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Abstract

There is intense interest in applying machine learning to problems of causal in-
ference such as precision medicine and personalized advertising. We give a new
theoretical analysis and family of algorithms for estimating individual treatment
effect (ITE) from observational data, based on learning representations such that
the induced treated and control distributions look similar. We give a novel and
intuitive bound showing that the ITE estimation error of a representation is bounded
by a sum of the standard generalization error of that representation and the distance
between the treated and control distributions induced by the representation. We use
Integral Probability Metrics to measure distances between distributions, deriving
explicit bounds for the Wasserstein and Maximum Mean Discrepancy distance.
Experiments on real and simulated data show state-of-the-art performance.

1 Introduction

Causal inference questions are central to policy makers and scientists across many fields. Examples
abound: in healthcare one is interested in the relative efficacy of different medications; in economics,
policy makers debate the effect of job training on an individual’s earnings; in marketing, companies
are interested in the causal effect of an online ad on a customer’s buying habits. Whereas much of the
work on causal effect inference has been focused on estimating the average treatment effect (ATE), in
this paper, we focus on the problem of estimating individual-level treatment effect. Specifically, we
learn to predict the effect of a proposed treatment for each unit (be it a patient, employee, customer,
etc.). A treatment could be medication, job training, or showing an ad. The learning is done from
observational data: data that was collected with treatment assignment potentially dependent on the
unit’s characteristics. This could be past medical records, a national dataset of workers’ training and
earnings, or a dataset of customers’ online browsing. The learning problem is different from a classic
learning problem, in that in our training data we never see the individual treatment effect. For each
unit, we only see their response to one of the possible treatments - the one they had actually received.
This is close to what is known in the machine learning literature as “learning from logged bandit
feedback” [33, 35].

In this paper we give a novel generalization bound on the expected error of estimating the per-unit
causal effect. The bound leads naturally to a new family of representation-learning based algorithms
[9], which we show match or outperform state-of-the-art methods on causal effect inference tasks.

We frame our results using the Rubin-Neyman potential outcomes framework [29], as follows. We
assume that for a unit x ∈ X , and a treatment or intervention t ∈ {0, 1}, there are two potential
outcomes: Y0 and Y1. In our data, for each unit we only see one of the potential outcomes, depending
on the treatment assignment: if t = 0 we observe Y0, if t = 1, we observe Y1. For example, x can
denote the set of lab tests and demographic factors of a diabetic patient, t = 0 denote the standard
medication for controlling blood sugar, t = 1 denotes a new medication, and Y0 and Y1 indicate the
patient’s blood sugar level after treatments t = 0 and t = 1, respectively. We employ the standard
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Figure 1: Architecture for ITE estimation. L is a loss function, IPMG is an integral probability metric.

strong ignorability assumption: (Y1, Y0) ⊥⊥ x | t, and 0 < p(t = 0) < 1. This assumption is
sometimes stated roughly as the “no hidden confounders” assumption.

We will denote m1(x) = E [Y1|x], m0(x) = E [Y0|x]. We are interested in learning the function
τ(x) := E [Y1 − Y0|x] = m1(x) −m0(x). τ(x) is the expected treatment effect of t = 1 relative
to t = 0 on the individual unit x, or the Individual Treatment Effect (ITE) 1. For example, for a
patient x, we decide which of two treatments will have a better outcome. In this paper we are mainly
interested in observational data, i.e. the case where the distribution of the treatment assignment t is
dependent on x. For example, richer patients might better afford different medications.

The function τ(x) can be estimated by learning the two functions m0(x) and m1(x) using samples
from p(Yt|x, t). Unlike in the standard machine learning problem, there is an additional source of
variance at work here: For example, if mostly rich patients received treatment t = 1, and mostly poor
patients received treatment t = 0, we might have an unreliable estimation of m1(x) for poor patients.
This is similar to the phenomenon of covariate shift [24, 22]. In this paper we upper bound this
additional source of variance using an Integral Probability Metric (IPM) measure of distance between
two distributions p(x|t = 0), and p(x|t = 1), also known as the control and treated distributions. We
use two specific IPMs: the Maximum Mean Discrepancy [18], and the Wasserstein distance [37, 14].
We show that the expected error of learning the individual treatment effect function τ(x) is upper
bounded by the error of learning Y1, Y0, plus the IPM term. In the randomized trial setting, where
t ⊥⊥ x, p(t) = 0.5, the IPM term is 0, and our bound naturally reduces to a standard learning problem.

The bound we derive points the way to a family of algorithms based on the idea of representation
learning [9]: Jointly learn a hypothesis and a representation which minimize a weighted sum of
the (supervised) factual loss, and the IPM distance between the control and treated distributions
induced by the representation. In experiments, we apply algorithms based on deep neural networks
as representations and hypotheses, along with MMD or Wasserstein distributional distance metrics
over the representation layer; see Figure 1. A similar idea was recently proposed by [22], but the
algorithms we propose are conceptually simpler, have richer and more flexible theory, and achieve
better results in practice. We show that our methods achieve competitive results on a real-world
causal inference benchmark: the widely used National Supposed Work survey [23, 31].

2 Related work

The most common goal of causal effect inference as used in the applied sciences is to obtain the
average treatment effect: ATE = Ex∼p(x) [τ(x)]. One of the most widely used approaches to
estimating ATE is covariate adjustment, also known as back-door adjustment or the G-computation
formula [28, 29]. In its basic version, covariate adjustment amounts to estimating the functions
m1(x), m0(x) and is therefore a natural method for estimating ITE as well as ATE. Another widely
used family of causal effect inference methods are weighting methods. Methods such as propensity
score weighting [3] re-weight the units in the observational data so as to make the treated and control
populations more comparable. These methods, and the related doubly robust methods [16], do not
yield themselves immediately to estimating an individual level effect, however.

Adapting machine learning methods for causal effect inference, and in particular for individual level
treatment effect, has gained much interest recently. For example [38, 1] discuss how tree-based
methods can be adapted to obtain a consistent estimator with semi-parametric asymptotic convergence
rate. Others show how to adapt high-dimensional regression methods such as Lasso to consistently
estimate treatment effect, again achieving semi-parametric rates [6, 2]. Our work differs by focusing

1This term is sometimes known as the Conditional Average Treatment Effect, CATE.
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on the generalization error aspects of estimating individual treatment effect, as opposed to asymptotic
consistency. Another line of work in the causal inference community relates to bounding the estimate
of the average treatment effect given an instrumental variable [4, 5], or under hidden confounding,
for example when the ignorability assumption does not hold [28, 10]. Our work differs, in that we
only deal with the ignorable case, and in that we bound a very different quantity: the generalization
error of estimating individual level treatment effect.

Our work is connected to work on domain adaptation, as estimating ITE requires prediction over a
distribution different from the observed one. Our ITE error bound has similarities with generalization
bounds in domain adaptation given by [8, 24, 7, 13]. These bounds employ distribution distance
metrics such as the A-distance or the discrepancy metric, which are related to the IPM distance we
use. Our algorithm is similar to a recent algorithm for domain adaptation by [17], and in principle
other domain adaptation methods (e.g. [27, 34] could be adapted for use in ITE estimation.

Finally, our paper builds upon recent work by [22], who show a connection between covariate shift
and the task of estimating the counterfactual outcome. They propose learning a representation of the
data that makes the treated and control distributions more similar, and fitting a linear ridge-regression
model on top of it. They bound the relative error of fitting a ridge-regression using the counterfactual
distribution versus fitting a ridge-regression using the factual distribution. Unfortunately, this not
informative regarding the absolute quality of the representation. In this paper we focus on a closely
related but more substantive task: estimating the individual treatment effect. We further provide an
informative bound on the absolute quality of the representation. We also derive a much more flexible
family of algorithms, including non-linear hypotheses and much more powerful distribution metrics
in the form of IPMs such as the Wasserstein and MMD distances.

3 Estimating ITE: Error bounds

We bound the expected error in estimating the individual treatment effect for a given representation,
and a hypothesis defined over that representation. The bounds are expressed in terms of (1) the
expected loss of the model over the fitting of the potential outcomes Y0, Y1, and (2) an Integral
Probability Metric (IPM) distance measure between the distribution of treated and control units.

We will employ the following assumptions and notations. The space of covariates is a bounded subset
X ⊂ Rd. The outcome space is Y ⊂ R. Treatment is a binary variable. We assume there exists a joint
distribution p(x, t, Y0, Y1), such that (Y1, Y0) ⊥⊥ t|x. We call the marginal of p over (x, t) the factual
distribution, and denote it pF (x, t). The treated and control distributions are the factual distribution
conditioned on treatment: pt=1(x) := pF (x|t = 1), and pt=0(x) := pF (x|t = 0), respectively.

Throughout this paper we will discuss representation functions of the form Φ : X → R, whereR is
the representation space. We make the following assumption about Φ:
Assumption 1. The representation Φ is a twice-differentiable, one-to-one function. Without loss of
generality we will assume thatR is the image of X under Φ.
Definition 1. Define Ψ : R → X to be the inverse of Φ, such that Ψ(Φ(x)) = x for all x ∈ X .

The representation Φ pushes forward the treated and control distributions into the new space R:
we denote the induced distribution by pFΦ , defined over R × {0, 1}. We also define pt=1

Φ (r) :=
pFΦ(r|t = 1), pt=0

Φ (r) := pFΦ(r|t = 0), to be the treated and control distributions induced over
R. For a one-to-one Φ, the distributions pFΦ and pCF

Φ can be obtained by the standard change of
variables formula, using the determinant of the Jacobian of Ψ(r). Let Φ : X → R be a representation
function, let h : R× {0, 1} → Y be a hypothesis defined over the representation space R, and let
L : Y × Y → R+ be a loss function.
Definition 2. The expected loss for the unit and treatment pair (x, t) is: `h,Φ(x, t) =∫
Y L(Yt, h(Φ(x), t))p(Yt|x)dYt. The expected factual loss of h and Φ is:

εF (h,Φ) =

∫
X×{0,1}

`h,Φ(x, t) pF (x, t) dxdt.

εF (h,Φ) is the generalization error for the hypothesis h(Φ(x), t) over the factual distribution.
Definition 3. The treatment effect (ITE) for unit x is:

τ(x) := E [Y1 − Y0|x] .
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Let f : X × {0, 1} → Y by a hypothesis. For example, we could have that f(x, t) = h(Φ(x), t).

Definition 4. The treatment effect estimate of the hypothesis f for unit x is:

τ̂f (x) = f(x, 1)− f(x, 0).

Definition 5. The expected Precision in Estimation of Heterogeneous Effect (PEHE) loss of f is:

εPEHE(f) =

∫
X

(τ̂f (x)− τ(x))
2
p(x) dx, (1)

When f(x, t) = h(Φ(x), t), we will also use the notation εPEHE(h,Φ) = εPEHE(f).

Our main result relies on the notion of an Integral Probability Metric (IPM), which is a family
of metrics between probability distributions [32, 26]. For two probability density functions p,
q defined over S ⊆ Rd, and for a function family G of functions g : S → R, we have that
IPMG(p, q) := supg∈G

∣∣∫
S g(s)(p(s)− q(s)) ds

∣∣. Integral probability metrics are always symmetric
and obey the triangle inequality, and trivially satisfy IPMG(p, p) = 0. For rich enough function
families G, we also have that IPMG(p, q) = 0 =⇒ p = q, and then IPMG is a true metric over the
corresponding set of probabilities. Examples of function families G for which IPMG is a true metric
are the family of all bounded countinuous functions, the family of all 1-Lipschitz functions [32], and
the unit-ball of functions in a universal reproducing Hilbert kernel space [18]. Here, we will employ
an extension of IPM, with probabilities scaled by positive scalars [12]. We call this Unnormalized
Integral Probability Metric. For two probability distribution functions as above, and positive scalars
up, uq , we have:

UIPMG(upp, uqq) := sup
g∈G

∣∣∣∣∫
S
g(s) (upp(s)− uqq(s)) ds

∣∣∣∣ .
Recall that mt(x) = E [Yt|x]. The expected variance of Yt with respect to p(x, t) is σ2

Y (p) =∫
X (Yt −mt(x))

2
p(Yt|x)p(x, t) dYtdxdt.We then define: σ2

Y = min{σ2
Y (pF (x, t)), σ2

Y (pF (x, 1−
t)}. If Yt is a deterministic function of x, then σ2

Y = 0. Let u = pF (t = 1) be the marginal probability
of treatment. By the strong ignorability assumption, 0 < u < 1.

Theorem 1. Let Φ : X → R be a one-to-one representation function, with inverse Ψ. Let h :
R× {0, 1} → Y be a hypothesis. Let G be a family of functions f : X → Y . Let the loss function
L be the squared loss. Assume there exists a constant B > 0, such that for fixed t ∈ {0, 1}, the
per-unit expected loss functions `h,Φ(x, t) (Def. 2) obey 1

B · `h,Φ(x, t) ∈ G. For the hypothesis
f : X × {0, 1} → Y such that f(x, t) = h(Φ(x), t):

εPEHE(h,Φ) ≤ 4εF (h,Φ) + 4B · UIPMG

(
u · pt=1

Φ , (1− u) · pt=0
Φ

)
− 4σ2

Y , (2)

where εF is w.r.t. the squared loss.

The main idea of the proof is showing that εPEHE is upper bounded by the sum of the expected factual
loss εF , and a similar loss εCF defined with expectation over the so-called “counterfactual distribution”
pCF (x, t) := pF (x, 1− t). Then, εCF − εF is bounded using an IPM. For an empirical sample, and
a family of representations and hypotheses, we can further upper bound εF by the empirical loss and
a model complexity term using standard arguments [30]. In this paper we use two function families
G for which there are available optimization tools. The first is the family of 1-Lipschitz functions,
which leads to IPM being the Wasserstein distance [37, 32], denoted Wass(p, q). The second is the
family of norm-1 reproducing kernel Hilbert space (RKHS) functions, leading to the MMD metric
[18, 32], denoted MMD(p, q). See the full paper for a discussion on the choice of function family,
how to estimate these terms and how to evaluate the constant B in Theorem 1.

4 Algorithm for estimating ITE

We propose a general framework for ITE estimation based on the theoretical results above. Our
algorithm is a single regularized minimization procedure which simultaneously fits both a balanced
representation of the data and a hypothesis for the outcome. This is in contrast to [22] who proposed
a two-step procedure corresponding to their theoretical results based on the discrepancy distance

4



Algorithm 1 CFR: Counterfactual regression with integral probability metrics
1: Input: Factual sample (x1, t1, y1), . . . , (xn, tn, yn), scaling parameter α > 0, loss function
L (·, ·), representation network ΦW with initial weights W, outcome network hV with initial
weights V, function family F for IPM

2: while not converged do
3: Sample m control {(xij , 0, yij )}mj=1 and m′ treated units {(xik , 1, yik)}m+m′

k=m+1
4: Calculate the gradient of the IPM term:

g1 =∇W IPMF ({ΦW(xij )}mj=1, {ΦW(xik )}m+m′

k=m+1)
5: Calculate the gradients of the empirical loss:

g2 = ∇V
1

m+m′

∑
j L
(
hV(ΦW(xij ), tij ), yij

)
g3 = ∇W

1
m+m′

∑
j L
(
hV(ΦW(xij ), tij ), yij

)
6: Obtain step size scalar or matrix η with standard neural net methods e.g. RMSProp [36]
7: Update W←W − η(αg1 + g3), V← V − ηg2

8: Check convergence criterion
9: end while

[13]. We also note that our theory supports multiple measures of balance that can can be minimized
efficiently; this is only rarely true for variants of the discrepancy distance used by [22].

We assume there exists a distribution p(x, t, Y0, Y1) over X ×{0, 1}×Y ×Y , such that strong ignor-
ability holds. We further assume we have a sample from that distribution (x1, t1, y1), . . . (xn, tn, yn),
where yi ∼ p(Y1|xi) if ti = 1, yi ∼ p(Y0|xi) if ti = 0. This standard assumption means that
the treatment assignment determines which potential outcome we see. Our goal is to find a rep-
resentation Φ : X → R and hypothesis h : X × {0, 1} → Y that will minimize εPEHE(f) for
f(x, t) := h(Φ(x), t). Towards that end, we minimize the following objective:

min
Φ,h

1

n

n∑
i=1

L (h(Φ(xi), ti) , yi) + α · UIPMG ({Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1) (3)

Here, UIPMG(·, ·) is the (empirical) integral probability metric defined by the function family G.

In this work, we let Φ(x) and h(Φ, t) be parameterized by two neural networks and learn them jointly.
This means that we can learn rich, non-linear representations and hypotheses with large flexibility. Our
approach is visualized in Figure 1. We train our models by minimizing (3) using stochastic gradient
descent, simultaneously backpropagating through the hypothesis and representation networks, see
Algorithm 1. Details of how to obtain the gradient w.r.t. the empirical IPMs are in the full paper.

5 Experiments

We evaluate our framework CFR (for Counterfactual Regression) in the task of estimating ITE and
ATE for all units in a sample {(xi, ti, yi)}ni=1. CFR is implemented as a feed-forward neural network
with fully-connected ReLU layers, trained using RMSProp, a small `2 weight decay, λ = 10−3, and
early stopping. Our architecture, dubbed CFR-2-2, consists of 2 ReLU representation layers, 2 ReLU
layers after the treatment has been added, and a linear output layer (see Figure 1). For the IHDP data
we use squared loss and hidden layers of 25 hidden units each. For the Jobs data, we use log-loss
and layers of 50 units. The architectures were selected based on held-out factual error. For Jobs, we
observed that performance varied considerably over different runs, and added batch normalization
[21] to alleviate this problem.

Standard methods for hyperparameter selection, such as cross-validation, are not applicable when
there are no samples of the counterfactual outcome (i.e. Y0 when t = 1 and vice versa). For
simulated outcomes, counterfactuals are available and we follow [22] by fitting hyperparameters on
a held-out set of experiments. For real-world data, we use as surrogate the factual outcome yj(i)

of the nearest neighbor j(i) to i in the opposite treatment group, tj(i) = 1 − ti (in the original
space). We then choose hyperparameters based on a nearest-neighbor approximation of the PEHE
loss, εPEHEnn(f) = 1

n

∑n
i=1

(
(1− 2ti)(yj(i) − yi)− (f(xi, 1)− f(xi, 0))

)2
.

In regression tasks, we compare our method to Ordinary Least Squares (OLS), Targeted Maximum
Likelihood, which is a doubly robust method (TMLE) [19], Bayesian Additive Regression Trees
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IHDP JOBS, BIN.√
εPEHE εATE RPOL εATT%

OLS / LR 5.8± .3 .7± .0 .23 9%
TMLE 5.0± .2 .3± .0 .22 20%
L+R / `1-LR 5.7± .2 .2± .0 .23 9%
BLR 5.7± .3 .2± .0 † †
BART 1.7± .2 .2± .1 .24 23%
C.FORESTS 3.7± .2 .2± .0 .17 34%
BNN-4-0 5.6± .3 .3± .0 † †
BNN-2-2 1.6± .1 .3± .0 † †
CFR2−2 α=0 1.5± .1 .3± .0 .16 33%
CFR2−2 WASS 1.4± .1 .3± .0 .15 30%
CFR2−2 MMD 1.4± .1 .3± .0 .13 35%

Table 1: Results on IHDP over 1000 repeated experi-
ments (left) and binary Jobs (right). MMD is squared
linear MMD. εATT% is 100 · εATT/ATTtrue. Lower is
better. †Not applicable.
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Figure 2: Error in causal effect as a func-
tion of IPM penalty on IHDP, with high
(q = 1) and low (q = 0) overlap between
control and treated.

(BART) [11], Causal Forests (C.Forests) [38] as well as the Balancing Linear Regression (BLR)
and Balancing Neural Network (BNN) by [22]. We also compare to a variable selection procedure
dubbed LASSO + Ridge (L+R) in which a ridge regression model is fit to the variables selected by
LASSO. In classification tasks we substitute Logistic Regression (LR) and `1-regularized Logistic
Regression (`1-LR) for OLS and L+R respectively. The parameters of each model are fit in the same
manner as for CFR (see above).

5.1 Simulated outcome: IHDP

Hill [20] compiled a semi-simulated dataset for causal effect estimation based on the Infant Health
and Development Program (IHDP), in which the covariates stem from a randomized experiment
studying the effects of child care and home visits on future cognitive test scores. The treatment
groups have been made imbalanced by removing a biased subset of the treatment population. The
dataset comprises 747 observations (139 treated, 608 control) and 25 covariates measuring aspects
of children and their mothers. We use the simulated outcome implemented as setting “A” in the
NPCI R package. Following [20], we use the noiseless outcome to compute the true effect. We
report the estimated (finite-sample) PEHE loss εPEHE (1), and the absolute error in average treatment
effect εATE = | 1n

∑n
i=1(f(xi, 1) − f(xi, 0)) − 1

n

∑n
i=1(m1(xi) − m0(xi))|. Results on another

semi-simulated dataset called News [22] can be found in the full paper.

We investigate the effects of varying imbalance between the original treated and control distributions
by constructing biased subsamples of the IHDP dataset. A propensity score model is fit to form
estimates p̂F (t = 1|x) of the conditional treatment probability. Then, repeatedly, with probability q
we remove the remaining control observation x that has p̂F (t = 1|x) closest to 1, and with probability
1− q, we remove a random control observation. The higher q, the more imbalanced the treatment
groups. For each value of q, we remove 347 observations from each set, leaving 400.

5.2 Real-world outcome: Jobs

The LaLonde study [23] is a widely used benchmark study in the causal inference literature, here
referred to as Jobs. The outcome variable is yearly earnings and the treatment is job training. The
Jobs dataset is a combination of a randomized study based on the National Supported Work program,
and observational data [31]. The presence of the randomized subgroup gives a way to estimate the
“ground truth” causal effect. The study includes 8 features such as age and education, as well as
previous earnings. We construct a binary classification task of predicting unemployment, and use the
augmented feature set of Dehejia & Wahba [15]. Following Smith et al. [31], we use the LaLonde
experimental sample (297 treated, 425 control) and the PSID comparison group (2490 control). There
were 482 subjects unemployed by the end of the study.
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As all the treated T were part of the original randomized sample E, we can estimate the true average
treatment effect on the treated by ATT = 1

|T |
∑

i∈T yi −
1

|C∩E|
∑

i∈C∩E yi, where C is the control
group. We report the error εATT = |ATT − 1

|T |
∑

i∈T (f(xi, 1) − f(xi, 0))|. We cannot evaluate
εPEHE on this dataset, since we do not have the ITE for any of the units. Therefore, in order to
evaluate the quality of ITE estimation, we use a measure we call policy risk. The risk is defined
as the average loss in value when treating according to the policy implied by an ITE estimator. In
our case, for a model f , we let the policy be to treat, πf (x) = 1, if f(x, 1) − f(x, 0) > 0 and to
not treat, πf (x) = 0 otherwise. The policy risk is RPol(πf ) = 1 − (E[Y1|πf (x) = 1] · p(πf =
1) + E[Y0|πf (x) = 0] · p(πf = 0)) which we can estimate for the randomized trial subset of Jobs by
R̂Pol(πf = 1 − (E[Y1|πf (x) = 1, t = 1] · p(πf = 1) + E[Y0|πf (x) = 0, t = 0] · p(πf = 0)). For
results on policy risk as a function of treatment threshold, see the full paper.

5.3 Results

In Figure 2, we see that as for higher imbalance (q) between treated and control, the relative gain
from using our method is higher, as well as the optimal weight α of the IPM penalty. The results on
IHDP and Jobs are presented in Table 1. For IHDP, non-linear estimators do significantly better than
linear ones in terms of individual effect (εPEHE). We see that using the IPM term (α > 0) confers
a small advantage over not using it, when estimating the individual effect (see also Figure 2). For
the Jobs dataset, we see that straightforward logistic regression does remarkably well in estimating
the ATE. However, being a linear model, LR can only ascribe a uniform policy - in this case, “treat
everyone”. The more nuanced policies offered by non-linear methods achieve lower policy risk in
the case of Causal Forests and CFR. In particular, CFR with the MMD penalty achieves the lowest
policy risk. This emphasizes the fact that estimating average effect and individual effect can require
different models. Specifically, while smoothing over many units may yield a good ATE estimate, this
might significantly hurt ITE estimation.
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