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We propose a new method of discovering causal relationships based on the notion of causal compres-
sion. To this end, we adopt the Pearlian graph setting and the directed information as information
theoretic tool for quantifying causality. We prove that causal compression is achieved by sparsity
which motivates sparsity-inducing methods in modelling causality. We present two applications of the
proposed method: causal time series segmentation which selects time points capturing the incoming
and outgoing causal flow between time points belonging to different signals, and causal bipartite
graph recovery. We show that modelling of causality in the adopted set-up only requires estimating
the copula density of the data distribution and thus does not depend on its marginals. We evaluate the
method on time resolved gene expression data.

Causal graphs. Causal relationships in graphical models are frequently represented with directed
acyclic graphs (DAGs), where the arrows can be imbued with causal interpretation in different
ways. We follow the approach proposed in [4]. It requires that one be able to perform, or think
of performing, an intervention on any node or collection of nodes in the graph. An intervention
means that the variable intervened upon has its value set externally, while the influence of any other
variables in the DAG (most importantly its parents) upon it is suppressed. This process corresponds
to measuring the influence of a chosen set of variables on the rest of the system. For any disjoint X
and Y denote with PX|do(Y=y) the interventional distribution of X , i.e. the distribution of X which
results from intervening on Y . This distribution is contrasted with the observational distribution of
PX|Y which is obtained by passively observing the values of X and Y . A Pearlian DAG satisfies two
more conditions: it represents the conditional independence relations of the underlying probability
distribution via d-separation, and for any node V , its conditional distribution given its parents does
not depend on interventions on any other nodes in the DAG. Pearlian DAGs are an intuitive extension
of conditional independence representation in graphical models to causality: the absence of an arrow
between two nodes implies the absence of a direct causal relationship between them.

We model the strength of a causal relationship with directed information (a concept also introduced as
causal conditioning [3], directed stochastic kernels [6], and by other authors [5, 1]), which measures
the Kullback-Leibler divergence DKL between the observational and interventional distributions:
I(X → Y ) = DKL(PX|Y ||PX|do(Y )|PY ) = EPX,Y

log P (X|Y )

P (X|do(Y ))
. If its value is small, then

the two distributions are similar, thus any common changes of X and Y can be identified without
intervening on Y . Otherwise, performing an intervention on Y has influenced the distribution of X ,
hence the difference must stem from the connections between X and Y , which were destroyed while
intervening on Y . Analogously, conditional directed information for three disjoint sets X,Y, Z can
be defined [5]: I(X → Y |Z) = EPX,Y,Z

log P (X|Y,Z)

P (X|do(Y ),Z)
. It measures of the causal relationship

between X and Y , when paths traversing Z in the underlying DAG are excluded.

Main results. We show that choosing the most sparse time series representation is equivalent to
excluding the nodes that do not contribute to the direct causal relationships in the Pearlian graph, i.e.
for A,B ⊂ X , A ∩B = ∅ [8]:

I(A,B → Y ) = I(A→ Y ) ⇔ I(B → Y |A) = 0

For the same value of directed information between a subset S of X , and Y , adding more variables
to the subset S means adding variables which do not exhibit causal (in the sense of Pearlian graphs)
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relations with Y other than via the original S. Therefore, the optimal causal compression at a given
level of directed information is ensured by the sparsity of the compressed representation of X , i.e. by
selecting as few nodes as possible. Note that this can be interpreted in the spirit of Granger causality:
the variables in X that are not selected by the sparsity requirement do not Granger-cause the effect Y .
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Figure 1: Direct computation of causal segmenta-
tion and causal bipartite graph estimation.

We subsequently demonstrate how to use the
principle of causal compression to circumvent
the estimation of a full causal network and com-
pute two partial sub-structures of it, presented
schematically in Figure 1 [8]. The first one is
the causal segmentation of time points of one
time series into those that exhibit outgoing or
incoming causal flow (orange and green nodes
in Figure 1, respectively) to the other time series
and those involved in instantaneous information
exchange (blue nodes in Figure 1). Another
sub-structure is causal bipartite graph estima-
tion, e.g. computing a mixed bipartite graph
between the two time series, where the arrows
mean causal dependence and edges mean in-
stantaneous information exchange. We achieve
this by defining and solving a LASSO-type con-
strained optimisation problem that finds a sparse
representation of a set of nodes such that di-
rected information is optimised.

We also show that for continuous (X,Y ), any causal relationship described with directed information
only depends on the entropy of copula density of (X,Y ) [8]. This means that for inference we
only have to estimate the copula part of the distribution. In particular, for Gaussian distributed data
only the correlation matrices have to be identified. More importantly, modelling of causality in the
framework of Pearlian graphs only requires knowing the copula structure of the modelled data and is
independent of their marginals.

Experiments. We evaluate our method on a human hepatitis C virus (HCV) dataset containing
time-resolved gene expression profiles from patients with chronic HCV genotype 1 infection [7].
Gene expression was profiled at six time points after initiation of treatment with pegylated alpha
interferon and ribavirin. For our analysis, we focused on two genes that are known to have a crucial
interacting role in interferon signalling, namely the transcription factor STAT1 and the interferon-
induced antiviral gene IFIT3. Based on the observed decrease in HCV RNA levels on the last
day, patients were labelled to have a “marked” (27 patients) or “poor” response to treatment (25
patients). The analysis was carried out separately for the “marked” and the “poor” responders, see
Figure 2. There are pronounced differences between the two groups: both groups show causal
pre-treatment/post-treatment interactions, but for the marked responders, the influence of initial
IFIT3 on late STAT1 values is much more prominent. This might be particularly interesting, since
pre-treatment expression levels of interferon-induced genes are known to be strong predictors of
treatment response [2], but the underlying mechanism of this effect is largely unknown.
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Figure 2: Time-resolved gene expression data from HCV patients: reconstructed causal graphs for
the groups of poor and marked responders.
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