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Part I

Introduction
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Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y

Z

E.g. X = Smoking, Y = Cancer, Z = Genetics

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive
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Causal inference from observational and experimental data

Holy Grail of Causal Inference

Learn as much causal structure as possible from observations,
integrating background knowledge and experimental data.

Current causal inference methods:

Score-based: evaluate models using a penalized likelihood score

Constraint-based: use statistical independences to express
constraints over possible causal models

Advantage of constraint-based methods:

can handle latent confounders naturally
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Joint inference on observational and experimental data

Advantage of score-based methods:

can formulate joint inference on observational and experimental data
and learn the targets of interventions, e.g. [Eaton and Murphy, 2007].
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Figure 6: Models of the biological data. (a) A partial model of the T-cell pathway, as currently accepted by biologists. The small round
circles with numbers represent various interventions (green = activators, red = inhibitors). From [SPP+05]. Reprinted with permission
from AAAS. (b) Edges with marginal probability above 0.5 as estimated by [SPP+05]. (c) Edges with marginal probability above 0.5
as estimated by us, assuming known perfect interventions. Dashed edges are ones that are missing from the union of (a) and (b). These
are either false positives, or edges that Sachs et al missed. (d) Edges with marginal probability above 0.5 as estimated by us, assuming
uncertain, imperfect interventions, and a fan-in bound of k = 2. The intervention nodes are in red, and edges from the intervention
nodes are light gray. Dashed edges are ones that are missing from the union of (a) and (b). This figure is best viewed in colour.

Example from [Eaton and Murphy, 2007]

Goal: Can we perform joint inference using constraint-based methods?
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Part II

Joint Causal Inference
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Joint Causal Inference: Assumptions

Idea: Model jointly several observational or experimental datasets
{Dr}r∈{1...n} with zero or more possibly unknown intervention targets.

We assume a unique underlying causal DAG across datasets defined
over system variables {Xj}j∈X (some of which possibly hidden).

Example

X1 X2

X3

Dataset D1

unknown ints

X1 X2

X3

Dataset D2

unknown ints

X1 X2

X3

Dataset D3

do X1

Note: cannot handle certain intervention types, e.g. perfect interventions.
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Joint Causal Inference: SCM

We introduce two types of dummy variables in the data:

a regime variable R, indicating which dataset Dr a data point is
from

intervention variables {Ii}i∈I , functions of R

We assume that we can represent the whole system as an acyclic SCM:


R = ER ,

Ii = gi (R), i ∈ I,
Xj = fj(Xpa(Xj )∩X , Ipa(Xj )∩I ,Ej), j ∈ X ,

P
(
(Ek)k∈X∪{R}

)
=

∏
k∈X∪{R}

P(Ek).
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Joint Causal Inference: single joint causal DAG

We represent the SCM with a causal DAG C representing all datasets
jointly:

R I1 I2 X1 X2 X4

1 20 0 0.1 0.2 0.5
1 20 0 0.13 0.21 0.49
1 20 0 . . . . . . . . .

2 20 1 . . . . . . . . .

3 30 0 . . . . . . . . .

4 30 1 . . . . . . . . .

4 datasets with 2 interventions

R

I1 I2

X1

X2

X3

X4

Causal DAG C

We assume Causal Markov and Minimality hold in C.
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Joint Causal Inference: Faithfulness violations

Causal Faithfulness assumption:

X ⊥⊥ Y |W =⇒ X ⊥d Y |W [C]

R I1 X1 I1 = g1(R) =⇒ X1 ⊥⊥ I1 |R ... but X1 6⊥d I1 |R

Solution: D-separation [Spirtes et al., 2000]: X1 ⊥D I1 |R

Problem: ⊥D provably complete (for now) for functionally determined
relations

Solution: restrict deterministic relations to only ∀i ∈ I : Ii = gi (R)

D-Faithfulness: X ⊥⊥ Y |W =⇒ X ⊥D Y |W [C].
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Joint Causal Inference

Joint Causal Inference (JCI) = Given all the assumptions, reconstruct
the causal DAG C from independence test results.

X1 6⊥⊥ I1

X1 ⊥⊥ I1 |R

X4 ⊥⊥ X2 | I1
. . .

=⇒

R

I1 I2

X1

X2

X3

X4

Problem: Current constraint-based methods cannot work with JCI,
because of faithfulness violations.
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Part III

Extending constraint-based methods for JCI
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A simple strategy for dealing with faithfulness violations

Idea: Faithfulness violations → Partial inputs

A simple strategy for dealing with functionally determined relations:

1 Rephrase constraint-based method in terms of d-separations

2 For each independence test result derive sound d-separations:

X 6⊥⊥ Y |W =⇒ X 6⊥d Y |W

X 6∈ Det(W ) and Y 6∈ Det(W ) and X ⊥⊥ Y |W =⇒
X ⊥d Y |Det(W )

where Det(W ) = variables determined by (a subset of) W .

Conjecture: sound also for a larger class of deterministic relations.
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Ancestral Causal Inference with Determinism (ACID)

Idea: Faithfulness violations → Partial inputs

Traditional constraint-based methods (e.g., PC, FCI, ...):

cannot handle partial inputs

cannot exploit the rich background knowledge in JCI

Solution: Logic-based methods, e.g., ACI [Magliacane et al., 2016]

=⇒ we implement the strategy in an extension of ACI called:
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Rephrasing ACI rules in terms of d-separations

ACI rules:

Example

For X , Y , W disjoint (sets of) variables:

(X ⊥⊥Y |W ) ∧ (X 699KW ) =⇒ X 699KY

ACID rules:

Example

For X , Y , W disjoint (sets of) variables:

(X ⊥d Y |W ) ∧ (X 699KW ) =⇒ X 699KY
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ACID-JCI

ACID-JCI = ACID rules + sound d-separations from strategy

+ JCI background knowledge

For example:

∀i ∈ I,∀j ∈ X : (Xj 699KR) ∧ (Xj 699K Ii )

“Standard variables cannot cause dummy variables”

Example

I1

X1

R

I1

X1

R

I1 X1

R
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Part IV

Evaluation
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Simulated data accuracy: example Precision Recall curve

Ancestral (“causes”) relations Non-ancestral (“not causes”)

Precision Recall curves of 2000 randomly generated causal graphs for
4 system variables and 3 interventions

ACID-JCI substantially improves accuracy w.r.t. merging learnt
structures (merged ACI)
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Conclusion

Joint Causal Inference, a powerful formulation of causal discovery
over multiple datasets for constraint-based methods

A simple strategy for dealing with faithfulness violations due to
functionally determined relations

An implementation, ACID-JCI, that substantially improves the
accuracy w.r.t. state-of-the-art

Future work:

Improve scalability (now max 7 variables in C).

Working paper: https://arxiv.org/abs/1611.10351

Collaborators:

Tom Claassen Joris M. Mooij
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Ancestral Causal Inference (ACI)

Weighted list of inputs: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)} }

Any consistent weighting scheme, e.g. frequentist, Bayesian

For any possible ancestral structure C , we define the loss function:

Loss(C , I ) :=
∑

(ij ,wj )∈I : ij is not satisfied in C

wj

Here: “ij is not satisfied in C” = defined by ancestral reasoning rules

For each possible causal relation X 99KY provide score:

Conf (X 99KY ) = min
C∈C
Loss(C , I + (X 699KY ,∞))

−min
C∈C
Loss(C , I + (X 99KY , ∞))
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