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Off-Policy Evalua#on:  
Answering the “what-if” ques#on

•  Targeted	adver<sement	

•  A	“policy”	decides	which	ad	to	show	based	on	“context”	
•  Then	the	user	may	click	or	not	click	
•  The	click-through	rate	measures	how	good	the	policy	is	

• What	if	I	ran	a	different	policy	instead?	
•  a.k.a.,	Counterfactual	reasoning	
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Many applica#ons


•  For	safe	policy	deployment	
•  For	policy	op<miza<on	
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Contextual bandits


•  Contexts:		
•  																																																			 	drawn	iid,	possibly	infinite	domain	

•  Ac<ons:		
•  							 	 	 	Taken	by	a	randomized	“Logging”	policy			

•  Reward:	
•  	 	 	 	 									Revealed	only	for	the	ac<on	taken			

•  Value:			
•  		

•  We	collect	data	 	 	 	by	the	above		processes.	

•  What	if	we	use	a	different	policy									(the	“Target”	policy)?	
•  How	do	we	es<mate	its	value?	

ai ⇠ µ(a|xi)
x1, ..., xn ⇠ �

ri ⇠ D(r|xi, ai)

⇡

(xi, ai, ri)
n
i=1

v

µ = E
x⇠�

E
a⇠µ(·|x)ED

[r|x, a]
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Importance sampling/Inverse 
propensity scoring


Pros:	
•  No	assump<on	on	rewards	
•  Unbiased	
•  Computa<onally	efficient	

Cons:	
•  High	variance	when	the	
weight	is	large	

Importance	weights	
(Horvitz	&	Thompson,	1952)	

v̂

⇡
IPS =

1

n

nX

i=1

⇡(ai|xi)

µ(ai|xi)
ri

=:
⇢ i
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Model-based approach

•  Fit	a	regression	model	of	the	reward	

•  Then	for	any	target	policy		

r̂(x, a) ⇡ E(r|x, a)

v̂

⇡
DM =

1

n

nX

i=1

X

a2A
r̂(xi, a)⇡(a|xi)

Pros:	
•  Low-variance.		
•  Can	evaluate	on	unseen	
contexts	

Cons:	
•  Oaen	high	bias	
•  The	model	can	be	wrong/
hard	to	learn	

using	the	data	
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Variants and combina#ons


• Modifying	importance	weights:	
•  Trimmed	IPS	 	(Bofou	et.	al.	2013)	
•  Truncated/Reweighted	IPS		(Bembom	and	van	der	Laan,2008)	

• Doubly	Robust	es<mators:	
•  A	systema<c	way	of	incorpora<ng	DM	into	IPS	
•  Originated	in	sta<s<cs	(see	e.g.,	Robins	and	Rotnitzky,	1995;	
Bang	and	Robins,	2005)	

•  Used	for	off-policy	evalua<on	(Dudík	et	al.,	2014)	
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Many es#mators are proposed.  
Are they op#mal? How good is good 
enough?


In	this	work,	we	formally	address	these	problems.		

1.  Minimax	lower	bound:	IPS	is	op<mal	in	the	
general	case.	

2.  A	new	es<mator	---	SWITCH	---	that	can	be	even	
befer	than	IPS	in	some	cases.	
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• Minimax	theory	
•  Find	an	es<mator	that	works	well	for	ALL	problem	
within	a	class	of	problems.		

•  An	es<mator		
•  Minimax	risk	/	rate:	

•  Fix	context	distribu<on	and	policies	

•  A	class	of	problems		=		a	class	of	reward	distribu<ons.	

What do we mean by “op#mal”?


v̂ : (X ⇥A⇥ R)n ! R

(�, µ,⇡)

inf
v̂

sup
a class of problems Taken	over	data	~		µ
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What do we mean by “op#mal”?


•  The	class	of	problems:	(generalizing	Li	et.	al.	2015)	

	
	
•  The	minimax	risk	

[Cassel et al., 1976, Robins and Rotnitzky, 1995], were recently used for off-policy value estimation in the
contextual bandits problem [Dudík et al., 2011, 2014] and reinforcement learning [Jiang and Li, 2016]. These
also provide error estimates for the proposed estimators, which we will compare with the lower bounds that
we will obtain. The doubly robust techniques also have a flavor of incorporating existing reward models,
an idea which we will also leverage in the development of the SWITCH estimator in Section 4. We note
that similar ideas were also recently investigated in the context of reinforcement learning by Thomas and
Brunskill [2016].

3 Limits of off-policy evaluation

In this section we will present our main result on lower bounds for off-policy evaluation. We first present the
minimax framework to study such problems, before presenting the result and its implications.

3.1 Minimax framework

Off-policy evaluation is a statistical estimation problem, where the goal is to estimate v

⇡ given n iid samples
generated according to a policy µ. We study this problem in a standard minimax framework and seek to
answer the following question. What is the smallest mean square error (MSE) that any estimator can achieve
in the worst case over a large class of contextual bandit problems. As is usual in the minimax setting, we
want the class of problems to be rich enough so that the estimation problem is not trivialized, and to be small
enough so that the lower bounds are not driven by complete pathologies. In our problem, we make the choice
to fix �, µ and ⇡, and only take worst case over a class of reward distributions. This allows the upper and
lower bounds, as well as the estimators to adapt with and depend on �, µ and ⇡ in interesting ways. The
family of reward distributions D(r | x, a) that we study is a natural generalization of the class studied by Li
et al. [2015] for multi-armed bandits.

To formulate our class of reward distributions, assume we are given maps R
max

: X ⇥A ! R
+

and
� : X ⇥A ! R

+

. The class of conditional distributions R(�, R

max

) is defined as

R(�, R

max

)

:

=

n

D(r|x, a) : 0  E
D

[r|x, a]  R

max

(x, a) and

Var

D

[r|x, a]  �

2

(x, a) for all x, a
o

.

Note that � and R

max

are allowed to change over contexts and actions. Formally, let an estimator be any
function v̂ : (X ⇥A⇥ R)n ! R that takes n data points collected by µ and outputs an estimate of v⇡. The
minimax risk of off-policy evaluation over the class R(�

2

, R

max

) is defined as

R

n

(⇡;�, µ,�, R

max

)

:

= inf

v̂

sup

D(r|x,a)2R(�,R

max

)

E
⇥

(v̂ � v

⇡

)

2

⇤

. (3)

Recall that the expectation here is taken over the n samples collected according to µ, along with any
randomness in the estimator. The main goal of this section is to obtain a lower bound on the minimax risk.
To state our bound, recall that ⇢(x, a) = ⇡(a | x)/µ(a | x) is an importance weight at (x, a). We make the
following technical assumption on our problem instances, described by tuples of the form (⇡,�, µ,�, R

max

):

Assumption 1. There exists ✏ > 0 such that E
µ

⇥

(⇢R

max

)

2+✏

⇤

and E
µ

⇥

(⇢�)

2+✏

⇤

are finite.

This assumption is fairly mild, as it is only a slight strengthening of the assumption that E
µ

[(⇢R

max

)

2

]

and E
µ

[(⇢�)

2

] be finite, which is required for consistency of IPS (see, e.g., the bound on the variance of IPS
in Dudík et al. [2014], which assumes the finiteness of these second moments). Our assumption holds for
instance whenever the context space is finite and ⇡ cannot pick actions that receive zero probability under µ,
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Corollary 1. Under conditions of Theorem 1, for sufficiently small �
0

and large enough n:

inf

v̂

sup

D(r|a,x)2R(�

2

,R

max

)

E(v̂ � v

⇡

)

2

= ⇥



1

n

�

E
µ

[⇢

2

�

2

] + E
µ

[⇢

2

R

2

max

]

�

�

.

Comparison with the multi-armed bandit setting of Li et al. [2015] The most closely related prior
result was due to Li et al. [2015], who showed matching upper and lower bounds on the minimax risk for
multi-armed bandits. The somewhat surprising conclusion of their work was the sub-optimality of IPS, which
might appear at odds with our conclusion regarding IPS above. However, this difference actually highlights
the additional challenges in contextual bandits beyond multi-armed bandits. This is best illustrated in a
noiseless setting, where � = 0 in the rewards. This makes the multi-armed bandit problem trivial, we can
just measure the reward of each arm with one pull and find out the optimal choice. However, there is still
a non-trivial lower bound of ⌦(E

µ

[⇢

2

R

2

max

]/n) in the contextual bandit setting, which is exactly the upper
bound on the MSE of IPS when the rewards have no noise.

This difference crucially relies on �

0

being suitably small relative to the sample size n. When the number
of contexts is small, independent estimation for each context can be done in a noiseless setting as observed
by Li et al. [2015]. However, once the context distribution is rich enough, then even with noiseless rewards,
there is significant variance in the value estimates based on which contexts were observed. This distinction is
further highlighted in the proof of Theorem 1, and is obtained by combining two separate lower bounds. The
first lower bound considers the case of noisy rewards, and is a relatively straightforward generalization of the
proof of Li et al. [2015]. The second lower bound focuses on noiseless rewards, and shows how the variance
in a rich context distribution allows the environment to essentially simulate noisy rewards, even when the
reward signal itself is noiseless.

4 Incorporating model-based approaches in policy evaluation

Amongst our twin goals of optimal and adaptive estimators, the discussion so far has centered around the
optimality of the IPS estimators in a minimax sense. However, real datasets seldom display worst-case
behavior, and in this section we discuss approaches to leverage additional structure in the data, when such
knowledge is available. We begin with the necessary setup, before introducing our new estimator and its
properties. Throughout this section, we drop the superscript ⇡ from value estimators, as the evaluation policy
⇡ is fixed throughout this discussion.

4.1 The need for model-based approaches

As we have seen in the last section, the model-free approach has a information-theoretic limit that depends
quadratically on R

max

, � and importance weight ⇢. This is good news in that it implies the existence of
an optimal estimator–IPS. However, it also substantially limits what policies can be evaluated, due to the
quadratic dependence on ⇢. If µ(a | x) is small for some actions, as is typical when number of actions is
large or in real systems with a cost for exploration, the policies ⇡ which can be reliably evaluated cannot
put much mass on such actions either without resulting in unreliable value estimates. The key reason for
this limitation is that the setup so far allows completely arbitrary reward models—E[r | x, a] can change
arbitrarily across different actions and contexts. Real data sets are seldom so pathological, and often we
have substantial intuition about contexts and actions which obtain similar rewards, based on the specific
application. It is natural to ask how can we leverage such prior information, and develop better estimators
that improve upon the minimax risk in such favorable scenarios.
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= ⌦


1

n

⇣
Eµ[⇢

2�2] + Eµ[⇢
2R2

max

](1� Õ(n�
0

))
⌘�

• Our	main	theorem:	under	mild	condi<ons	

•  Subsumes	lower	bound	for	mul<-arm	bandit.	

Lower bounding the minimax risk

Corollary 1. Under conditions of Theorem 1, for sufficiently small �

0

and large enough n:

inf

v̂

sup

D(r|a,x)2R(�

2

,R

max

)

E(v̂ � v

⇡

)

2

= ⇥



1

n

�

E
µ

[⇢

2

�

2

] + E
µ

[⇢

2

R

2

max

]

�

�

.
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µ
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proof of Li et al. [2015]. The second lower bound focuses on noiseless rewards, and shows how the variance
in a rich context distribution allows the environment to essentially simulate noisy rewards, even when the
reward signal itself is noiseless.

4 Incorporating model-based approaches in policy evaluation

Amongst our twin goals of optimal and adaptive estimators, the discussion so far has centered around the
optimality of the IPS estimators in a minimax sense. However, real datasets seldom display worst-case
behavior, and in this section we discuss approaches to leverage additional structure in the data, when such
knowledge is available. We begin with the necessary setup, before introducing our new estimator and its
properties. Throughout this section, we drop the superscript ⇡ from value estimators, as the evaluation policy
⇡ is fixed throughout this discussion.

4.1 The need for model-based approaches

As we have seen in the last section, the model-free approach has a information-theoretic limit that depends
quadratically on R
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, � and importance weight ⇢. This is good news in that it implies the existence of
an optimal estimator–IPS. However, it also substantially limits what policies can be evaluated, due to the
quadratic dependence on ⇢. If µ(a | x) is small for some actions, as is typical when number of actions is
large or in real systems with a cost for exploration, the policies ⇡ which can be reliably evaluated cannot
put much mass on such actions either without resulting in unreliable value estimates. The key reason for
this limitation is that the setup so far allows completely arbitrary reward models—E[r | x, a] can change
arbitrarily across different actions and contexts. Real data sets are seldom so pathological, and often we
have substantial intuition about contexts and actions which obtain similar rewards, based on the specific
application. It is natural to ask how can we leverage such prior information, and develop better estimators
that improve upon the minimax risk in such favorable scenarios.
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Randomness	due	to	
	context	distribu<on	

Randomness	
in	reward	

Max	prob.	
of	a	single	x	

Li, Lihong, Rémi Munos, and Csaba Szepesvári. "Toward Minimax Off-policy Value 
Estimation." AISTATS. 2015. 



This implies that IPS is op#mal!


	
•  The	high	variance	is	required.		

•  In	contextual	bandits	with	large	context	spaces	and	non-
degenerate	context	distribu<on.	

•  Model-free	approach	is	fundamentally	limited.		
	
	
• Different	from	mul<-arm	bandit	

•  Li	et.	al.	(2015)	showed	that	in	k-arm	bandit,	IPS	is	
strictly	subop<mal.	

12	



The pursuit of adap#ve es#mators 


	

• Minimaxity:	perform	op<mally	on	hard	problems.	
• Adap<vity:	perform	befer	on	easier	problems.	

Easy	problems:	
e.g.		Linear	E(r|x,a)	
Smooth	E(r|x,a)	

Hard	problems	

The	class	of	all	contextual	bandits	problems	

mul<-arm	Bandit	

13	



Suppose we are given an oracle


•  Could	be	very	good,	or	completely	off.	
•  How	to	make	the	best	use	of	the	predic<ons?	

r̂(x, a)
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Why not just use doubly robust?


• Originated	in	sta<s<cs		
• Proposed	for	off-policy	evalua<on	previously:	
	
• We	show	that:	DR	can	be	as	bad	as	IPS	
• Does	not	adapt	even	with	perfect	oracle:	

Dudık, Langford and Li. "Doubly Robust Policy Evaluation and Learning.“ ICML-11. 
Jiang and Li. "Doubly Robust Off-policy Value Evaluation for Reinforcement Learning." ICML-2016. 

r̂(x, a) = E(r|x, a)

DR	can	suffer	from	high	variance	just	like	IPS 	

15	

(see	e.g.:	Robins	and	Rotnitzky,	
1995;	Bang	and	Robins,	2005)	

MSE(v̂
DR

)  1

n
(Eµ(⇢

2�2) + E⇡(R
2

max

))



v̂

⇡
IPS =

1

n

nX

i=1

⇡(ai|xi)

µ(ai|xi)
ri

For	each 	 	 	 			,	for	each	ac<on 	 	 					:	
	

	if	 	 	 	 	 	 	 					:	
	 	 	 	Use	IPS	(or	DR).	
	else:	
	 	 	 	Use	the	oracle	es<mator.			

SWITCH es#mator


• Recall	that	IPS	is	bad	because:	

•  SWITCH	es<mator:	
i = 1, ..., n a 2 A

⇡(a|xi)/µ(a|xi)  ⌧

16	

The	approach	is	related	to	MAGIC	es<mator	(Thomas	&	Brunskill,	2016),	but	with	
important	difference.	



2

n
E⇡[✏|⇢ > ⌧ ]2P⇡(⇢ > ⌧)2+

Error bounds for SWITCH


1)  Variance	from	IPS	(reduced	
trunca<on)	

2)  Variance	due	to	sampling	x.	
Required	even	with	perfect	
oracle	

	
3)  Bias	from	the	oracle.	

puts the DR estimator at one extreme end of the bias-variance tradeoff. Prior works have considered ideas
such as truncating the rewards, or importance weights when the importance weights get large (see e.g. Bottou
et al. [2013] for a detailed discussion), which can often reduce the variance drastically at the cost of a little
bias. We take the intuition a step further, and propose to estimate the rewards for actions differently, based
on whether they have a large or a small importance weight given a context. When importance weights are
small, we continue to use our favorite unbiased estimators, but switch to using the (potentially biased) reward
model on the actions with large importance weights. Here small and large are defined via some threshold
parameter ⌧ . Varying this parameter between 0 and 1 leads to a family of estimators which we call the
SWITCH estimators as they switch between a model-free and model-based approach.

We now formalize this intuition, and begin by decomposing the value of ⇡ according to importance
weights:

v

⇡

= E
⇡

[r] = E
⇡

[r1(⇢  ⌧)] + E
⇡

[r1(⇢ > ⌧)]

= E
µ

[⇢r1(⇢  ⌧)] + E
x⇠�

h

X

a2A
E
D

[r|x, a]⇡(a|x)1(⇢(x, a) > ⌧)

i

.

Conceptually, we split our problem into two. The first problem always has small importance weights, so we
can use unbiased estimators such as IPS or DR as before. The second problem, where importance weights are
large, is essentially addressed by DM. Writing this out leads to the following estimator:

v̂SWITCH =

1

n

n

X

i=1

[r

i

⇢

i

1(⇢
i

 ⌧)] +

1

n

n

X

i=1

X

a2A
r̂(x

i

, a)⇡(a|x
i

)1(⇢(x
i

, a) > ⌧). (9)

Note that the above estimator specifically uses IPS on the first part of the problem. We will mention an
alternative using the DR estimator for the first part at the end of this section. We first present a bound on the
MSE of the SWITCH estimator using IPS, for a given choice of the threshold ⌧ .

Theorem 2. Let ✏(a, x) := r̂(a, x)� E[r|a, x] be the bias of r̂ and assume r̂(x, a) 2 [0, R

max

(x, a)] almost
surely. Then for every n = 1, 2, 3, . . . , and for the ⌧ > 0 used in Equation 9, we have

MSE(v̂SWITCH)  2

n

n

E
µ

⇥�

�

2

+R

2

max

�

⇢

21(⇢  ⌧)

⇤

+E
µ

⇥

⇢R

2

max

1(⇢ > ⌧)

⇤

+E
µ

⇥

⇢✏

�

�

⇢ > ⌧

⇤

2

⇡(⇢ > ⌧)

2

o

,

where quantities R
max

, �, ⇢, and ✏ are functions of the random variables x and a, and we recall the use of ⇡
and µ as joint distributions over (x, a, r) tuples.

Remark 1. The proposed estimator is an interpolation of the DM and IPS estimators. By taking ⌧ =, we
get SWITCH coincides with DM while ⌧ ! 1 yields IPS. Several estimators related to SWITCH have been
studied in the literature, and we discuss a couple of them here.

• A special case of SWITCH uses r̂ ⌘ 0, meaning that all the actions with large importance weights are
essentially eliminated from consideration. This approach, with a specific choice of ⌧ was described
in Bottou et al. [2013] and will be evaluated in the experiments under the name Trimmed IPS.

• Thomas and Brunskill [2016] study a similar estimator in the more general context of reinforcement
learning. Their approach can be seen as using a number of candidate threshold ⌧ ’s and then evaluating
the policy as a weighted sum of the estimates corresponding to each ⌧ . They address the questions of
picking these thresholds and the weights in a specific manner for their estimator called MAGIC, and
we discuss these aspects in more detail in the following subsection.
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2

n
Eµ[(�

2 +R2

max

)⇢21(⇢  ⌧)]

2

n
E⇡[R

2

max

1(⇢ > ⌧)]+

(1)	

(2)	

(3)	



Error bounds for SWITCH


•  For	appropriately	tuned	``threshold’’	parameter,	SWITCH	is	

•  Independent	to	ρ	when	oracle	is	perfect.	

•  Minimax	when	oracle	is	horrible.	

•  Robust	to	large	importance	weight.	

•  Data	dependent	tuning	of	parameter?	Check	out	our	paper!	
•  Different	from	MAGIC	(Thomas	and	Brunskill, 2016)		

18	



Experiment setup


•  10	UCI	Classifica<on	data	sets	converted	to	bandits.	
•  Ac<on	is	to	predict	labels.	
•  Reward	is	{0,1},	depending	on	whether	the	ac<on	is	
correct.	

•  Follow	standard	setup	in		
•  (Beygelzimer	& Langford,	2009)	
•  (Grefon	et.	al.	2008)		
•  (Dudik	et.	al.	2011)	
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CDF of rela#ve MSE over 10 UCI 
mul#class classifica#on data sets.
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With addi#onal label noise
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Conclusion


•  IPS	is	op<mal.	
•  Need	to	go	beyond	the	model-free	approach.	

• DR	is	unsa<sfactory.	

• We	propose	an	new	es<mator:	SWITCH	
•  that	has	good	theore<cal	proper<es.	
•  performs	quite	well	in	prac<ce.	
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Thank you! Any ques#ons?
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Connec#ons and future work


•  Extension	to	reinforcement	learning		
•  Lower	bound	directly	applies	in	some	sense.	
•  SWITCH-DR	for	reinforcement	learning?	

•  Lower	bound	directly	applies	to	“mean	effect”	
es<ma<on.	

•  Basically	it	corresponds	to	a	different	“target	policy”.	
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• Moment	condi<ons:	

•  If	n	is	sufficiently	large	

The condi#ons for the main 
Theorem


Corollary 1. Under conditions of Theorem 1, for sufficiently small �
0

and large enough n:
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Comparison with the multi-armed bandit setting of Li et al. [2015] The most closely related prior
result was due to Li et al. [2015], who showed matching upper and lower bounds on the minimax risk for
multi-armed bandits. The somewhat surprising conclusion of their work was the sub-optimality of IPS, which
might appear at odds with our conclusion regarding IPS above. However, this difference actually highlights
the additional challenges in contextual bandits beyond multi-armed bandits. This is best illustrated in a
noiseless setting, where � = 0 in the rewards. This makes the multi-armed bandit problem trivial, we can
just measure the reward of each arm with one pull and find out the optimal choice. However, there is still
a non-trivial lower bound of ⌦(E

µ

[⇢

2

R

2

max

]/n) in the contextual bandit setting, which is exactly the upper
bound on the MSE of IPS when the rewards have no noise.

This difference crucially relies on �

0

being suitably small relative to the sample size n. When the number
of contexts is small, independent estimation for each context can be done in a noiseless setting as observed
by Li et al. [2015]. However, once the context distribution is rich enough, then even with noiseless rewards,
there is significant variance in the value estimates based on which contexts were observed. This distinction is
further highlighted in the proof of Theorem 1, and is obtained by combining two separate lower bounds. The
first lower bound considers the case of noisy rewards, and is a relatively straightforward generalization of the
proof of Li et al. [2015]. The second lower bound focuses on noiseless rewards, and shows how the variance
in a rich context distribution allows the environment to essentially simulate noisy rewards, even when the
reward signal itself is noiseless.

4 Incorporating model-based approaches in policy evaluation

Amongst our twin goals of optimal and adaptive estimators, the discussion so far has centered around the
optimality of the IPS estimators in a minimax sense. However, real datasets seldom display worst-case
behavior, and in this section we discuss approaches to leverage additional structure in the data, when such
knowledge is available. We begin with the necessary setup, before introducing our new estimator and its
properties. Throughout this section, we drop the superscript ⇡ from value estimators, as the evaluation policy
⇡ is fixed throughout this discussion.

4.1 The need for model-based approaches

As we have seen in the last section, the model-free approach has a information-theoretic limit that depends
quadratically on R

max

, � and importance weight ⇢. This is good news in that it implies the existence of
an optimal estimator–IPS. However, it also substantially limits what policies can be evaluated, due to the
quadratic dependence on ⇢. If µ(a | x) is small for some actions, as is typical when number of actions is
large or in real systems with a cost for exploration, the policies ⇡ which can be reliably evaluated cannot
put much mass on such actions either without resulting in unreliable value estimates. The key reason for
this limitation is that the setup so far allows completely arbitrary reward models—E[r | x, a] can change
arbitrarily across different actions and contexts. Real data sets are seldom so pathological, and often we
have substantial intuition about contexts and actions which obtain similar rewards, based on the specific
application. It is natural to ask how can we leverage such prior information, and develop better estimators
that improve upon the minimax risk in such favorable scenarios.
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Automa#c parameter tuning  


• Conserva<ve	approximate	MSE	minimizing.	
	
• Details:	

Remark 2. The MSE bound in Theorem 2 is easily interpreted. The first term is the MSE of IPS on the region
where it is used, while the second and third terms capture the variance and squared bias of DM on its region
respective. Consequently, our matches the result for IPS when ⌧ ! 1, meaning that the SWITCH estimators
are also minimax optimal when ⌧ is appropriately chosen. At the other extreme, we can consider the case
of ⌧ = 0 and a perfect reward predictor so that ✏ ⌘ 0. In this case, the MSE bound matches that of DM in
Equation 6. More generally, the estimators are robust to heavy-tails in the distribution of importance weights,
unlike both IPS and DR estimators.

Remark 3. The policy value in the region where the importance weights are small can be estimated using any
unbiased approach rather than just IPS. For instance, we can use the DR, giving rise to the estimator, which
we denote SWITCH-DR. For any reward estimator r̂0 to construct the DR estimator, we get
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(10)

Note that r̂ and r̂

0 need not be the same direct estimators. When they are indeed the same, v̂SWITCH-DR can be
rewritten as essentially a modified doubly robust estimator where all the importance weights above ⌧ are
clipped to zero, so that the importance weighted part of DR makes no contribution.

The analysis in Theorem 2 still applies, replacing the variance of IPS with that of DR from Dudík et al.
[2014]. Since no independence was required in our analysis between the IPS and the DM parts of the estimator,
the result is also robust to the use of a common data-dependent estimator r̂ = r̂

0 in SWITCH-DR (10).

4.3 Automatic parameter tuning

So far we have discussed the properties of the SWITCH estimators, assuming that the parameter ⌧ is chosen
well. On the other hand, the estimator can be as bad as DM in the worst-case if ⌧ is poorly chosen, as
evidenced by the bias term in Theorem 2. For the estimators to be useful in practice, it becomes essential to
have a procedure to select a good value of ⌧ . A natural criterion for selecting ⌧ would be to pick one that
minimizes the MSE of the resulting estimator. Since we do not know the precise MSE (as v⇡ is unknown), an
alternative is to minimize a data-dependent estimate for it. Recalling that the MSE can be written as the sum
of variance and squared bias, we estimate and bound the terms individually.

We can estimate the variance of the SWITCH estimator in a straightforward manner from the data. Let
Y

i

(⌧) denote the estimated value that ⇡ obtains on the data point x
i

according to the SWITCH estimator with
the threshold ⌧ , that is
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Since the x

i

are i.i.d., the variance of v̂SWITCH can be simply estimated as
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where the approximation above is clearly consistent since the random variables Y
i

are appropriately bounded
as long as the rewards are bounded, with the importance weights capped at the threshold ⌧ . Note that we
have explicitly denoted the dependence on ⌧ in the SWITCH estimator above.
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Next we turn to the bias term. For understanding bias, we look at the MSE bound in Theorem 2, and
observe that the last term in that theorem is precisely an upper bound on the bias. Rather than using a direct
bias estimate, which would require knowledge of the error in r̂, we will upper bound this term. For now,
let us assume that the function R

max

(x, a) is known. In many practical applications, this is not a limiting
assumption at all, where an apriori bound on the rewards is known ahead of time anyways. Then we can
upper bound the bias term as
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Note that this estimate of the squared bias is not as straightforward as the one for variance, since we
independently use sample-based unbiased approximations of the expectation of R

max

and the probability of
large importance weights, and then multiply them. However, standard arguments can be used to show that
the resulting estimates are still consistent under mild conditions. As a special case, if R

max

⌘ R, where
the uniform upper bound R is known, then the first average simplifies to R making the bias estimate rather
straightforward.

With these estimates, we pick the value of ⌧ that minimizes

b⌧ = argmin

⌧

d

Var

⌧

+

dBias
2

⌧

. (13)

Notice that the upper bound on the bias is rather conservative in that it upper bounds the error of DM at the
largest possible value for every data point. This has the effect of favoring the use of the unbiased part in
SWITCH whenever possible, unless the variance would overwhelm even an arbitrarily biased DM. While this
might appear overly conservative, this does imply the minimax optimality of the SWITCH estimator using
b⌧ almost immediately: the incurred bias is no more than our upper bound, and we incur it only when the
minimax optimal IPS estimator would be suffering an even larger variance.

Finally, we should mention that this development is quite related to the MAGIC estimator of Thomas
and Brunskill [2016], which was discussed following Theorem 2. The key differences are that we pick
only one threshold ⌧ , while they compute the estimates with many different ⌧ ’s. Rather than picking just
one of these estimates, they further learn a more general weighting over the estimates. In that sense, our
estimator can be seen as a special case which puts the entire weight on one choice. Like us, they also pick
this weighting function by optimizing a bias variance tradeoff. However, we use very different estimates for
bias and variance than their estimator. In the experiments, we did evaluate their approach for picking the
threshold ⌧ and found that the choice b⌧ in Equation 13 generally works better.

5 Experiments

In this section, we conduct an experimental evaluation of the proposed SWITCH estimators. We will be
using the same 10 UCI data sets that was used previously by Dudík et al. [2011] and convert the multi-class
classification problem to contextual bandits by

1. making it a sequential learning task, where the learner receives one example at a time, and guesses its
label using policy µ.

2. providing a reward of 1 (and hence revealing the correct label) only if the guess is correct; otherwise
providing a 0-reward. Note that this means R

max

⌘ 1 is a valid bound.
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Experiment setup


•  10	UCI	Classifica<on	data	sets	converted	to	bandits.	
•  Ac<on	is	to	predict	labels.	
•  Reward	is	{0,1},	depending	on	whether	the	ac<on	is	
correct.	

•  Target	policy	is	predic<on	of	logis<c	regression.	
•  Logging	policy	obtained	by	the	label	probability	of	a	
logis<c	regression	learned	from	covariate	shiaed	data.	

• We	sample	data	of	size	n	=	[100,	200,500,1000,…],	
from	discrete	distribu<on	of	of	length	N.		
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