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Abstract 

Many theories assume that speech perception is done by first 

extracting features like the distinctive features, tonal features or 

articulatory gestures before recognizing phonetic units such as 

segments and tones. But it is unclear how exactly extracted 

features can lead to effective phonetic recognition. In this study 

we explore this issue by using support vector machine (SVM), 

a supervised machine learning model, to simulate the 

recognition of Mandarin tones from F0 in continuous speech. 

We tested how well a five-level system or a binary distinctive 

features system can identify Mandarin tones by training the 

SVM model with F0 trajectories with reduced temporal and 

frequency resolutions. At full resolution, the recognition rates 

were 97% and 86% based on the semitone and Hertz scales, 

respectively. At reduced temporal resolution, there was no clear 

decline in recognition rate until two points per syllable. At 

reduced frequency resolution, the recognition rate dropped 

rapidly: by the level with 5 bands, the accuracy was around 40% 

based on both Hertz and semitone scales. These results suggest 

that intermediate featural representations provide no benefit for 

tone recognition, and are unlikely to be critical for tone 

perception.  

Index Terms: speech perception, distinctive features, tone, 

SVM 

1. Introduction 

How exactly humans perceive speech is still a mystery. It is 

widely assumed that multiple acoustic cues are needed for the 

perception of segmental and suprasegmental units, and a major 

goal of phonetics is to find out which cues are relevant for the 

recognition of phonetic categories [1], [2]. For example, 

formants may provide primary cues for vowel categories; VOT 

is useful for distinction between voiced and voiceless plosives; 

pitch contours are useful for differentiating lexical tones, etc. 

Those cues are then combined to identify phonetic or phonemic 

categories. What has rarely been contemplated, however, is 

exactly how those cues are used to achieve the recognition of 

those categories from continuous speech. In this paper we 

explore the idea that speech perception cannot be adequately 

understood unless the role of features and cues is reconsidered.  

A major source of the cue-based view of speech perception 

is the classic theory of distinctive features [3]. The theory 

started as an attempt to economize the representation of 

phoneme categories by minimizing the number of acoustic 

properties needed to classify segments [3]. A system was 

proposed with only 12 features = pairs, each for making a 

binary contrast based predominantly on acoustic properties [4], 

[5]. Subsequently, an alternative system was proposed by 

Chomsky and Halle with a much larger set of binary features 

which are predominantly based on articulatory properties [6]. 

Further development of the feature theory also attempted to 

relax the binary assumption by allowing multivalued features 

[6], [7]. Consistent with the feature theory is the widely 

accepted idea that feature or cue extraction is the key to speech 

perception [8], [9]. This is true of both the auditory theory and 

motor theory of speech perception, two competing frameworks 

that have been dominating this area of research. 

The auditory theory assumes that it is the auditory 

properties of phonetic events that listeners attend to [10]. The 

motor theory, in contrast, assumes that speech perception is 

achieved with an articulatory recognition phase before the 

identification of words [11], [12] and [13]. Both theories, 

therefore, assume that an intermediate phase is needed in 

perception in which features are extracted from continuous 

speech signal. They differ from each other only in terms of 

whether the extracted features are primarily auditory or 

articulatory in nature. Both theories, as well as many other 

conceptual frameworks of speech perception, share in common 

what we would refer to as the feature-to-percept assumption. 

None of these theories, however, offers proposals about how 

exactly the features are extracted, or how the detected features 

are processed to identify or discriminate the sound categories.  

There have been attempts to use features in automatic 

speech recognition systems. For example, the landmark-based 

approach tries to extract distinctive features from around 

acoustic landmarks such as consonant closure, which can then 

be used to make choices between candidate segments [14], [15] 

and [16]. In most cases, however, systems using landmarks or 

distinctive features are knowledge-based, and the detected 

features are used only as one kind of features among other 

linguistic and acoustic features to recognize phonemes [17], 

[18]. To our knowledge, there is no speech recognition system 

fully based on extracted distinctive features. There have also 

been systems that perform speech recognition with the help of 

articulatory features, e.g., [18]. But again, we are not aware of 

any system that can recognize speech segments based on 

articulatory gestures extracted from acoustic signals.  

The distinctive feature theory has also influenced research 

on lexical tones. Binary tone features were introduced by [19], 

although its usefulness in phonological analysis has been 

questioned [20], [21]. A more broadly accepted practice is to 

use a five-level system proposed by Chao [22]. This system 

moves away from the binary assumption of the classical feature 

theory, but it nevertheless assumes that only 5 discrete levels 

are needed to distinguish all the tones of a language. Also 

different from the classical feature theory, the five-level system 

allows representation of pitch change over time by representing 

each tone with two temporal points. As an example, the four 

lexical tones of Mandarin are represented as 55—tone1, 35—

tone 2, 214—tone 3, and 51—tone 4, where a larger number 

indicates a higher pitch. These numerical forms are abstracted 

from the original pitch forms. There are also alternative 
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schemes that try to represent tone contours [23], [24] and [25], 

but they also focus on abstracting pitch contours into several 

discrete levels. What is common to all these tone representation 

schemes is the implication that to perceive a tone, listeners need 

to first derive at a discrete form of representation, and then use 

this kind of representation to identify the tone. What has not 

been considered is the possibility that a tone could be identified 

by directly processing fully continuous F0 contours, without 

extracting any discrete representations. In this way, there is no 

need to determine, e.g., for each of the discrete temporal 

locations, what is the pitch level that is also discrete. 

The aim of this study is to test these two tone perception 

hypotheses by comparing the performance of computation 

modeling of tone recognition using either fully continuous F0 

contours, or contours with varying degrees of reduction of 

resolution. The resolution reduction is a way to simulate feature 

extraction, based on the assumption that a limited set of discrete 

levels and temporal locations are sufficient to fully represent 

the tones of a language. While resolution reduction may not be 

the best way to simulate feature extraction, there is lack of 

proposal from those who believe features are necessary on how 

exactly they can be extracted. The computational model used in 

this study is SVM. 

2. Method 

2.1. Support Vector Machine (SVM) 

SVM is a supervised machine learning model developed for 

binary classification tasks involving calculating Euclidean 

distances in the parameter space. In the application of SVM, all 

the samples (sequences of n f0) are converted to n-dimensional 

vectors and labeled. The weight 𝑊 is a combination of a subset 

of the training examples and show how each dimension of the 

vectors is used in the classification process. The vectors (𝑥) in 

this subset are named support vectors.  A simple functional 

margin can be: 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑊𝑇𝑥 + 𝑏), where b is a constant. 

In our experiment, one F0 contour is one sample consisting of 

30 sample points, and treated as a 30-dimention vector. The 

classification is done with the LibSVM tool [26] with RBF 

kernel. It generalizes the binary classification to a n-class 

classifier that splits the task into n(n−1)/2 binary tasks and the 

solutions are combined by a voting strategy [27].  

2.2. Simulation of feature extraction 

For any highly abstract features to work, one of the first critical 

steps is to extract them from observation by identification and 

naming. This is by no means a trivial task, and its effectiveness 

can be shown only in terms of the ultimate rate of recognition 

of the phonetic category. Alternatively, we can partially 

simulate the effect of feature extraction by reducing signal 

resolution toward the level specified by particular feature 

system. For the commonly used 5-level tone representation 

system mentioned earlier, this would mean to a) reduce 

temporal resolution to 2 points/tone, and b) reduce frequency 

resolution to 5 levels/tone. 

The data were syllable-sized F0 contours produced by four 

female and four male Mandarin speakers [28]. Each stimulus 

corresponds to a syllable in a disyllabic “mama” produced in a 

carrier sentences with either high or low pre-f0 value and post-

f0 value. Each token is a 30 equidistant (hence time-normalized) 

discrete points vector taken from either the first or second 

syllable of a disyllabic tone sequence in the middle position of 

a carrier sentence. There was no separation of the tokens from 

the first and second syllables, thus leaving the information of 

syllable position in word/phrase unrepresented. Two types the 

raw data were used, F0 in Hertz and semitones. The latter was 

converted from Hertz with the following equation: 

𝑠𝑒𝑚𝑖𝑡𝑜𝑛𝑒 = 𝑙𝑜𝑔2(𝑓0) ∗ 12    (1) 

where the reference F0 is assumed to be 1 Hz for all speakers.  

Note that this kind of raw data retains most of the individual 

differences in pitch height, particularly between the female and 

male speakers, as can be clearly seen in Figure 1 and 2 which 

show plots of F0 contours in Hertz and semitone, respectively. 

  

Figure 1: Mean time-normalized syllable-sized F0 contours 

of four Mandairn tones, averaged separately for female and 

male speakers. 

 

  

Figure 2: Mean time-normalized syllable-sized semitone 

contours of four Mandairn tones, averaged separately for 

female and male speakers. 

There were a total of 1408 tokens of Tone 1 (high-level), 

1408 tokens of Tone2 (rising), 1232 tokens of Tone 3 (low), and 

1408 tokens of Tone 4 (falling). The number of tokens was 

fewer for Tone 3 because we removed those of the first syllable 

followed by another Tone 3 to circumvent the problem of the 

well-known tone sandhi rule, which makes the first Tone 3 to 

closely resemble Tone 2 [22], [28]. The whole dataset was then 

divided into a training subset and a testing subset, with a ratio 

of 2:1.  

2.2.1. Reduction of temporal resolution 

As mentioned before, the widely used featural system of the 

four Mandarin tones in connected speech (which differs slightly 

from their canonical forms in isolation) represents each of them 

with two discrete scales, with 2 temporal specifications and 5 

frequency specifications: 55 for Tone1, 35 for Tone 2, 21 for 

Tone 3, and 51 for Tone 4. Following this scheme, the temporal 

resolution can be reduced down to 2 points/tone. To give the 
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feature theory the benefit of the doubt, we have assumed that 

after extracting the theory-specified number of points, 

interpolations are applied to link up those points to form 

intermediate featural contours, as illustrated in Figure 3. These 

featural contours were then used as the testing data against the 

tone classifiers trained with full F0 contours (i.e., those with 30 

points/tone on a continuous frequency scale). In order to see 

how the performance of tone recognition may change gradually 

as a function of temporal resolution reduction, we also extracted 

varying number of equidistant points along the F0 contours. For 

all reduced temporal resolutions, linear interpolations were 

applied to link up adjacent points. The newly synthesized 

samples are the testing data. 

2.2.2. Reduction of frequency resolution 

The reduction of frequency was done by fitting the F0 points 

(with or without reduced temporal resolution) into different 

number of fixed bands to form the testing data. The training 

data were again the original vectors. And like for the temporal 

dimension, in order to see how the performance of tone 

recognition may change gradually as a function of frequency 

resolution reduction, a varying number of bands were used. 

 

Figure 3: F0 contours in semitones with various levels of 

reduction of temporal and frequency resolutions. (In the legend, 

np refers to n points and mb refers to m bands after reduction). 

2.3. Experimental set up 

The experiment used F0 contours of the four Mandarin 

tones with full resolution to train an SVM model, which was 

then used to classify the tonal categories of contours with 

varying levels of resolution reduction, as shown in Table 1. 

Thus, there were three experimental conditions, all with full 

resolution as the reference condition: 

1. Reduced temporal resolution alone; 

2. Reduced frequency resolution alone;  

3. Reduce temporal and frequency resolution combined. 

 

 

Table 1: Levels of resolution reduction.  

No. of temporal points No. of frequency bands 

30 Full 

20  40 

15 18 

10 9 

5 5 

3 2 

2  

 

In total, there were 7*6=42 trials for contours in Hertz and 

42 trials for contours in semitones. 

3. Result 

3.1. Effect of reduced temporal resolution  

As shown in Figure 4, at full resolution, the error rates were low, 

at 2.6% for contours in semitones and 16% for contours in Hertz. 

The lower rate of contours in Hz is unsurprising, as the 

logarithmic conversion in calculating semitones has effectively 

normalized the vertical span of the pitch range, with only 

individual differences in pitch height still retained. 

As temporal resolution reduced, the rate of tone recognition 

remains high until there were only two temporal points left. 

Note that, two temporal points per tone is exactly what most 

featural tonal representations assume to be adequate. 

 
Figure 4: Tone recognition rate as a function of temporal 

resolution.  

 

Figure 5: Tone recognition rate as a function of frequency 

resolution. 

3.2. Effect of reduced frequency resolution  

As shown in Figure 5, tone recognition rate is more sensitive to 

reduction in frequency resolution than to temporal resolution. It 

starts to drop at 40 bands, and the decline is faster for contours 

in Hertz than for those in semitones. By 5 bands, the recognition 
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rates have dropped below 40% for contours on both frequency 

scales. 

3.3. Effect of reduced temporal and frequency resolution 

combined 

As shown in Figures 6 and 7, when temporal and frequency 

resolutions were reduced at the same time, only the effect of 

frequency resolution can be clearly seen, as the recognition 

rates are largely the same across different temporal resolutions, 

except for the two-point condition which started low even with 

full frequency resolution. The only difference between the two 

figures are that a) a major drop occurred between 37 and 18 

bands for contours in Hertz (Figure 6) while a major drop 

occurred between 18 and 9 bands for contours in semitones 

(Figure 7), and b) the rate is overall lower for the Hertz scale 

than the semitone scale.  

 
Figure 6: Tone recognition rate as a function of both 

temporal and frequency resolution on a Hertz scale. 

 
Figure 7: Tone recognition rate as a function of both 

temporal and frequency resolution based on a semitone scale 

4. Discussion 

The experimental results have shown that at full data resolution, 

F0 contours both in Hertz and in semitones can achieve high 

tone recognition rates (86% and 97%, respectively). Although 

similar recognition rates were already shown in a previous 

study using the same corpus [29], the performance is not trivial, 

as these tones were produced in fluent connected speech in 

many different tonal contexts and two syllable positions [28], 

yet in the present study no contextual or positional information 

is used as input features during training and testing, contrary to 

the common practice in speech technology applications [30], 

[31] and [32]. This means that, despite the variability, tones 

produced in contexts by speakers of both genders still have 

enough in common to allow a pattern recognition algorithm 

(SVM) to accurately recognize the tonal categories. More 

importantly, given that the ultimate goal of tone recognition is 

the recognition of tones, no intermediate steps are needed to 

first extract “economical” tonal features before recognizing the 

tones.  

Yet potential benefits of tonal features cannot be ruled out 

until it is tested, which is preliminarily done in the present study 

by reducing either temporal resolution or frequency resolution 

or both from the raw F0 data. No benefits, however, were seen 

in terms of improved tone recognition rate. Instead, with 

reduced temporal resolution, the performance did not change 

much until the number of F0 points were reduced to two, when 

the recognition rates were dropped to 51.2% and 64.2% for F0 

contours in Hertz and semitones, respectively. Interestingly, 

two pitch specifications per tone is exactly what is assumed by 

the widely accepted featural representations of Mandarin tones 

[19], [22] and [33]. With reduced frequency resolution, tone 

recognition rate dropped quickly. The decline was already 

apparent from full resolution to around 40 frequency bands for 

both Hertz and semitone scales. Then a significant drop to 

below 50% occurred by 18 bands for the Hertz scale and 9 

bands for the semitone scale, respectively. For both scales, 

therefore, the recognition rates are already at a level that no 

theory would consider as viable. When there are only five 

frequency bands, i.e., at the level of the widely accepted five-

level feature system, the recognition rates were 33% for Hertz 

and 36% for semitone scales.  

It could be argued that the five-level tone scale is supposed 

to represent the pitch range of individual speakers, and that is 

why there is often claimed to be a need to first normalize the 

pitch range of all speakers by applying a Z-score conversion to 

[34], [35]. But for real life speech perception, one may wonder 

how listeners can perform such pitch range normalization when 

they have heard just one or a few utterances from a speaker? 

Furthermore, if, as shown in the present study and in [29] that 

tone recognition can be achieved at a high accuracy without 

speaker normalization as long as full resolution of the raw data 

is retained, why should there still be a need to extract the 

features? In fact, even the high tone recognition rate achieved 

with full resolution in the present study might be better than real 

life perception, as the stimuli used did not contain adverse 

factors like consonantal perturbation of F0 [36], intonational 

confounds [37], etc. This would make it even more important 

that as little information as possible is discarded from the raw 

data in perception before a tone is actually recognized.  

5. Conclusion 

We have shown that syllable-sized continuous F0 contours with 

full resolution can be used to train a SVM model to achieve high 

tone recognition rates, without extracting intermediate features. 

We have further demonstrated that reducing temporal and 

frequency resolution from the contours contour would result in 

reduced rate of tone recognition. By the time the resolution is 

equivalent to the widely used five-level, two-point tone 

representation, the recognition rate had dropped to around 40%. 

These findings pose serious questions about what we would call 

the feature-to-percept assumption. As an alternative, we would 

like to suggest that raw acoustic signals can be processed 

directly to recognize phonetic categories without explicitly 

extracting intermediate features. Observations of the role of 

certain features are useful only for descriptive purposes. 
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