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Abstract 

Previous research has shown that the perception of speech in 
infants moves gradually from being language-general to being 
language-specific during the first year of life. Recently, it was 
found that infants learning a tone language begin to show 
particular response patterns to tones in their native language 
during their first year [1]. In this study we explore the relevance 
of tone production theory in understanding how the learning 
and the perception of Mandarin tones could have been 
accomplished despite highly variable speech input. The Target 
Approximation model [2] predicts that it is possible to infer 
underlying pitch targets from the manners of F0 movements, for 
they may directly reflect the characteristics of intended goals. 
Using the production data of multiple speakers in connected 
speech from [3], we trained a self-organising neural network 
with both F0 profiles and F0 velocity profiles as input. The 
network’s performance indicates that velocity profile 
distribution in the network formed distinct regions of clustering 
neighbourhoods representing each tone. The finding points to 
one way through which infants can successfully derive at 
phonetic categories from adult speech, namely, by extracting 
underlying phonetic targets based on information directly 
reflecting production. 

1. Introduction 

The tone system of Mandarin consists of four full tones, High 
(Tone 1), Rise (Tone 2), Low (Tone 3) and Fall (Tone 4) and a 
neutral tone [4]. The primary acoustic correlate of these tones is 
F0 [5], also considered as the main cue in adult tone perception 
[6]. As other types of phonemes, Tones in tonal languages 
contain patterns of variability.  For example, F0 patterns 
produced by multiple speakers show a great amount of overlap 
for evident reasons. Moreover, tones produced in connected 
speech yield F0 patterns with considerable between-category 
variability and large within-category overlap [7]. 

Many speech perception studies have focused on 
different aspects of the speech signal for finding invariants 
defining tonal categories [8,9,10,11]. Proposed solutions 
typically attempt to single out an acoustic parameter such as the 
height or slope of F0 contours that remains constant for each 
tonal category. These proposals therefore all implicitly assume 
that some kind of preprocessing is done to derive these 
parameters before tonal categorization. Such preprocessing, 
however, seems even more difficult than the categorization 
itself, because it has to handle vast amount of variability in the 
speech signal [12]. The variability comes from two major 
sources: cross-speaker difference and context variation. For the 
adult listeners, it is imaginable that havin g preestablished 
categories may help the process of normalizing away the 
variability. For the prelinguistic infants, the task is much more 
difficult, because for them even the number of categories is 

unknown, not to mention the invariant parameter allegedly  
associated with each category. Nevertheless, recent findings 
suggest that some perceptual analysis of tonal variability must 
have already happened before the onset of tonal production 
[1,13,14]. Since speech input to infants consists primarily of 
multi-word utterances by multiple speakers [e.g., 15], tone 
learning must involve processes that can not only resolve the 
two types of variability, but also discover the number of tonal 
categories as well as their invariant characteristics. 

Research on the nature of the variability in tone 
production has shown that much of the contextual variability in 
Mandarin is induced by the effect of the preceding tone, and in 
some contexts by the following tone [3]. It has also been shown 
that regardless of the preceding tone, the F0 contours of the 
syllable associated with the tone all gradually converge over 
time to an asymptote that is characteristics of the underlying 
tone: high- level for High, low-rising for Rise, low-level for 
Low and high-falling for Fall [3]. 

To account for the contextual variability of tones, the 
Target Approximation (TA) model [2] characterises surface F0  
as asymptotic movements toward underlying pitch targets 
defined as simple linear functions. Targets can be either static 
or dynamic. Static targets are specified by relative pitch height 
(e.g., [high], [low]) and dynamic targets by a combination of 
relative pitch height and velocity of the pitch movement (e.g., 
[rise], [fall]). The TA model predicts that despite the variability, 
it is possible to inf er underlying pitch targets from the velocity 
profile of F0 movement (i.e., its first derivative, heterto referred 
to as D1), which represents the changes in fundamental 
frequency of the vocal folds in tonal production. 

In the present study we test if tonal categories can be 
derived by the perceptual system of naïve learners despite the 
extensive speaker and contextual variability. We hypothesise 
that D1 of F0 unifies the variable pitch trajectories of the same 
pitch target and distinguish them from those of other targets 
better than F0 does. Given that infants begin voluntary vocal 
control of pitch changes from early stage of babbling, it is 
plausible that they use this information in discovering the 
intended underlying tonal targets.  

2. Methodology 

To test the possibility that D1 can be used in the perception and 
the learning of tones in Mandarin Chinese, we use a 
self-organising topographical neural network. The 
Self-Organising-Feature-Map (SOM) [16] is a statistical 
pattern recognition device using unsup ervised learning 
methods for discovering the structure of high dimensional data. 
The SOM maps a continuous input space onto a discrete lower 
dimensional array of topologically ordered processing units. 

2.1. Description of the model  

Architecture. The input space X and the output layer are fully 
interconnected by a set of adaptive receptive field centres wr ∈  



X. The output is a lattice on which units are labelled by a 
position vector r indicating their physical position on that 
lattice. The subset of X closer to a unit’s receptive field centre 
than to other wr constitutes the receptive field of that unit. 
 
Transmission rule. The distance between the receptive field 
centre of units to that of input vector is evaluated according to: 

ur = (Σ (xi - wr)2 )1/2       (1) 

where ur represents the net value of unit r. The unit  with the 
shortest Euclidean distance between wr to reference input 
pattern xi is selected to be the winner according to: 

v = min (ur)        (2) 

where v corresponds to the position of the Best-Mat ching-Unit 
(BMU). The net value is further transformed to yield the final 
response, given by the nonlinear Gausian function: 

ηr = Exp(- ((v - r)2 / σ))       (3) 

where ηr corresponds to units’ activation. Radius σ activates 
neighbouring units by means of afferent lateral activity.  
 
Learning rule. A regression algorithm maps the input 
distribution P(x), xi ∈ X, onto the output space. Each time an 
input vector is presented, the BMU and its neighbours shift 
their receptive field centre towards the data point according to: 

∆ wr = α . ηr (xi - wr)      (4) 

where α is the learning step size. The weight matrix is then 
updated according to: 

wr (t+1) = wr (t) + ∆ wr       (5) 

2.2 Simulations 

Input coding. The input corpus [3] contains 1800 exemplars of 
the four Mandarin tones produced in connected utterances by 
three adult male speakers. Each stimulus corresponds to the 
first or second syllable of disyllabic sequence ‘mama’ produced 
in the middle of four carrier sentences which differ in high and 
low pre-target offset and post -target onset. Each input token is a 
30-data-point vector composed of equally distanced discrete 
values taken from a syllable- length time-normalised F0 curve 
(for details, see [3]). The data are first transformed from Hertz 
to the Bark scale according to: 

F0 bk = 7 . Log(F0  h z /650+((1+ (F0 hz /650)2)1/2)   (6) 

For D1 simulation, the first derivatives of F0 are : 

D1 = 0.5 (F0 hz (t+1) - F0 hz (t-1))    (7) 

which yields input vectors of 28 dimensions. 
 
Learning phase. The training corpus contains 900 stimuli  (half 
of the input corpus) randomly presented to the network for 
1000 times. Each time the neighbourhoods on the map are 
shifted to better fit the data. After learning, the map represented 
by the connection matrix is saved. 
 
Testing phase. During the recall task, new exemplars are used 
to verify the network’s capability to generalise to novel data. 
The trained network assigns each input pattern from a new set 

of 900 tokens (the other half of the input corpus) to a single unit 
with the transmission rule. 
 
Output coding. The networks are squared arrays of 10 x 10 
units, each being tuned to a particular subset of input patterns 
after training. Units which fire at least once during recall are 
considered operable units. If a unit never fires, it is 
non-operable. The number of activations of each unit for each 
tone category is indexed into four tone frequency matrices. 
Units with firing probability above 68% to a tone are 
considered as categorised and labelled with that particular tone. 
Units without such a majority class respond to multiple tones 
and are considered as ambiguous units. 

2.3. Measures 

The categorical error represents the proportion of the network 
responding to more than one class, i.e., the number of 
ambiguous units on the number of operable units. The 
classification error is the probability of the network to respond 
ambiguously during recall. Each test token landing on an 
ambiguous unit counts as an error, thus the classification error 
is the number of error tokens divided by the total number of 
input tokens in the testing corpus. For visualising the results, 
the phonotopic map  [17,18] assigns each unit a label 
corresponding to the majority class of that unit 

The between-category assessment of each condition is 
expressed in terms of confusion pattern between tones and is 
presented in the form of confusion matrices. Derived from 
these tables, the rate of success for each tone corresponds to the 
number of correctly categorised tokens divided by the total 
number of test tokens of this category.   

3. Results 

Global results. The global results indicate if topologically 
ordered categories are present in the data. Table 1 shows 
categorisation errors (column 2) and classification errors 
(column 3) for F0 and D1. Both errors are larger for F0 than for 
D1, indicating that after training, most of the D1 map units 
became category-specific while a larger portion of the F0 map 
contained ambiguous units. 
 

Table 1: Categorisation and classification errors. 

 
Global measures 

 Categorisation 
error 

Classification 
error 

F0 0.20  0.22 
D1 0.03 0.03 

 

 

 

 

 
 

Figure 1: Phonotopic maps for F0 (left) and D1 (right). 
 
As shown in Figure 1, ambiguous units (multi-labelled units) 
form widely spread confusion areas on the F0 map. In contrast, 



the D1 map shows a cleaner division of regions by classes, thus 
better representing the categories. These results suggest that the 
D1 distribution contains more categorical information than 
does the F0 distribution. 
 
Detailed results. Table 2 presents a confusion matrix where the 
rows correspond to the speakers’ intended targets and the 
columns to the majority class of the map units. The last column 
shows the number of tokens activating ambiguous units for 
each category. For example, in the F0 condition, of the 240 
intended High Tones, 162 were classified correctly as the High 
units, 6 misclassified as Rise units and 72 landed on ambiguous 
units.  

Table 2 shows that the total number of misclassification 
is lower for D1 (27) than for F0 (55). Also, the darker elements 
of the matrices, which sh ow higher probability 
misclassification patterns, are in greater number for the F0 map, 
in which Tone 2 (Rise) was mostly misclassified as Tones 1, 3 
and 4, and Tone 4 as Tones 1 and 2. The D1 condition shows 
only a single misclassification pattern between Tones 1 and 4. 
 

Table 2 : Between-category confusion pattern. 

 
Confusion matrix 

  H R L F Ambiguous 
F0 H 162 6 0 0 72 
 R 11 157 8 6 58 
 L 0 0 172 0 8 
 F 11 12 1 160 56 

D1 H 219 1 2 8 10 
 R 2 226 3 0 9 
 L 0 0 172 1 7 
 F 9 0 1 224 6 

 
With D1, the number of tokens assigned to the corresponding 
majority class is overall higher than in F0, as shown by each 
matrix diagonal, although the Low Tone in F0 behaves 
differently. The rate of success of the Low Tone corresponds to 
172 correctly classified Low tokens divided by the total of Low 
tokens (180), thus 0.96. The mean success rate of F0 for the 
three other Tones is 66% with one standard deviation. 

In contrast, the results from the D1 condition indicate that 
every category shares a similar high rate of success (mean: 94%, 
sd: 2). Together with the confusion pattern results, the rate of 
success brings further evidence that D1 better represents the 
four tonal categories. 

4. Discussion 

The simulations compared the performances of F0 and D1 as 
input to a topographical neural network consisting of 100 
receptive units. The performance of D1 turned out to be far 
superior to that of F0. D1 yields an almost perfect separation of 
the four tonal categories despite the multiple sources of 
variability in the speech input. 

To understand why D1 is so much more effective than F0,  
Figure 2 displays the prototypical F0 and D1 profiles developed 
during training in the simulations for each tone category. 

Two general patterns can be observed. First, the F0  
profiles show much lar ger within-category vertical spread than 
D1 profiles, and the spread is especially wide near the syllable 
onset. Second, the F0 profiles show much less distinct 
movement patterns than D1 profiles. In fact, with the only 

exception of Low, F0 profiles of each tone move in both general 
directions: up and down. The D1 profiles, in contrast, display 
high consistency in terms of general direction of movement, 
and differ within each tonal category mostly in magnitude of 
the movement. 

 

 

 

 

 

 

 
 
 
 

Figure 2: Prototypical profiles for F0 (above) and D1 (below) 
for categorised units of the Tones 1, 2, 3 and 4. 

 
Static tones. The consistent D1 profiles seem to directly reflect 
the nature of the F0 movements as characterized by the Target 
Approximation model [2] and by the velocity profiles of 
movements proposed by Nelson [19]. In the static tones, most 
High profiles increase their speed from 0 towards a positive 
value, reach peak velocity around the 10-12th time point and 
finally slow down towards the initial speed of 0 near the end of 
the syllable. The Low profiles show almost mirror images of 
the High profiles, i.e. with speed increasing towards negative 
values from 0, reaching a valley around the 10-12th  time point, 
and then decreasing towards 0 again near the end of the syllable. 
Such unimodal velocity profiles fit the definition of a single 
movement given by [19]. A single movement is one that starts 
from one location and stops at another. A voluntary movement 
such as reaching satisfies this definition. It follows then that the 
movements involved in the High and Low tones are those 
towards a single static F0 height. The positive velocity profiles 
during High correspond to movements towards an 
above-average pitch height, and the negative velocity profiles 
during Low correspond to movements towards a 
below-average pitch height. 
 
Dynamic tones. The D1 profiles of the dynamic tones present a 
different picture. Like the static tones, the D1 profiles of Rise 
and Fall both increase their speed from 0 at syllable onset 
towards a negative/positive value, although for a shorter period 
of time. But instead of continuing with the initial direction, the 
D1 profiles reverse their direction, cross the zero speed line and 
continue to increase until near the end of the syllable. In other 
words, the Rise/Fall velocity profiles indicate rapid initial F0  
movement towards a relatively low/high F0, followed by 
another movement in the opposite direction towards the zero 
line, thus indicating a movement toward an initial static height 
per [19]’s definition. But the movements afterwards no longer 
fit that definition. Rather, the fact that D1 reaches a high 
(positive or negative) value near the end of the syllable in Rise 
and Fall suggests that the high velocity itself is the final goal of 
these tones. In other words, the targets of these tones are 
dynamic, i.e., with a likely simple linear function as their goal, 
as is assumed in the Target Approximation model [2]. 
 

The present findings have implications for a long- lasting 
debate over the nature of speech perception, i.e., whether it is 



the acoustic patterns or articulatory gestures that are the distal 
objects of speech perception. While the auditory accounts have 
difficulty explaining how variability with apparent articulatory 
sources can be effectively processed without referring to the 
articulatory movements, the motor theory accounts have 
difficulty explaining how infants who cannot yet speak can 
develop perceptual phonological categories that are 
articulatory in nature. The data used in the present study 
suggest that one of the first problems infants have to solve is 
how to handle the large magnitude of variability that comes 
from either an idiosyncratic source or an articulatory source. 
The learning simulations that we conducted suggest that by 
tracking the velocity of articulatory/acoustic movements, 
variability from both sources is drastically reduced; the 
remaining variability, being articulatorily lawful, can be 
effectively handled by a neural network through unsupervised 
learning. On the other hand, the velocity profiles being tracked 
can make sense only when they are viewed as stemming from 
movements toward underlying targets that can be defined as 
targets that are either static or dynamic in terms of both acoustic 
patterns and articulatory states. It is therefore imaginable that a 
further learning step for the infants is to derive those targets 
from categorized velocity profiles like those shown in Figure 2.   
Once stored in the brain, those targets may be used by infants as 
articulatory goals when they babble and learn to speak 
themselves. This understanding can therefore provide a 
possible explanation as to why perception well precedes 
production in language acquisition. 

5. Conclusion 

Given that the speech input to infants is highly variable,  one of 
the greatest puzzles about human speech is how infants 
discover the sound categories of the ambient language. Based 
on the Target Approximation model of tone production [2], we 
hypothesised that the velocity profiles (D1) represent more 
directly than F0 profiles articulatory movements towards the 
underlying pitch targets of the lexical tones, and as such it can 
significantly reduce the amount of variability due to speaker 
difference and tonal context. We further hypothesized that 
naïve learners such as infants can use D1 information to 
develop tonal categories through unsupervised learning. We 
tested these hypotheses with a self-organising topographical 
neural network using both F0 and D1 profiles as input. Testing 
results showed that not only was D1 far superior to F0  for 
developing tonal categories, but also the prototypical D1 
profile clusters developed through training yielded virtually 
perfect tone recognition without the help of any contextual 
information. These findings not only point out a possible way 
via which infants can develop phonetic categories through 
unsupervised learning based on adult input containing large 
amount of variability, but are also pertinent to our 
understanding of the link between speech perception and 
production in general.  
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