confusing focus0 and focus3. In this regard, the
results of Simulation 2 are comparable to the perceptual results obtained with adult human sub-
jects, who cannot perceive final focus as easily as nonfinal focus categories (Liu & Xu, 2005).
(A simulation involving input data from four female speakers yielded comparable results to
those reported here for the four male speakers.) Finally, the D1 network in Simulation 3 also
achieved a performance comparable to that of human subjects, especially considering the fact
that the human perceptual performance reported in Liu and Xu (2005) was based on only two
speakers, one male and one female. However, the F0 network performance was lower, especially
for focus2, which did not correspond to any previously observed human response patterns
(Figure 3c).

Color maps were used to better understand the outcome of the adaptation process that took
place during the simulations. Quantitative coloring of the neural maps was achieved by associating
distinct categories with distinct colors. Focus color maps were obtained for F0 and D1 networks
of Simulation 3 by associating the four focus categories with four colors produced with the RGB
color system. Neutral focus, represented by yellow, was specified by a mix of red and green in
the vector [1,1,0] (focus1 = magenta [1,0,1]; focus2 = cyan [0,1,1]; focus3 = blue [0,0,1]).

FIGURE 3 Rate of success for Simulations 1, 2 and 3. The vertical axis
of each panel shows the rate of success for each learning condition as a
function of focus location in the utterance (focus0 = neutral focus;
focus1 = focus on word 1; focus2 = focus on word 2, and focus3 = focus
on word 3). (a) Simulation 1: Training and testing with data produced by
one female speaker. (b) Simulation 2: Training and testing with data pro-
duced by four male speakers. (c) Simulation 3: Training and testing with
data produced by four female and four male speakers.
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104 GAUTHIER, SHI, AND XU

Each map unit was then associated to a three-dimensional vector, the values of which were spec-
ified according to the unit’s firing probabilities for each focus class. Units responding to only a
particular focus condition thus appeared in a saturated color, while units sensitive to multiple
classes yielded mixed “impure” colors. Therefore, if the input data contain categorical information,
the color maps will reveal each category as a distinct region. Black color represents nonoperable
units that remained inactive during the testing phase.

Figure 4 shows the color maps obtained when testing the networks on the general distinction
between focused and neutral-focus sentences in Simulation 3. The F0 color map shows no inter-
nal organization. In contrast, on the D1 color map, focus information is embedded in a circular

FIGURE 4 Color and internal maps of Simulation 3 showing the focus
versus unfocused distinction by (a) F0 and (b) D1. (This figure appears in
color online.)
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LEARNING PROSODIC FOCUS 105

fashion, with focused sentences situated in the periphery and the neutral-focus sentences (as
well as sentences with final focus) in the more central areas. The D1 internal maps (lower
graphs) reveal that the center units represent relatively flat pitch patterns in comparison to the
peripheral units, which display wider pitch excursions.

In the detailed color F0 map (Figure 5a), the focus1 category takes the form of multiple ran-
domly distributed unit clusters, while the focus2 category appears as a network of river-like
channels running through the whole map. In the D1 map (Figure 5b), focus0 and focus3 categories
overlap in the central region, reminiscent of human performance (Liu & Xu, 2005), while focus1
and focus2 form clusters distributed in the periphery.

Further analyses of units’ sensitivities reveal that the bottom right focus1 cluster mainly
responds to sentences for which the focused component is a Low tone (77%), while the rightmost
zone of the top focus1 cluster responds to Rise (91%), the middle zone to High (88%), and the
leftmost zone to Fall (77%) (Figure 6). Similar organization can be observed for focus2 clusters.
The leftmost unit cluster responds to focused High tone (75%), the bottom cluster to focused
Rise (90%), and the rightmost cluster to focused Fall (83%).

GENERAL DISCUSSION

The results of this study show that unsupervised neural networks can develop focus-specific
clusters from continuous dynamic speech signals produced by multiple speakers in various lexical
tone conditions, which may eventually lead to the acquisition of focus. The performance of
focus recognition is not uniform across all focus locations. In particular, final focus is not highly
distinguished from a no-focus condition. Interestingly, this is similar to human focus perception,
which also shows high confusion rates between final focus and no focus (Liu & Xu, 2005). Like
human adults, the network performance at other focus locations was successful. The overall
results thus suggest that despite variability due to lexical tones and multiple speakers, it is possible
for a naïve system to develop phonetic categories that allow the recognition of word-level focus
from continuous F0 input at a level that approaches the performance of normal adult listeners.
This finding indicates the effectiveness of sentence-sized F0 input for focus recognition. This is
interesting from the learning point of view, as there is evidence that sentences and clauses are
among the initial units perceived by preverbal infants (Hirsh-Pasek et al., 1987; Nazzi et al.,
2000; Soderstrom, Nelson, & Jusczyk, 2005). Hence, it is possible that infants may begin the
learning of focus at an early age.

Furthermore, the results of the trained networks in the three simulations indicate that different
focus categories can be contrasted according to the portion of the sentence that the emphasis is
placed on. Previous production work has shown that nonfinal focused components are character-
ized by widened pitch span, and postfocused components by suppressed and lowered pitch span
(Xu, 1999). The internal maps of Simulation 3 (Figures 4, 5, and 6) corroborate such findings.
The internal representation developed by the D1 network shows that focus-sensitive units are
characterized by increased (positive and negative, depending on the tone) velocity compared to
the neutral units, and that most postfocus syllables show more negative velocity (see Figures 2
and 6), indicating an active suppression of F0 after focus. Previous work has also shown that
final focus is only marginally different from neutral focus (Xu, 1999). This resemblance of final
focus to neutral focus is seen as the mixed cluster in the center of the color map of Simulation 3
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106 GAUTHIER, SHI, AND XU

FIGURE 5 Detailed color and internal maps of Simulation 3 showing
focus locations distinction by (a) F0 and (b) D1. (This figure appears in
color online.)
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LEARNING PROSODIC FOCUS 107

FIGURE 6 Color map (a) and internal maps of focus1 (b) and focus2
(c) clusters developed by the D1 network in Simulation 3 as a function of
tone. In (a), focus1 and focus2 clusters are lifted up for clarity. (This
figure appears in color online.)
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(Figures 4 and 5) and is shown in the similarity of the learned internal maps of these two focus
categories.

The first two simulations show that F0 is sufficient for carrying information about initial and
medial focus. This suggests that F0 probably carries important perceptual cues for focus, which
agrees with the previous finding that focus is encoded mainly through pitch range adjustments
(Xu, 1999). However, when speech with cross-gender variability was used to train and test the
networks, as in Simulation 3, only the dynamic information represented by D1 was useful for
distinguishing focus satisfactorily. As described in the introduction, D1 has the advantage of
being largely free of individual speakers’ pitch range differences, as can be seen in Figure 2. The
pitch range differences become much more extensive when male and female data are both
included in the input. As explained in Gauthier et al. (2007a, 2007b), taking the derivative of a
curve to compute D1 eliminates the constant term that specifies the curve’s Y-intercept, which
would automatically remove most of the cross-gender pitch register differences. D1 is therefore
more reflective than F0 of what the speakers do during their articulation rather than who they
are. In this sense, it is the part of the information in the acoustic signal that is articulatorily the
most relevant and provides the best cues for the perception of both lexical tone (Gauthier et al.,
2007a, 2007b) and prosodic focus (the present data). The results of Simulation 3 also show that
when final focus was not substantially different from neutral focus in the production, its learned
clustering was also not highly distinct from neutral focus, consistent with the observation that
human listeners cannot perceive final focus as easily as nonfinal focus categories (Liu & Xu,
2005). Map units responding to focus1 and focus2 were clearly separated, however, and their
respective internal maps (Figure 6b, c) revealed the similarity structure within each cluster.5

These results, together with the lexical tone results which we obtained previously (Gauthier
et al., 2007a, 2007b), demonstrate that the D1 profile of the fundamental frequency of the speech
signal carries sufficient information to convey both focus and lexical tones simultaneously in a
tone language. The fact that both initial and medial focus formed multiple clusters, as shown in
the D1 color map (Figure 5b), suggests that the simulated process may be considered as some
type of initial input sorting that eventually would lead to proper focal categorization, which
raises the question as to how the system can link these clusters to form such categories. With
respect to whether tones can be learned independently from focus, the results obtained in our
previous work show that lexical tones can be directly derived from syllable-sized D1 profiles
(Gauthier et al., 2007a, 2007b). In the present study, detailed analyses of the clusters revealed
that each of them mainly responded to sentences for which the focused component was a single
tone. Such patterning reflects the fact that the fundamental frequency is used for simultaneously
encoding tones and focus. It also suggests that it is possible for infants to use sentence-sized
patterns during lexical tone learning, by noticing the similarities between syllable-sized chunks
of sentences, a strategy that is not much different from focusing directly on the syllable.

The breakdown of focus categories into multiple clusters related to tonal identity also
suggests that focus may be learned with the help of prior knowledge about tones, by using some
prototypical representation of tones from a separate “syllabic” layer of processing. Once the
contribution of tones is removed, the “clause” or sentence layer may better represent focus
categories in terms of the individual clusters that are grouped together. Thus, we could predict
that young infants should be able to discriminate F0 variations due to focus, but the ability to

5Quantitative clustering methods for the SOM are detailed in Vesanto & Alhoniemi (2000).
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LEARNING PROSODIC FOCUS 109

contrast different focus categories in the presence of varying tone should emerge only after tonal
acquisition. Future studies using network simulations and infant perceptual experimentation
need to specifically test this predicted order. This prediction is plausible given the tonal perceptual
abilities shown in prelinguistic human infants (Mattock, 2004) and the near-perfect tonal catego-
rization performance in our neural network simulations of tone learning (Gauthier et al., 2007a,
2007b). It is also consistent with theories of language acquisition such as the PRIMIR model
(Werker & Curtin, 2005), according to which a basic perceptual level of representation first
extracts regularities from the speech signal, achieves clustering based on input similarity, and
then combines various learned structures for accomplishing higher-level acquisition tasks. The
findings of the present study may have broader implications for understanding how infants
exposed to a nontone language such as English may also benefit from D1 in achieving phonetic
encoding of prosodic focus, as complex interactions also exist in English between lexical stress,
sentence type, and focus (Liu & Xu, 2007; Xu & Xu, 2005).

Admittedly, the speech material used in the present study does not resemble the kind of phonetic
input infants typically receive, given that it is adult-directed speech produced in the laboratory,
while infants are likely to receive a mixture of naturally produced adult- and infant-directed
speech (ADS and IDS). On the other hand, as a first attempt, our study provides important
insight into the likely mechanisms that the learning system with no built-in linguistic knowledge
may rely on for discovering structures underlying specific phonetic categories. We have shown
that with sentence-sized F0 contours and velocity profiles as input, a naïve learning system can
develop clusters that correspond well to focus categories intended by the speakers. Future
research should directly test human infants using infant-directed speech. It is hard to predict
whether IDS is better than ADS for learning focus, however. IDS is known to be characterized
by higher pitch level, expanded pitch range, and wider frequency sweeps (Fernald & Mazzie,
1991; Fernald et al., 1989), which may mean that there is more variability in IDS that could
make focus learning difficult. On the other hand, focus has been shown to have fixed pitch
ranges that cannot be exceeded by further increase in the amount of emphasis (Chen, 2003),
which means that focus could resist interference from other factors that also introduce pitch
range variations.

Finally, the current results show that, although F0 simultaneously carries information about tone,
focus, and speaker gender, it is possible for a naïve system to develop focus-specific clusters if
the right input is chosen by the learner. For example, the use of sentence-sized contours may
lead to focus learning, whereas syllable-sized contours may lead to the development of tone-specific
clusters. The reliance on F0 contours may lead to the development of gender-specific clusters,
while D1 profiles may filter out the gender information and help develop the tonal or focus clusters.
The learning system can potentially develop multiple structures (e.g., tone, focus, gender) by
responding to one input characteristic at a time, as long as that characteristic shows clear patterns.
If a particular characteristic supports more than one structure, it is still possible that the learner
develops each structure, but some other constraints would be needed to organize the learned
structures so that they can serve different functions. One question, which is not addressed in the
present study, is how the learning system determines which generalizations are linguistically
important. Future studies need to explore the factors that can constrain the learning system such
that linguistically relevant principles are treated differently than nonlinguistic structures.

In summary, the present study shows that a simple unsupervised learning mechanism can
develop focus-specific clusters from continuous dynamic speech signal produced by multiple
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110 GAUTHIER, SHI, AND XU

speakers in various lexical tone conditions. We found that the perceptual formation of focal
clusters could be directly based on sentence-sized continuous F0 contours and F0 velocity profiles.
However, in comparison with tone learning demonstrated in previous work (Gauthier et al., 2007a,
2007b), the present results suggest that learning focus may be more difficult, because focus
exaggerates the pitch of the focused tones, making them either extra high or extra low, resulting in
nonunimodal cluster distributions on a map. It awaits future research to find out how such complex
distributions can be coherently represented to allow focus acquisition. Interestingly, as discussed
earlier in this section, focal clusters in the present simulations show subdistribution of tones.
In contrast, tonal clusters in our previous tone learning simulations (Gauthier et al., 2007b) are
straightforward, showing no clear substructure of focus, nor any other discernable substructure.
This difference indicates that tone learning is likely more primary than focus learning. Thus, we
suggest that during the course of language acquisition, more complex linguistic knowledge such as
focus might be acquired based on less-complex, lower-level learned knowledge such as tones.
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APPENDIX

The SOM Algorithm

Architecture. The SOM maps a high-dimensional input space onto a discrete lower-
dimensional array of topologically ordered processing units. A one-dimensional SOM is illustrated
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in Figure 7 (adapted from Ritter & Schulten, 1986). The input and output layers are fully inter-
connected to each other. The output space N is a lattice on which units are labeled by a position
vector r indicating their physical position on that lattice (filled dots). The input space X is
mapped onto the output space N by a set of adaptive receptive field centers (empty dots), or
connection weights wr e X, for which correspond a typical xi e X. The subset of X closer to a
unit’s receptive field center than to any other wr constitutes the receptive field of that unit (dark
bars). In the present study, a two-dimensional map of 30 × 30 (900) units is used.

Transmission rule. The transfer function of the network contains two steps. First, the
distance between the receptive field center of each unit to that of the input vector xi is evaluated
according to:

where ur represents the net value of unit r. The unit with the shortest Euclidean distance between
wr and reference input pattern xi is selected to be the winner according to:

where v corresponds to the position of the winner, or Best Matching Unit (BMU). The net value
is further transformed to yield the final response, given by the nonlinear Gaussian function:

where hr corresponds to each unit’s activation. The Gaussian is peaked at v so that the winning unit
is the most activated (hv = 1). Units falling into neighborhood radius s get activated by means of
lateral activity, although to a lesser degree than the BMU depending on their position relative to
the winner. The transmission rule can be conceived as a basic perceptual discriminative function
that computes the distance between a perceived signal and a signal stored in a list of prototypes.

FIGURE 7 Architecture of a one-dimensional SOM: linear array N of 4
output units r (filled dots), their receptive field centers (empty dots) and
receptive fields (bold horizontal lines) for input space X = [0,1] (adapted
from Ritter & Schulten, 1986).

u  = (  (x   w ) )r i r
2 1/2Σ − (2)

v = min (u )r (3)

η − − σr = Exp(  ((v  r)  / ))2 (4)
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Learning rule. The SOM implements a regression algorithm for mapping an input distri-
bution P(x), xi e X, onto the output space. The lateral connections between output space nodes
allow for topological ordering to be preserved in the map during the learning period. Receptive
field centers wr are adapted during a stochastic learning procedure in which a random sequence
of data points xi is presented repeatedly for a predefined number of times. Each time an input
vector is presented, the winning unit and its neighbors shift their receptive field centers toward
the data point according to:

where hr is the value output according to the transmission rule and a is the learning step size. The
weight matrix is then updated according to:

The learning rule can be conceived as a basic perceptual learning function that transforms the
internal organization to reflect the environmental characteristics.

Initialization of the map. Before the learning phase, the weight matrix is initialized by
randomly assigning a value to the weight vector’s elements that ranges between the minimum
and maximum Hertz (or D1) value of the input corpus.

Δ α η − w =  .  (x   w )r r i r (5)

w  (t + 1) = w  (t) +  wr r rΔ (6)
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