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Abstract

We consider causal graph learning problems with constraints. Learning is done
through interventions, and the objective is to design an optimal intervention set with
respect to some metric of performance or cost. We are interested in the following
questions: (a) What if each intervention is limited in the number of variables it can
involve? (b) What if some of the variables cannot be intervened on? (c) What if
each variable has an associated cost of being intervened on? We mathematically
formulate these questions. We propose a construction for (a), which is provably at
least as good as the previous state of the art. We provide a full characterization for
(b), explain the associated graph theory problem for (c), identify easy instances,
and propose a greedy solution for the other instances. All our algorithms are non-
adaptive, i.e., our interventions are designed before the outcomes of experiments
are revealed.

1 Introduction

The probabilistic interpretation of causality using directed graphs was pioneered by J. Pearl in the
90s. This resulted in the widespread use of graph theoretic tools for understanding and discovering
causal systems. For example, observational data from a causal system can be encoded as a set of
learnable edges of a corresponding causal graph. An intervention on a set of variables corresponds to
randomizing and enforcing these variables to take certain values. This corresponds to performing
an experiment and collecting new data from which we can learn the directions of the edges on the
cut separating the intervened and non-intervened variables. Unfortunately, for many real problems
there are constraints on which variables we can perform interventions. This can be due to ethical
constraints, cost or experimental complexity, or for some systems it may be simply impossible to
enforce desired values for some of the variables.

In this paper, we study such problems of learning causal graphs with interventions under constraints.
Specifically, we study the following problems:

Problem 1: What is the optimal intervention policy to learn a causal graph using the minimum
number of interventions when each intervention is limited in size?

Problem 2: What is the optimal intervention policy to learn a causal graph using the minimum
number of interventions when it is impossible to intervene on some variables?

Problem 3: What is the optimal intervention policy that minimizes the total intervention cost, when
each variable has an associated cost of being intervened on?

Each of these problems is quite relevant in practice. The first problem captures the fact that ex-
periments that contain a large number of variables are harder to perform. The second problem is
important since some of the variables in a causal system may not be intervened on due to physical
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limitations or ethical considerations. The third problem is relevant since the experimental cost of
enforcing values to different variables may vary in different applications.

In this paper we make progress on these three questions. For the problem of finding the minimum
number of interventions subject to a size constraint, we propose a new technique based on replicating
a small separating system across color classes. For the second problem we propose a full charac-
terization for the optimal intervention policy. For the third problem we propose a polynomial time
greedy algorithm and also identify a set of cases for which there is an exact polynomial time solution.
Note that this is a summary of our work. For the proofs and an expanded background section, see [1].

2 Notation and Terminology

2.1 Observational and Interventional Learning of Causal Graphs

A directed acyclic graph D = (V,E0) on vertex set V with edge set E0 is a causal graph if it captures
the causal relationship between variables according to the Pearl’s framework [8]. An undirected graph
G = (V,E) is the skeleton of causal graph D = (V,E0) if there is an undirected edge (u, v) ∈ E if
and only if there is a directed edge, either (u, v) ∈ E0 or (v, u) ∈ E0.

The causal relations within Pearl’s framework can be captured through structural equation modeling
with independent errors: Each variable is a deterministic function of its parent set in causal graph D
and some unobserved exogenous variable. Under this model, one can show that the joint distribution
of the set of variables fits into the Bayesian network D. Thus, one can use conditional independence
tests in order to learn the underlying causal graph. Since Bayesian networks are not unique, one can
only learn certain edges in the causal graph (See [1] for more details).

The gold standard of learning a causal graph is through experiments (also called interventions). See
[8] and [9] for details. An intervention on a set S of variables yields the causal edges between S
and Sc. Interventional learning can be used to complement the observational learning: One can use
observational data to learn as many causal edges between variables as possible and use interventions in
order to identify the remaining edges. It is known that the remaining undirected connected component
after using the observational data is a chordal graph [4]. Thus, without loss of generality, we assume
that the skeletons of the causal graphs we work with are chordal. This is fortunate, since chordal
graphs are perfect and hence coloring is easy.

2.2 Separating Systems and Interventions

Separating systems are important constructions for interventional learning. They are used to design
interventions to learn a causal graph given the skeleton [5],[6]. Given a ground set S, a separating
system on S is a set of subsets I = {I1, I2, . . .} that satisfies the following: For every pair of
elements u, v ∈ S, there is a set Ii which contains exactly one from the pair, either u or v but not
both. In other words, the set of subsets separates every pair of elements. A graph separating system
for G = (V,E) is a set of subsets of the ground set V , which satisfies the separating property for
every pair of elements which form an edge.

A graph separating system on skeleton G can be used to construct a set of interventions to learn the
causal graph: Simply intervene on the sets of variables in the subsets of the graph separating system.
Since each edge is separated at least once, underlying causal graph can be learned.

3 Summary of Contributions

3.1 Graph Separating Systems with Constraints

Given an abstract constraint C, we define a (G, C) separating system as a graph separating system
where each subset of the graph separating system satisfies the constraint C. For example, if the
objective is to find smallest number of interventions with a size bound on each intervention, one
should find the graph separating system of minimum size, with the constraint that each subset size is
at most k. We simply call these separating sytems as (G, k) separating systems.

Graph separating systems without constraints are used by [5] to design optimal set of interventions
when the size of experiments is not bounded. We first show that the same correspondance between
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intervention designs and graph separating systems persists, even under constraints. Formally we show
the following:

Theorem 1. Consider an undirected graph G. A set of interventions I with constraint C learns every
causal graph D with skeleton G if and only if I is a (G, C) separating system.

It can be shown that any graph separating system corresponds to a not necessarily optimal proper
graph coloring. Thus, to find "optimal" set of interventions given some constraint, one can resort to
the corresponding constrained graph coloring problem.

3.2 Optimal Interventions with Non-Intervenable Nodes

Consider a graph skeleton G = (V,E). Let S ⊂ V be a set of nodes we cannot intervene on. The
following lemma characterizes when the underlying graph can be learned:

Lemma 1. LetG = (V,E) be an undirected chordal graph. Let S ⊂ V be the set of non-intervenable
variables. If S is not an independent set in G, then there are causal graphs with skeleton G that
cannot be fully learned with any set of interventions.

Thus if the set of nodes do not form an independent set in G, no intervention can learn every
underlying causal graph D with skeleton G. Thus, we assume that S is an independent set. Then, we
have the following theorem:

Theorem 2. Consider an undirected chordal skeleton G = (V,E) of a causal graph D. Let χ be the
chromatic number of G. Let the set of non-intervenable nodes S ⊂ V be an independent set of G.
Then,

a) dlog (χ)e interventions are necessary and sufficient to learn any causal graph D, if there exists a
χ coloring of G where S is monochromatic.

b) dlog (χ+ 1)e interventions are necessary and sufficient to learn any causal graph D, if there does
not exist a χ coloring of G where S is monochromatic.

This theorem fully characterizes when any causal graph is learnable with dlog (χ)e experiments given
skeleton G. It also shows that even when we need more interventions, dlog (χ+ 1)e experiments are
always sufficient (See [1] for construction and the proof).

Fortunately for us, there is an algorithm for perfect graphs that runs in polynomial time, which
identifies if the given graph can be colored with m colors such that S is monochromatic, and outputs
such a coloring if so [7].

3.3 Designs with Bounded Intervention Size

For the problem of designing bounded sized interventions, we construct a graph separating system
with a size constraint on the subsets. As noted, we call this a (G, k) graph separating system, where
k is the maximum size of the subsets. We have a construction, whose performance is quantified as
follows:

Proposition 1. There exists a (G, k) separating system of size dχ∆
k e

logχ
log dχ∆/ke .

Authors in [6] used an (n, k) separating system to find a graph separating system where intervention
size is bounded by k. This corresponds to ignoring the non-edges, and separating every pair of
vertices. For an (n, k) separating system, there are constructions of size dnk e

logχ
log dn

k e [10]. Notice
that, if we use the coloring that assigns a different color to every vertex, our bound reduces to this
expression. Hence, over all proper colorings of the graph, this construction achieves at least as good
as an (n, k) separating system, which is the best known result for this problem. Thus we have the
following corollary:

Corollary 1. Given an undirected graph G and a bound k on the subset size, we can construct (G, k)
separating system using construction above, by searching over all proper colorings of G. There is
always a coloring that achieves the size of an (n, k) separating system. Thus, this construction is at
least as good as an (n, k) separating system with respect to the size of the separating system.
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3.4 Minimum Cost Intervention Design

For the problem of finding the cost minimizing set of interventions, given a cost of intervening per
node, we can use a linear integer program using the standard coloring formulation. However, this
formulation allows an optimal algorithm only for certain subgraphs, characterized in the following
theorem:
Theorem 3. Let G = (V,E) be a tree graph or a clique tree, and w : V → R be a cost function on
its vertices. Then there is an algorithm that can find the optimum set of m interventions that can
learn any causal graph D with skeleton G that runs in polynomial time.

The proof follows from the fact that the polytope corresponding to the convex hull of all feasible
points is an efficiently describable polytope for these specific graph classes, as shown in [2].

Next, we give a special case of this problem, which admits a simple solution without restricting the
graph class. Assume that m = χ, i.e., we are allowed to perform χ interventions. Then the problem
has a simple solution, as characterized by the following theorem:
Theorem 4. Let G = (V,E) be a chordal graph, and w : V → R be a cost function on its
vertices. Then the optimal set of interventions with minimum total cost, that can learn any causal
graph D with skeleton G is given by I = {Ii}i∈[χ], where {Ii}i∈[χ] is any χ coloring of the graph
GV \S = (V \S,E), where S is the maximum weighted independent set of G.

In other words, color the vertex induced subgraph obtained by removing the maximum weighted
independent set S and intervene on each color class individually. The remaining graph can always be
colored by at most χ colors, i.e., the chromatic number of G. Since optimum coloring and maximum
weighted independent set can be found in polynomial time for chordal graphs, I can be constructed
in polynomial time.

Another special case is when G is uniquely 2m− colorable, if m is the maximum number of
interventions we are allowed to use. Then there is only a single coloring up to permutations of colors.
Hence the costs of color classes are fixed. Now we can simply sort the color classes in the order of
decreasing cost, and assign row vectors of M to these color classes in the order of increasing number
of 1s. This assures that the total cost of interventions is minimized.

3.4.1 A greedy algorithm

In this section, we present a greedy algorithm for the minimum cost intervention design problem,
which can be run in polynomial time for interval graphs. Our approach uses the fact that finding the
maximum weight k−colorable subgraph for interval graphs is in P due to [11].

Algorithm 1 Greedy Intervention Design for Total Cost Minimization
1: Input: A chordal graph G, maximum number of interventions m, cost wi assigned to each vertex i.
2: r = n, t = 0, G1 = (V1, E), V1 = V .
3: while r > 0 do
4: Find maximum (weighted)

(
m
t

)
−colorable induced subgraph St

5: Assign all weight−t binary vectors of length m as rows of M(St, :) to different color classes.
6: Gt+1 = (Vt+1, E), Vt+1 = Vt\St: Gt+1 is the induced subgraph on the uncolored nodes.
7: r ← |Vt+1|: r is the number of uncolored nodes.
8: t← t+ 1
9: end while

10: return M .

In the algorithm, (Vt+1, E) represents the induced subgraph on the node set Vt+1. The algorithm
returns a matrix M , which is a graph separating system for G. The idea is to choose as large a weight
as possible for binary vectors with the smallest weight. This assures that the sets of nodes with
large total cost are intervened fewer number of times. Steps for finding the maximum weighted

(
m
t

)
colorable subgraph are given in [11], and it has polynomial runtime for interval graphs. When the
graph is chordal (not necessarily interval), finding the maximum (weighted) k−colorable subgraph is
NP−hard when k is not a constant, and is in P when k is a constant.

For chordal graphs, we can modify the algorithm as follows: Instead of iteratively coloring until no
uncolored node remains, run the algorithm for a steps, for some constant a. Then, the maximum
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(weighted) k− colorable subgraph can be found in polynomial time. This will make sure
∑a
i=0

(
m
i

)
colors are used. The uncolored graph at this step Gm+1 is perfect since perfectness is hereditary. As
the final step, color this graph with minimum number of colors and use the remaining small-weight
vectors for these colors that are not yet used. This modification allows the algorithm to run in
polynomial time even for chordal graphs.
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