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Abstract

Discovering causal models from observational and interventional data is an impor-
tant first step preceding what-if analysis or counterfactual reasoning. As has been
shown before[/1]], the direction of pairwise causal relations can, under certain condi-
tions, be inferred from observational data via standard gradient-boosted classifiers
(GBC) using carefully engineered statistical features. In this paper we apply deep
convolutional neural networks (CNNs) to this problem by plotting attribute pairs as
2-D scatter plots that are fed to the CNN as images. We evaluate our approach on
the ‘Cause-Effect Pairs’ NIPS 2013 Data Challenge[2]]. We observe that a weighted
ensemble of CNN with the earlier GBC approach yields significant improvement.
Further, we observe that when less training data is available, our approach performs
better than the GBC based approach suggesting that CNN models pre-trained to
determine the direction of pairwise causal direction could have wider applicability
in causal discovery and enabling what-if / counterfactual analysis.
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Extended Abstract

It is well known that both What-if analysis and Counterfactual reasoning can be performed using
causal inference on Causal Bayesian networks via Intervention and Counterfactual queries|3]][4].
Causal discovery is an important first step to learn Causal Bayesian networks. The extent to which
the direction of edges in a such a causal network can be identified from purely observational data
is limited. Techniques based on conditional independence tests can only discover edge directions
within the limits of Markov equivalence. Statistical techniques for determining the direction of a
pairwise causal relationship, such as [[1] can, in certain conditions, augment the causal discovery
process. In this paper, we use deep convolutional neural networks (CNNs)[5] to improve the state
of art in detecting the direction of pairwise causal relationships from purely observational data.

We are concerned with determining the directions of a causal relationship between two attributes
X and Y, i.e., the problem is to identify whether X causes Y or, alternatively, Y causes X, given
joint observations of two attributes. In general, the identification of causal relationships, including
the pairwise case, requires controlled experimentation, which in many cases, is too expensive,
unethical, or technically impossible to perform [6]. The development of methods to identify causal
relationships from purely observational data is therefore desirable, and also challenging: Consider
the data visualized in FigurdT]in the form of scatter plot. The question is: does X cause Y , or does
Y cause X? The true answer is X causes Y, as here X is the altitude of weather stations and Y is
the mean temperature measured at these weather stations[6]. In the absence of knowledge about the
measurement procedures that the variables correspond with, one can exploit statistical patterns in
the data in order to find the causal direction. Approaches to causal discovery based on conditional
independences do not work here, as X and Y are typically dependent, and there are no other observed
variables to condition on.

Many causal discovery methods have been proposed in recent years that were claimed to solve this
task under various assumptions[[7][8][9][10]. Many of these approaches use the complexity of the
marginal and conditional probability distributions in one way or another. Intuitively, the idea is that
the factorization of the joint density pc, g (c, e) of cause C and effect E into pc(c)pg|c(e|c) typically
yields models of lower total complexity than the alternative factorization into pg(e)pc|e(cle).
Alternative techniques use the distribution and independence properties of noise in the data, e.g.
ANM[L1]] that assumes that effects are non-linear functions of their causes plus independent non-
gaussian noise, whereas, LINGAM[12] assumes functions are linear.

Key Contributions: In this paper we show that deep convolutional neural networks can discover
pairwise causal relationships by merely looking at the scatter-plots of data. Further, an ensemble
of CNNss with the best available statistical techniques betters the state of the art in pairwise causal
discovery on the NIPS 2013 ‘cause-effect pairs’ data challenge [2] for this task. Finally, we show that
when faced with sparse observations, our CNN-based approach independently outperforms previous
statistical approaches.

Scatter Plots from Observations: We assume n instances Dy, Dy, ..., D,, of data, where each
D; contains n; pairwise observations (a:gl), ygl))7 (ng), yél)), . (xff) , yffi)) for attributes X; and Y.
These attributes can be continuous (numeric), binary, or categorical (cat). An attribute pair (X, Y;)
is labeled as 1 if a causal relation exist from X to Y;, labeled as -1 if Y; to X, else labeled as 0. Our
goal is to predict whether X; causes Y}, or Y; causes X, or neither.

For each D; we discretize values of x; and y; using m bins: Each data point in D; is mapped to a cell
of a 2-D m % m scatter plot. For cases where neither X; nor Y; is continuous, i.e. when attributes are
either binary or categorical, mapping an observation as a 2-D point on a scatter plot does not provide
any information, e.g. As shown in Figure[2|a), there are only four possible observations. For such
cases, we calculate the normalized frequency of the occurrence of an observation and use it as a color
intensity of a bin on a scatter plot (as shown in Figure 2[b)), where highest frequency is mapped to
255 with the darkest colour and lowest frequency is mapped to 0 with the white colour. For cases
where either of the attribute is continuous, we map each observation as a 2-D point on a scatter plot(as
shown in Figure[2c)). We do not use frequency as a colour intensity in case of continuous attributes
as this can often mask important information(as shown in Figure[2(d)).

CNN based approach For each D;, we generate a scatter plot of size 200%200 to train a CNN with
architecture as in Figure[3} consist of 5 stages and at each stage we employ two convolutions and one
pooling on the image which results into 15 layers of convolution and pooling followed by 3 fully



connected layers with number of units as 1024, 512, and 25 respectively, and 3x3 filters. The output
layer of CNN is a softmax layer with three units corresponding to the three classes with which we
obtain three probabilities p§, pg, and p¢ ; for each of the three classes.

EXPERIMENTS: We consider the NIPS 2013 ‘cause-effect pairs’ data challenge for the evaluation
of our approach. The data consists of three parts: SUP1, SUP2, and CETrain. Type of attributes
in each dataset and thier statistics are shown in Table[T] We randomly split the data into Training,
Validation, and Test sets with ratio of 70:15:15 respectively to evaluate the vanilla CNN model as
described above, as well as the following GBC based approach:

GBC: We use the codeprovided by the second winner of the data challenge. In their approach, they
derive 43 features which include standard statistical features plus new measures based on variability
measures of the conditional distributions and use these features to train GBC. We use the same code
to generate features and train GBC on our training set. See Table [2]for details. For each D; in test set,
using the trained GBC, we obtain three probabilities p{, pg, and p? | for three classes.

Weighted Ensemble: For each D;, we take the weighted sum of the probabilities obtained using
CNN and GBC based approaches to generate three new probabilities as: p§ = w * p§, + (1 — w) * p{,
where k = 0, 1, and -1. We validate the weight w from the range [0, 1] with step size of 0.1 on
validation set and use that weight for prediction on test set. The value of w is 0.4 in our case.

Note that the symmetry of the task allows us to duplicate the training instances. Exchanging X; with
Y; in an instance of label c provides a new instance of the label —c. This idea has been used while
learning both CNN and GBC mentioned above.

For a D;, given the three probabilities p1, pg, and p_; for three classes, we evaluate our approach
mentioned above using two metrics: (i) Accuracy: We choose the class with the maximum probability
as the predicted class for D, and we define accuracy of a test set as the ratio of number of correctly
predicted data instances to the total number of data instances in the test set. and (ii) AUC: We use the
same metric as used in the classification task of the cause-effect pair data challenge[13].

We evaluate our approaches for following two cases: In Case-1, we use full data given, i.e., all data
instances and all observations of each data instance; and evaluate our CNN based and weighted
ensemble approach on the test set and compare it with GBC based approach (evaluated on the same
test set). In Case-2, we compare CNN with GBC based approaches for sparse training data by
restricting number of observations in each instance.

Case-1: Full Training Data: Table[3] shows accuracy and AUC evaluated on Validation and Test set
using CNN, GBC, and weighted Ensemble based approach. It shows that accuracy and AUC using
CNN based approach is fairly good but not at par with the GBC based approach. From Table[3] it
can be seen that the weighted ensemble of CNN and GBC gives a boost to both accuracy and AUC,
suggesting that the two approaches of GBC and CNN are complementary to each other. Also, Table[3]
shows the AUC predicted using the three approaches on the test set given on the webpage of data
challenge on the Kaggle Websit An AUC of 0.825 is obtained using weighted ensemble based
approach which surpasses the state-of-the art, getting us the first rank on the private leader-board
(as shown in Figure ).

Case-2: Sparse Training Data: As shown in Table[I] number of observations in total data varies
from 53 to 7998. In Case-2, we compare CNN with GBC based approach for the case where the
amount of training data used for a particular attribute-pair is drastically reduced, a scenario that
is often faced in real-life. We compare the accuracy and AUC using CNN and GBC for 100, 200,
500, and 1000 observations. As shown in Figure[5|and [6] we observe that the CNN based approach
outperforms GBC based approach when instances have few observations.

Further, since CNN merely take scatter plots as input with no assumption about the data and no data
specfic features, a model trained on one database can potentially be used for predicting causality on
completely new dataset.

Conclusion: We propose the novel idea of using CNN to predict pairwise causality by merely looking
at the scatter plots of data and show that the CNN based approach is complimentary to the existing
statistical approach by improving the state of art through weighted ensemble. We also show the CNN
based approach outperforms existing approach while given data has few observations.

"https://github.com/jarfo/cause-effect
“https://www.kaggle.com/c/cause-effect-pairs/data
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Appendix A: Figures and Tables
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Figure 1: Example of a pairwise causal discovery task: decide whether X causes Y , or Y causes X,
using only the observed data (visualized here as a scatter plot).
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Figure 2: Examples of four Scatter plots along with their labels. It shows the uses of normalized

frequency in case binary or categorical attributes(Figure(a) and (b)). Also, shows that for conti-
nous(num) attributes using normalized frequency may mask the important information(Figure(c) and

(d))
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Figure 3: Deep CNN Architecture used for our approach: 15 layers of convolution and pooling
followed by three fully connected layers. It also shows the number of filters used at each layer.

Table 1: Shows number of instances in each dataset and the range of number of observation for all
three datasets

Dataset | Type of attributes | Number of instances | Number of observations
SUP-1 continous 5998 500 to 7988
SUP-2 mixed 5989 500 to 7998
CETrain mixed 4050 53 to 7998
Total mixed 16037 53 to 7998

Table 2: Shows the list of hyper-parameters and their corresponding ranges used for tuning GBC. The
best parameters obtained are shown in the rightmost column which are same as used in original code

Grid search Parameter selected
Number of estimators | 200,500,1000,1500 500
Maximum depth 5,79,11,13 9
Minimum samples split | 8,20,100,200,400 8
Maximum features ‘sqrt’, ‘None’ None

Table 3: Table showing Accuracy and AUC using CNN, GBC, and Ensemble for Validation, test and
Kaggle test set

GBC CNN | Ensemble
Accuracy on Validation split | 77.8% | 72.5% 79.3%
AUC on Validation split 0.805 | 0.779 0.831
Accuracy on Test split 77.5% | 73.3% 79.2%
AUC on Test split 0.81 0.769 0.833
AUC on Kaggle Test data 0.81 | 0.7331 0.825
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Figure 4: AUC computed using our approach on test set available on Kaggle
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Figure 5: Accuracy comparison of CNN and GBC for different number of observations
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Figure 6: AUC comparison of CNN and GBC for different number of observations



