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Abstract
The complex f0 variations in continuous speech make it rather
difficult to perform automatic recognition of tones in a language
like Mandarin Chinese. In this study, we tested the use of tar-
get approximation model (TAM) for continuous tone recogni-
tion on two datasets. TAM simulates f0 production from the
articulatory point of view and so allow to discover the underly-
ing pitch targets from the surface f0 contour. The f0 contour of
each tone represented by 30 equidistant points in the first dataset
was simulated by the TAM model. Using a support vector ma-
chine (SVM) to classify tones showed that, compared to the
representation by 30 f0 values, the estimated three-dimensional
TAM parameters had a comparable performance in character-
izing tone patterns. The TAM model was further tested on
the second dataset containing more complex tonal variations.
With equal or a fewer number of features, the TAM param-
eters provided better performance than the coefficients of the
cosine transform and a slightly worse performance than the sta-
tistical f0 parameters for tone recognition. Furthermore, we
investigated bidirectional LSTM neural network for modelling
the sequential tonal variations, which proved to be more power-
ful than the SVM classifier. The BLSTM system incorporating
TAM and statistical f0 parameters achieved the best accuracy
of 87.56%.
Index Terms: continuous Mandarin speech, tone modeling and
recognition, target approximation model, LSTM neural network

1. Introduction
Mandarin Chinese (Standard Chinese) is a well-known syllable-
based tone language. Each syllable is associated with one of five
pitch tones, including four lexical tones (referred to as Tones 1-
4) and a neutral tone (referred to as Tone 5). The 412 base sylla-
bles stratified with five tones constitute about 1282 phonetically
differentiated syllables in Mandarin. Pitch tones play crucial
phonemic roles so that the same syllable with different tones
has different lexical meanings. Therefore, automatic Mandarin
tone recognition is a fundamental and nontrivial research topic,
which benefits discriminating homophone words in automatic
speech recognition (ASR) systems, labeling prosodic informa-
tion of databases for data-driven text-to-speech (TTS) systems,
and detecting tone pronunciation errors for computer aided lan-
guage learning (CALL) systems.

The four lexical tones are phonologically characterized by
the f0 patterns, namely, Tone 1 (high-level), Tone 2 (mid-
rising), Tone 3 (falling-rising), and Tone 4 (high-falling). When
pronounced in isolation, their pitch contours seem well defined
and quite stable (demonstrated as dotted lines in Figure 1). The

tone recognition of isolated syllables is relatively easy, achiev-
ing an accuracy of above 99% [1] for four lexical tones.
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Figure 1: Illustration of standard f0 patterns of the four lex-
ical tones (dotted ones) and their possible variations (solid
ones) when affected by specific neighboring tones in continu-
ous speech (adapted from Chao 1968 [2] and Zhang et al. 2005
[3]). Note: they are not quantitative but qualitative and descrip-
tive. These tone variants demonstrate some frequently observed
patterns with possible transitions affected by adjacent syllables.

However, these standard tonal patterns seldom occur in con-
tinuous speech due to complex physiological, phonetic, and lin-
guistic constraints etc. First, the tonal co-articulation influences
the pitch contour. Being affected by the tones of neighbouring
syllables, the surface F0 contours are usually undershot. As the
solid contours show in Figure 1, the tone patterns of continuous
speech deviate a lot from their standard ones. Moreover, tones
are embedded in the intonation structure of the whole utter-
ance. For example, sentence type, speaking style, and topic shift
can result in complex f0 variations, because the local prosodic
units (tones) are modulated so as to accommodate to the global
prosodic structure. Besides, Tone 5, also known as the neutral
tone, has greater contextual variability than the lexical tones be-
cause its f0 varies greatly with the preceding tone. All these
tonal variations increase the difficulties of tone modeling and
recognition in continuous Mandarin speech.

Regarding automatic tone recognition, researchers at-
tempted many approaches in terms of different kinds of fea-
tures and classifiers. For features, traditional methods usually
use prosodic features e.g. f0 and energy as well as their derived
features. In addition to the prosodic features, more recent meth-
ods also employed spectral features due to the potential corre-
lation between source features and spectral features, e.g. mel-
frequency cepstral coefficients (MFCCs) used by Ryant et al.
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[4, 5]. Chao et al. [6] and Lin et al. [7] also incorporated articu-
latory features into tone recognition. For classifiers, researchers
have tried MLP, SVM, DNN, etc. [6, 7, 8]. To employ the
contextual and temporal information, researchers usually used
HMM [7] or LSTM models [8].

However, those data-driven methods did not take the f0
generation mechanism into consideration. Zhang et al. [3, 9]
proposed to divide the f0 contour of a syllable into tone nucleus
and adjacent articulatory transitions, then used the tone nucleus
as the underlying tone target for recognition. Wang et al. [10]
used phrasing coefficients of the Fujisaki model [11] as features
for tone recognition. Prom-on et al. [12] developed the quan-
titative implementation of target approximation model (TAM)
for generating the f0 contour of English and Mandarin speech,
which was later successfully tested for Thai and German f0
modeling [13, 14]. The TAM generates surface f0 contours
from invariant underlying pitch targets based on articulatory dy-
namics. The relative invariance of underlying pitch targets may
help to distinguish tones from complex surface f0 contours. In
this study, we propose to apply qTA to model continuous Man-
darin f0 contours, and then use the derived parameters as the
features for tone recognition.

2. Method
The goal of this study is to explore the benefit of the TAM for
tone modeling from raw pitch contours for continuous Man-
darin speech and its application to tone recognition. Although
elaborated features (e.g. spectral features) or classifiers may
improve the performance, the experiments are focused on how
effective the TAM is to abstract the raw f0 contour and how
distinct the derived parameters are for tone recognition. Any
recognition system built with other features and classifiers can
easily incorporate it.

2.1. Target approximation model

The target approximation model (TAM), as illustrated in Fig-
ure 2, attempts to articulatorily simulate the underlying mech-
anisms of f0 realization. It assumes one pitch target for each
syllable of an utterance. Within the interval of a syllable, the
target x(t) is defined as the linear function,

x(t) = mt+ b (1)

The f0(t) is modeled as the response of an N -order criti-
cally damped linear system driven by a pitch target, as shown in
the following equation,

f0(t) = (mt+ b) + (c0 + c1t+ ...+ cN−1t
N−1)e−t/τ (2)

where m (in st/s) and b (in st) denote the slope and offset of the
underlying pitch target, respectively, and the time constant τ
(in s) represents the strength of the target approximation move-
ment. In general, positive and negative values of m indicate
rising and falling targets, respectively, while positive and neg-
ative values of b indicate raising and lowering of pitch targets
relative to the speaker average f0 level, respectively. The values
of these three parameters are expected to reflect the tonal pat-
terns. Applying TAM to Mandarin tones, Prom-on et al. [12]
found, for example, that the Mandarin rising (R) and falling (F)
tones have positive and negativem values, respectively, and that
neutral tone have relatively greater τ values than those of other
tones. Moreover, Xu et al. [13] analyzed 1280 eight-syllable
Mandarin utterances and discovered the many-to-one mappings

between surface f0 and underlying representations. i.e., the in-
variant targets of variable surface f0.

Figure 2: An illustration of the target approximation process.
The surface f0 contour (indicated by the thick solid line) asymp-
totically approaches two underlying pitch targets (represented
by the dashed lines). The middle vertical gray line represents
the syllable boundary through which the final f0 dynamic state
is transferred from one syllable to the next. Source: Figure 2 in
Xu et al. 2014 [13].

2.2. Estimation of pitch targets

To estimate the underlying targets of tones, we adopted Target-
Optimizer [14], one of the quantitative implementations of
TAM. TargetOptimizer jointly estimated the pitch targets ps =
(ms, bs, τs)

T, referred to as qTA parameters, for all syllables of
the utterances by minimizing the following objective function,

g (p1 . . .pS) =
∥∥∥f0(k∆t)− f̂0 (k∆t,p1 . . .pS)

∥∥∥2
2

+ λ

S∑
s=1

(ps − p)T W (ps − p)

(3)

where S is the number of syllables. The first term is the squared
Euclidean distance between the original f0 samples and the re-
produced f̂0 samples by the TAM, which are sampled every
∆t = 10 ms and indexed by k. The second part in Equation
3 is the regularization term, which penalized the deviation of
qTA parameters from their preferred values p = (m, b, τ)T.
W = diag(wm, wb, wτ ) is the weight, the values of which
were optimized in the experiments. λ is the overall regular-
ization factor (see Birkholz et al. [14] for details). The only
required annotation for using TargetOptimizer is the syllable
boundaries, which are assumed available from a process of
phoneme recognition or phoneme boundary detection.

2.3. Tone classifier

We employed two classifiers to recognize Mandarin tones:
support-vector machine (SVM) and bidirectional Recur-
rent Neural Network with Long Short-Term Memory units
(BLSTM). The SVM has less risk of over-fitting and no strict
requirement for the size of dataset. It is easy to train and
build as a baseline system. The second classifier we used is
the BLSTM, which has demonstrated its capability of model-
ing temporal sequences in tasks of handwriting recognition, lan-
guage translation, speech recognition and so on. The reason for
adopting BLSTM is to deal with the bidirectional contextual
effects (carry-over and anticipatory effects from neighboring
tones) and even long distant prosodic effects.
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3. Evaluation
3.1. Speech corpora

3.1.1. Dataset-1: Controlled speech

The controlled speech was produced by four female and four
male Chinese speakers [15]. Each of 16 disyllabic nonsense
sequences with balanced tonal structures was spoken by each
speaker in four different carrier sentences. The pitch con-
tour taken from either the first or second syllable of a disyl-
labic target word was sampled to 30 equidistant (hence time-
normalized) discrete points. This dataset concerned only four
lexical tones. To simplify the recognition task, the Tone3-Tone3
cases were excluded because the first Tone 3 has become nearly
identical to Tone 2 due to a phonological tone sandhi rule. There
were a total of 1408, 1408, 1232 and 1408 tokens for Tone 1,
Tone 2, Tone 3 and Tone 4, respectively.

3.1.2. Dataset-2: Uncontrolled speech

The uncontrolled speech used in this study is the native part of
the BLCU inter-Chinese speech corpus [16], in which each of
the 12 Chinese native speakers (six females and six males) pro-
duced 301 sentences. The corpus contains phoneme and sylla-
ble labels together with orthographic transcriptions. The aver-
age length per utterance is 7.7 syllables. The average speaking
rate over all utterances is 5.22 syllables per second. Compared
to the Dataset-1, the speech of this dataset contained more tonal
variations, thus increasing the difficulty of tone recognition. Be-
sides, Dataset-2 included the Tone3-Tone3 cases, the first of
which was modified to Tone 2 according to the tone sandhi rule
during subsequent tone modeling and recognition. The neutral
tones were also kept.

3.2. Feature Extraction

The utterances in Dataset-2 were split into shorter ones when
they contained silence. The f0 contours were extracted from
the audio files using the auto-correlation method of Praat [17]
with a time step of 10 ms. The preferred values of TargetOpti-
mizer were set to m = 0, τ = 20 ms and b to the average pitch
of the utterances. We selected 1000 utterances from Dataset-
2 for optimizing the hyperparameters of TargetOptimizer with
the grid search method. With the least root mean square er-
ror (RMSE) between the original pitch contour and reproduced
one as the metric and the consideration of reasonable distribu-
tions of estimated qTA parameters, we obtained the best config-
uration of TargetOptimizer: 0.01 s2/st2 for wm, 0.01 st−2 for
wb, and 5 s−2 for wτ . Subsequently, the qTA parameters of all
utterances for both corpora were extracted. The utterances in
Dataset-2 (∼ 5.4%) were excluded when the TargetOptimizer
did not converge during optimization or the RMSE was greater
than 1.5 semitones. The final Dataset-2 contained 5027 Tone
1s, 5749 Tone 2s, 5620 Tone 3s, 8064 Tone 4s, and 3479 Tone
5s.

The averaged TAM parameters extracted for the four lexical
tones in Dataset-1 are listed in Table 1. The slope characterized
the asymptotic direction of pitch contour for each tone, which is
consistent with the finding by Prom-on et al. [12]. An interest-
ing phenomenon happened to the offset value. The high pitch
offset of Tone 4 is consistent with the finding of Xu [15] where
this tone is the highest among the four tones in Mandarin. To
examine whether four tones are contrastive with each other from
statistical point of view, we conducted the multivariate analysis
of variance (MANOVA) with three qTA parameters as the de-

pendent variables and tone types as the independent variables.
The results showed significant differences of qTA parameters
for each tone pair, suggesting the possibility of using them for
tone recognition.

Table 1: Averaged TAM parameters for four lexical tones in
Dataset-1 (standard deviations in parenthesis).

Tone type Slope Offset Time constant

Tone 1 1.40 (4.97) 91.90 (7.32) 19.64 (1.46)
Tone 2 15.12 (9.30) 85.71 (7.07) 20.09 (1.93)
Tone 3 −14.08 (17.21) 87.44 (6.87) 21.60 (3.51)
Tone 4 −20.30 (11.66) 95.45 (7.32) 19.57 (1.78)

The same procedure was also applied to Dataset-2. An ex-
ample of modeling the f0 contour of a continuous Chinese ut-
terance with TargetOptimizer is shown in Figure 3. The blue
dotted loci are the raw f0 samples extracted with Praat. The
green dotted contour is reproduced via TargetOptimizer with
the estimated pitch targets represented by red solid lines. As we
can see from Figure 3, although the surface f0 contour of each
syllable varies a lot in the beginning part, the end of it gradually
approximates its underlying pitch target. Therefore, expressing
the variable with the parameters of underlying pitch targets may
help distinguish tones from each other.

Moreover, for Dataset-2, we compared the TAM modeling
with two other ways of representing pitch information. The first
was to use statistical f0 parameters, including the onset, off-
set, maximal, minimal, mean, median, and standard deviation
values. To reflect the transition information from/to neighbour-
ing syllables, we incorporated the offset values of its preceding
syllable and the onset value of its succeeding syllable. These
values were subtracted by the sentence mean f0 value so as
to alleviate the influence of gender pitch difference. Likewise,
the offset of TAM was changed to a relative value in this way.
The second was to first conduct the Discrete Cosine Transform
(DCT) on the raw f0 values of each syllable, and then select the
first three coefficients to characterize the pitch contour of this
syllable. As the neutral tone has no specific pattern and varies
greatly with contextual tone types, the pitch information can not
be fully represented by the above three kinds of methods. Ac-
cording to the report by Chen et al. [18], the neutral tone is
significantly shorter than lexical tones. Therefore, we included
the duration as a complementary feature to the above three sets
of parameters.

nin2 yao4 duo1 shao3

Tone 2 Tone 4 Tone 1 Tone 3

parameter target[1]

slope [st/s]

offset [st]

tau [ms]

duration [s]

target[2] target[3] target[4]

60.000 -50.218 5.089 -21.515

88.204 103.760 98.257 92.174

14.052 20.127 8.460 24.952

0.132 0.190 0.212 0.296

Figure 3: Illustration of modeling f0 contour with Target-
Optimizer (With the utterance “nin2 yao4 duo1 shao3?” spoken
by a female speaker as an example).
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3.3. Tone recognition

Using SVM classifiers, we examined the capability of qTA
parameters for tone recognition on Dataset-1, which was di-
vided into a training subset and a testing subset with a ratio
of 3:1. Using the LIBSVM library [19], we trained an RBF
kernel based SVM classifiers with grid search for hyperparam-
eters (the cross-product of exponentially growing sequences of
C ∈ {2−5, 2−3, ..., 215} and γ ∈ {2−15, 2−13, ..., 23}). Here,
we developed three systems contrasted by the input features
used. The recognition results for the four lexical tones are listed
in Table 2. The first used the sampled 30 dimensional raw f0
points, which was taken as the targeted performance system.
The qTA parameters (m, b, and τ ) only represent the pitch tar-
gets of tones. The transition status from the preceding syllable
is also required to generate the pitch contours of the current
syllable according to the TAM model, and then expected to be
helpful to tone recognition. Therefore, the third system further
incorporated the onset value of each syllable upon the second
system. The results showed that the pitch targets conveyed most
information for distinguishing tones. With the additive onset
value, the parameters of pitch targets obtained similar perfor-
mance, compared to the way of representing pitch contour by
30 f0 samples.

Table 2: SVM classifier based tone recognition accuracy on
Dataset-1.

Features used Accuracy

sampled 30-dim f0 points 97.42%
3-dim qTA parameters 90.67%

3-dim qTA parameters plus onset value 97.07%

Using BLSTM and SVM classifiers, we compared the ca-
pability of three kinds of features. The BLSTM based tone clas-
sifiers were implemented with PyTorch [20]. The models were
trained for 50 epochs in which weights and bias were updated
by the Adam optimization algorithm [21]. For each miniBatch,
we sorted all utterances by their lengths (i.e., the number of syl-
lables) in a descending order. Then, we padded zeros to short
utterances so that all utterances had the same length. Hyper-
parameters for BLSTM neural networks were optimized with
the grid search strategy from all combinations of other hyper-
parameters values (the number of layers: {1, 2, 3}, the number
of units per layer: {300, 400, 500, 600}, the batch size: {16,
32, 64, 128}, the initial learning rate: {0.001, 0.002, 0.005,
0.01, 0.015}). To use more samples during hyperparameters
optimization of BLSTM classifiers, we adopted the repeated
random sub-sampling validation where we randomly split the
whole dataset into training and validation data (80% vs. 20%),
which were used for fitting and assessing the model, respec-
tively. We repeated this procedure five times for each set of
hyperparameters and averaged the accuracies of all repetitions.
The results of recognition accuracy on Dataset-2 are listed in
Table 3. Syllable duration was used by all systems, thus not
explicitly differentiating the systems.

As shown in Table 3, the statistical f0 features had the gen-
eral better performance, especially among the SVM based clas-
sifiers. This may be explained by the fact that they explicitly
included information from neighbouring syllables, i.e. the off-
set of the preceding tones and the onset of the succeeding tones.
The BLSTM based systems outperformed all SVM based sys-
tems, indicating its advantages of modeling contextual tonal
variation. The long-term memory of BLSTM may deal with

Table 3: Tone recognition accuracy on Dataset-2.

Classifier and features No. of features Accuracy

SVM + DCT coefficients 4 54.53%
SVM + qTA parameters 4 55.76%

SVM + f0 statistics 10 64.08%
BLSTM + DCT coefficients 4 78.58%
BLSTM + qTA parameters 4 84.32%

BLSTM + f0 statistics 10 85.27%
BLSTM + f0 + qTA parameters 13 87.56%

the variation due to the intonation while its short-term mem-
ory may tackle the variation due to influences of neighbouring
tones. Specifically, the bidirectional attribute of BLSTM may
account for the carry-over and anticipatory effects. To exam-
ine whether the information that the qTA parameters represent
is also included in the statistical f0 parameters, we developed
another system by incorporating both of them. The further im-
provement indicates that the qTA parameters do contain addi-
tive information. For example, the τ of qTA determines how
quickly the transition from one syllable to the next completes,
which is not reflected by the statistical f0 parameters. The con-
fusion matrix for the best system is shown in Table 4.

Table 4: Confusion matrix for tone recognition on Dataset-2
using BLSTM classifier and 13-dim combined parameters.

Tone 1 Tone 2 Tone 3 Tone 4 Tone 5

Tone 1 85.3% 3.93% 2.28% 6.48% 2.03%
Tone 2 2.77% 86.67% 4.2% 3.84% 2.53%
Tone 3 1.76% 3.2% 87.03% 5.34% 2.66%
Tone 4 3.81% 3.53% 3.18% 88.1% 2.38%
Tone 5 2.82% 4.33% 4.48% 5.47% 82.90%

4. Conclusions and future work
In the present study, we evaluated the the effectiveness of ap-
plying TAM to Chinese tone modeling and recognition on two
datasets. The experiments showed that, with only three dimen-
sions, the qTA parameters of pitch target can convey distinc-
tive information for tone recognition. Compared to the SVM
model, the BLSTM significantly increased the tone recognition
accuracy, indicating its effectiveness on modeling temporal se-
rial data. The proposed method was validated on two speech
datasets containing human-labeled syllable segmentation. Al-
though the qTA model proved to be non-sensitive to boundaries
[14], it is necessary to further verify the approach using auto-
matically derived segmentation, such as from phoneme bound-
ary detection. The hyperparameters of TargetOptimizer were
optimized with the goal of least RSME, which may drive the
reproduced pitch contours to overfit the original ones. The un-
derlying pitch targets estimated by such hyperparameters may
not be the optimal for tone recognition. Future work will also be
focused on accurately estimating the underlying pitch targets.
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