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1 Extended Abstract

Green investment seeks to create suitable financial returns, while also having a (measurable) positive
environmental impact. As an example of a socially responsible investment, Green investing con-
centrates on companies or projects that are committed to the conservation of natural resources, the
production and discovery of alternative energy sources (such as biomass/biofuel, geothermal, solar,
water and wind), the implementation of clean air and water projects (including renewable energy
project developers), clean transportation, energy storage technologies (such as fuel cells), and/or other
environmentally conscious business practices (such as energy efficiency technologies). In contrast,
Brown investments produce C0O2 generating “dirty” energy, such as oil, gas and coal, or act in the
exploration, drilling, production, processing, refining or related equipment industries.

As the job of these analysts is to influence investment, it makes sense to understand their biases for
and against Green investment. Identifying key actors that promote Green and Brown investments
through their analysis provides an avenue for understanding and promoting Green investment. In
particular, stock analysts produce investment ratings that report on the quality of investing in specific
stocks. Policy-makers can study the network of influence over these career influencers to see what
policies need to be put in place to inform key analysts on the long term costs of Brown investment and
social responsibility of Green investment. Unfortunately, the structure (topology) of the underlying
network of influence is often unobservable and the success of motivating Green investment requires
an effective measure or accurate simulation of influence over clean Green investments. Fortunately,
identifying “influencers” in a network is central problem in Network Science (Watts, 2004; Cohen
and Havlin, 2010; Estradal, [2012; [Newman, 2010).

This paper infers the underlying structure of influence over stock market analysts as temporal traces,
cascades. Traditionally, network-based simulation approaches from the finance and economics
literature often assume the network topology apriori (Cont and Bouchaud, [2000; [Panchenko et al.|
2013} [Toth et al.,|2015) or construct it directly from the data (Schweitzer et al., 2009; |Boss et al.,
2004). As these edges are unobservable (Adar and Adamic, [2005)), network inference methods have
been introduced to reconstruct the maximum likelihood edge relationships among actors (along
with their model parameters) (Saito et al., 2009; |(Gomez Rodriguez et al.| 2010j Snowsill et al.|
2011; Rodriguez et al., 2011} |Du et al.| 2012} |Daneshmand et al., 2014). These algorithms infer the
relationship between actors through a disease propagation model, where the relationship between
actors is inferred through a set of infection cascades (Rodriguez et al., 2011). Cascades are assumed
to represent a stochastic process generated along the edges of an underlying “unobserved” network
(Valente, 1995)). Further, Network inference algorithms based on disease propagation ignore reverse
causality and exploit the forward time-causality of multiple cascades to infer a maximum likelihood
network over actors. The edges of the network represent the actor’s ability to propagate infection
along the network according to a specific distribution, such as the exponential, power or Rayleigh
distributions.
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The state of infection in these models is limited to an “infected” or “not infected” state. Once infected,
it is not possible to be uninfected, so it is not possible to represent changing opinion dynamics, as
in the case of stock market analyst ratings. [Wang et al.|(2012) extend this simple cascade model to
conditionally independent features and reinfections, but the model is still limited. Changing opinion
dynamics are temporally dependent, so they can not be encoded as conditionally independent of time,
and the model still assumes that the nodes can not leave the state of infection once infected. We
solve these constraints by extending the NetRate algorithm introduced in Rodriguez et al.| (201 1)
to multiple shifting states in time. Within the context of ratings cascades, these states capture the
varying opinions generated by analysts over time. Some examples include "upgrade”, "downgrade"
and "neutral".

Ratings cascades are generated over Green and Brown stocks listed on the U.S. financial system
and stock analyst ratings data downloaded from Yahoo.com. Green and Brown stock lists are
drawn from traditionally classified Green and Brown sectors and do not include indirect CO2 output
or downstream CO2 output. The resulting network of influence is then used to identify the top
5% GREEN-Influencers and BROWN-Influencers in the U.S. financial system through several
standard metrics, including degree centrality, betweenness centrality (Freeman,|1977;|Brandes, [2008)),
closeness centrality (Freeman, |1978)), eigenvector centrality (Bonacichl [1987) and PageRank (Page
et al.,[1999), along with the in-degree and out-degree distributions. These metrics along with the
relevant centrality ranks and graphs are reported independently for Green and Brown investments in
the U.S. financial system. The resulting networks of influence over Green and Brown stocks provide
an insight into the central players that drive opinions among financial actors and subsequently the
financial markets.
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