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1. Introduction – The tone system of Mandarin  

 

One important task for infants in learning verbal communication is to 

discover the speech sounds of their ambient language. As revealed by the past 

30 years of research in speech perception development, infants gradually 

become attuned to their native language phonetic categories during the second 

half of the first year of life. Most of the work in this area has focused on 

consonants (e.g., Werker & Tees, 1983, 1984; Werker & Lalonde, 1988; Best & 

McRoberts, 1989; Best, 1995) and vowels (e.g., Grieser & Kuhl, 1989; Kuhl, 

1991; Polka & Werker, 1994). However, there is an emerging interest in the 

study of the acquisition of lexical tones, a type of contrast used by more than 

two thirds of the world’s population (Yip, 2002). 

Tone languages use distinct pitch patterns to distinguish word meanings. 

For example, the syllable /ma/ in Mandarin can mean ‘mother’ (High tone), 

‘hemp’ (Rise), ‘horse’ (Low), or ‘to scold’ (Fall). The perception of pitch is 

highly correlated with the fundamental frequency (F0) of the signal, which in 

turn reflects the vibration rate of the vocal folds. Although tone perception 

makes use of different phonetic markers such as duration and amplitude 

(Whalen & Xu, 1992) as well as phonation type (Maddieson & Hess, 1986; 

Andruski & Ratliff, 2000), F0 is usually considered the primary acoustical cue 

for adult tone perception (Klein, Zatorre, Milner, & Zhao, 2001; Whalen & Xu, 

1992). Figure 1 shows the F0 patterns of the four Mandarin tones produced in 

citation form (data from Xu, 1997). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The lexical tones of Mandarin produced in citation form. 
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Each thick curve on the left panel represents the mean of five tokens 

produced by an adult male speaker. The thin curves on the right panel 

correspond to the individual tokens. As this graph shows, F0 patterns seem to 

clearly distinguish the four tones. In everyday conversation, however, tones are 

generally not produced in isolation. 

 

2. The problem of variability in tone production 

 

There are many potential sources of variability in tonal realization, as 

discussed in detail by Xu (2001). In the present paper, we direct our attention 

towards two major sources: cross-speaker differences and contextual variations. 

The first one arises from the variability in length and thickness of speakers’ 

vocal folds (Zemlin, 1988), resulting in pitch range variation. The second source 

is introduced by tonal contexts in connected speech (Shen, 1990; Xu, 1994; 

1997). Much of the contextual variability in Mandarin is induced by the 

preceding tone; only a small portion of it comes from the following tone (Xu, 

1997). 

Input speech to infants conceivably also contains many sources of 

variability. For instance, their environment most likely includes multiple 

speakers. Furthermore, about 90% of infant-directed speech is produced in 

multi-word utterances (e.g., Weijer, 1998; Shi, Morgan &, Allopenna, 1998). 

Figure 2 shows a more realistic picture of the tonal input learners must be faced 

with in Mandarin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Mandarin tones produced by 3 speakers in connected speech. 
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Each panel shows the tokens of a tonal class spoken by three speakers in 

connected speech (data from Xu, 1997). As can be seen, the perceptual system 

must deal with a substantial amount of variability. The two sources of variability 

described above result in extensive between-category overlap and within-

category variability. This raises the question as to whether infants can learn the 

Mandarin tone system based solely on F0 information. 

 

3. Infant tone perception 

 

Speech perception studies indicate that infants already demonstrate certain 

knowledge of tonal categories at the pre-verbal stage. In a recent study, Mattock 

(2004) showed that lexical tones undergo perceptual reorganization during the 

first year of life, as vowels and consonants do. Tonal perception is influenced as 

early as 9 months of age by the ambient tonemic system. Similarly, a study by 

Harrison (2000) indicates that infants learning a tone language start showing 

particular response patterns towards phonemic pitch variations as early as 6 

months of age. Although no evidence yet exists regarding the exact age at which 

infants begin normalizing variability during tone perception, the fact that these 

studies used stimuli containing some amount of variability indicates that infants 

can grasp meaningful pitch variations quite early. In the present study, we 

explore how infants may achieve such normalization in order to learn their initial 

tonal categories. 

 

4. Insights from tone production 

 

Recent production work has shown that despite different sources of 

variability, F0 contours of a tone all gradually converge over time to an 

asymptote that is characteristic of its underlying form: high-level for High, low-

rising for Rise, low-level for Low and high-falling for Fall (Xu, 1997). 

To account for these observations, Xu and Wang (2001) proposed the 

Target Approximation (TA) model of tone production. The model portrays the 

changing surface F0 as resulting from different physical constraints imposed on 

the articulators during the implementation process. Tonal pitch variations are 

described as local asymptotic movements towards the underlying pitch targets, 

defined as simple linear functions. The targets can either be static or dynamic, 

and are respectively specified by relative pitch height (e.g., [high], [low]) and by 

both pitch velocity and relative height (e.g., [rise], [fall]). 

The TA model makes an interesting prediction regarding the perception of 

tones. By assuming that tonal pitch variations always converge towards the 

underlying pitch targets, perception should have no difficulty in retrieving tonal 

identity from the speech signal, whether spoken in isolation or in connected 

speech. More specifically, the model predicts that it is possible to infer 

underlying pitch targets from the velocity profiles of F0 movements. Velocity 

profiles (henceforth referred to as D1) correspond to the first derivatives of F0 



contours and represent the instantaneous rates of change of the vocal folds 

vibration during tonal production. 

The present study extends the TA model by proposing that D1 may be 

important information that infants use to derive tonal categories early in 

language development. 

 

5. Goal of the study 

 

To test the hypothesis that a learner can use D1 to derive the Mandarin tone 

system despite variability, we trained Self-Organizing-Maps (SOMs: Kohonen, 

1982, 1995) with either continuous syllable-length F0 patterns or their 

corresponding velocity profiles (i.e., D1). In Simulation 1, the data for training 

and testing the networks contained both cross-speaker and contextual variability. 

In simulation 2, a second stage of learning was simulated for modeling further 

abstraction of the tonal categories. We expect that the efficiency of F0 patterns 

for handling variability would be limited. On the other hand, D1 information is 

expected to be a powerful cue for normalizing and categorizing the four 

Mandarin tones at both stages of learning (for details, see Gauthier, Shi, & Xu, 

submitted). 

 

6. The SOM’s algorithm 
 

The SOM is a topographical neural network using unsupervised learning 

techniques for mapping a continuous high-dimensional input space onto a lower 

dimensional array of discrete processing units. The input distribution contains 

vector signals xi elements of X. The neural map is a n-dimensional squared 

lattice of processing units, each labeled by a position vector r indicating its 

physical position on the lattice. The units are interconnected to their neighbors 

through lateral feedback and connected to the input space by a set of adaptive 

receptive field centers wr, also called connection weight vectors, each of which 

corresponds to some typical xi. The subset of X closer to one wr than to any 

other is the receptive field of that unit. 

The network processes an input vector in the following way. First, the 

distance between xi to each wr is computed according to: ur = (Sum (xi - wr)
2 

)
1/2

. 

The unit with the shortest Euclidean distance ur is then selected to be the winner 

according to: v = min (ur), where v corresponds to the position of the winning 

unit. Finally, the output of the network is given by the radial basis function: nr = 

exp (- ((xi - v)
2 

/ s)), where nr corresponds to the map’s activation. The winning 

unit is maximally activated (to 1) while units’ activation falling into radius s is a 

function of their distance from the winning unit. 

During the learning process, each time an input vector is presented to the 

network, the winning unit and its neighbors shift their receptive field centers 

towards the data point according to: D wr = a . nr (xi - wr)), where a is the 

learning step size. The weight matrix is then updated according to: wr (t+1) = wr 

(t) + D wr. The learning parameter a decreases linearly during training, from 



0.05 to 0.001. The neighborhood radius s, which initially contains almost all 

units, decreases exponentially to eventually contain a single unit. 

 

7. Simulation 1 – The learning of lexical tones 

 

In this experiment, we test the efficiency of D1 for normalizing and 

categorizing the four Mandarin lexical tones with naturalistic speech input, and 

then compare its performance with that of F0. 

The input corpus contains 1,800 exemplars of the four Mandarin tones 

produced in connected speech by three male speakers (data from Xu, 1997). 

Each tone corresponds to the first or second syllable of disyllabic ‘mama’ 

produced in carrier sentences varying in F0 pre-target offset and post-target 

onset. Each stimulus is a 30-dimensional vector composed of equal-distanced 

discrete values taken from syllable-size time-normalized F0 patterns (for the 

exact F0 extraction procedure, see Xu, 1997). The F0 profiles are first 

transformed from the Hertz to the Bark scale according to: 

F0 bk = 7 . Log (F0 hz  / 650+ ((1 + (F0 hz / 650) 
2 
) 

1/2 
) 

The velocity profiles are derived from F0 by measuring the instantaneous 

velocity according to: 

D1 = 0.5 (F0 hz (t+1) - F0 hz (t-1)) 

which yields input vectors of 28 dimensions representing the discrete first 

derivatives of F0 patterns (Figure 3). 

 

 

 

 

 

 

 

 

 

 

Figure 3. Illustration of F0 to D1 profile transformation of a High tone. 

 

During the learning phase, half of the input corpus is used to train the 

network; 900 input vectors are presented randomly during 10 epochs, for a total 

of 9,000 presentations. The testing phase involves classifying the four tones 

correctly according to the output-coding scheme described in the next 

paragraph. A recall task thus presents the training corpus to the network, as well 

as a new set of 900 exemplars to verify its capacity to generalize to novel data. 

During recall, each token is assigned to the closest unit in terms of Euclidean 

distance (see the transmission rule in section 6). 



The network is a squared array of 10 x 10 (100) processing units. Units that 

respond at least one time during the recall task are considered as operational 

units, while those that do not respond to any input vector are not considered any 

further in measuring the performance of the network. A unit is labeled as 

categorical if it is mostly sensitive to one input class. Units without a majority 

class are considered as confused units because they respond to multiple tones, 

none of which is dominant. 

 

7.1. Results of Simulation 1 
 

In this section, different measures are presented to compare the activity of 

F0 versus D1 networks during the testing phase. First, the overall performance 

measures on the trained maps indicate under which condition (F0 vs. D1) the data 

become most categorical. Then, more detailed measures on groups of map units 

reveal the distinctiveness and confusion patterns between the tonal classes. 

The categorical error reflects the fraction of the map responding 

ambiguously during recall. It is expressed as the ratio of confused units to the 

total number of operable units. The results show that F0 map contains 14% 

errors. In contrast, the D1 map only contains 2% errors, indicating that most of 

the D1 map units became category-specific after training while a larger fraction 

of the F0 map contained confused units. 

To qualitatively appreciate the outcome of the adaptation process, the 

phonotopic maps (Figure 4) assign to each unit the tone label corresponding to 

the majority class of that unit. The maps also indicate whether topologically 

ordered categories are present in the data and give information about the 

location of boundaries between each class. In the F0 map (left), many confused 

units (multi-labeled units) can be observed, as well as widely spread confusion 

areas. In contrast, the D1 map (right) shows a cleaner division of regions by 

classes, thus better representing the categories. These results suggest that the D1 

distribution contains more categorical information than does the F0 distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Phonotopic maps for F0 (left) and D1 (right) conditions. 



Turning now to the detailed results, the rate of success for each tone 

corresponds to the ratio of correctly categorized tokens to the total number of 

test tokens of this category. 
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Figure 5. Rate of success for each tone in F0 and D1 maps. 

 

Figure 5 shows that with F0, only the Low tone is well recognized (97% of 

the time); the other tones show a mean success rate of 74% with 3.5% standard 

deviation. In contrast, the results from the D1 condition indicate that every 

category shares a similar high rate of success (mean: 96%, sd: 1%). Together 

with the performance results and the phonotopic maps, the rate of success brings 

further evidence that D1 better represents the four tonal categories than F0 does. 

One property of the neural maps trained with the SOM’s algorithm is that 

they reflect the statistics of the input distributions. More specifically, the 

connection weight vectors tend to approximate the input space by extracting its 

important characteristics. To visualize the internal representation formed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Velocity profiles formed by the D1 map. 
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by a trained map, the connection weight vectors are usually projected onto the 

input space. Figure 6 displays the connection weight vectors of D1 profiles for 

each group of map units associated to each tonal class. 

The D1 profiles show distinct movement patterns within each tonal 

category and demonstrate high consistency in terms of general direction of 

movement. The D1 profiles of the static High and Low tones respectively speed 

towards high and low pitch values until they reach the middle of the syllable, 

and then gradually stabilize to their initial speed around the syllable offset. The 

D1 profiles of the dynamic Rise and Fall tones show the same pattern until 

around the first third of the syllable, but then change course in the opposite 

direction, cross the zero speed line and continue to rise or fall until the end of 

the syllable. In this manner, the D1 profiles seem to directly reflect the nature of 

the F0 movements as characterized by the TA model (Xu and Wang, 2001). A 

learning system is evidently capable of using this information to normalize and 

categorize the four tones, as shown in the simulation. 

 

8. Simulation 2 – A second learning stage 

 

Since clusters corresponding to the four tones can be observed on the result 

map of Simulation 1, we can conclude that the simulated learning system 

formed distinct clusters after being trained with D1 input. This seems to 

correspond to what infants may do in natural learning situations, i.e., forming 

tonal categories based on the clustering properties of the input data. Assuming 

that infants eventually develop a highly abstract system of tones, the next 

simulation examines whether a second learning stage could help the learner 

derive a more succinct representation of the four tonal categories. 

The input corpus contains 72,000 tokens of F0 or D1 profiles corresponding 

to the responses generated in Simulation 1 every time an input token was fed 

into the 10 x 10 map during training. We now used a four-unit network 

(corresponding to the four tones) to test if the system could form exactly four 

categories correctly. During the learning phase, all 72,000 tokens are presented 

to the network in the same order they came out of the previous map. The testing 

phase is the same as in Simulation 1, using the whole input corpus. 

 

8.1. Results of Simulation 2 

 

The frequency matrices in Table 1 show how many tokens of each tonal 

class land on each unit during the recall task. As can be seen, each tone is more 

concentrated on a single unit on the D1 map than on the F0 map. For example, 

while the most often activated unit by the High tone in the F0 map responds to 

268 tokens (on a total of 480), 448 tokens of the same tone activate a single unit 

in the D1 map. Another way to look at Table 1 is by doing a between-category 

comparison within each condition. For example, the most often activated unit by 

the Fall tone in the F0 map (221) is activated an almost equal number of times by 

the High tone (268). 



 

Table 1. Distribution of tonal tokens on map units. 

 

  

 

 

 

 

 

 

In contrast, the most often activated unit by the Fall tone (396) is activated 

by only a small number of High tones (8) in the D1 map. These observations 

show that the D1 map performs much better than the F0 map in terms of 

classification of the four Mandarin tones, indicating that the learning system has 

successfully further abstracted the four tonal categories after the initial, less 

abstract learning phase. 

Figure 7 shows the D1 prototypes corresponding to the four Mandarin tones 

derived in Simulation 2. As can be seen, these seem to fit the descriptions of 

Figure 6 even better than the D1 clusters shown there. This suggests that these 

more succinct D1 profiles can actually represent most of the variants of the four 

Mandarin tones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Prototypical velocity profiles formed during Simulation 2. 

 

9. Discussion 
 

The goal of this study was to test if the perceptual system of a naïve learner 

could derive the Mandarin tone system based on the velocity profiles of the 

fundamental frequency. To this end, we trained self-organizing networks using 

biologically plausible learning techniques with F0 information versus D1 profiles. 

The results show that D1 profiles are indeed a superior source of information 

with which the learning system can categorize the four tones. After the initial 

H 

R 

F 

L 

H R L F 

F0 

D1 

14   0 

198   268 
188   107 

103   82 
256   104 

0   0 
39   83 

137   221 

8   448 

1   23 
0   3 

71   406 
2   0 

302   56 
396   83 

0   1 



stage of successful category learning with D1, further mapping of the D1 profiles 

resulted in abstraction of the four tonal categories onto four single units, 

whereas a similar attempt with F0 failed. 

Our findings suggest that naïve learners can successfully derive tonal 

categories from highly variable acoustical input by extracting underlying tonal 

targets based on perceived articulatory movements. Moreover, category 

formation may be achieved with raw acoustic patterns as input, without the need 

to first extract phonological features.  

The claim that D1 is the relevant information for deriving phonetic 

categories is consistent with recent advances in neurosciences. A study using 

positron emission tomography (PET) has located a functionally specialized area 

in the secondary auditory cortex involved in the processing of spectral changes 

such as the formant transitions of speech (Thivard, Belin, Zilbovicius, Poline, & 

Samson, 2000). This area may be responsive to changing acoustical information 

in general, including D1. While the results of such studies, which were 

conducted with adult subjects, remain to be tested on infants, it seems plausible 

that infants process changes in F0 contours at a very early age. Our study 

provides the first evidence that naïve learners can use velocity profiles to 

normalize and categorize tones in continuous speech input with high degree of 

variability. Naturally, it awaits future investigations to find out if a similar 

process actually happens during speech acquisition. 
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