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1. INTRODUCTION
Most of machine learning is the study of prediction [9].

On the other hand, the study of causality is the study of
prediction under intervention [6, 5, 13, 11]. This often, but
not always, requires different strategies depending on where
the intervention occurs. For example, we may know that
the number of ice cream cones sold in a given day predicts
the number of drownings in swimming pools on that day.
However, even knowing this correlation, if we want to make
policies which reduce drownings, it is likely that banning ice
cream will not achieve our goals. Thus, in this case, we want
to learn which variables cause drownings, not merely learn
drownings’ conditional probability density.

In this extended abstract, we discuss how meta-analysis
of many existing randomized experiments (which themselves
were, perhaps, done for completely other purposes) can allow
us to learn complex causal graphs. We then connect this idea
to work on reinforcement learning and discuss how it can be
a complement to those approaches.

A large corpus of statistical methods for learning to pre-
dict under interventions have grown up in the social and
biomedical sciences over the last few decades ([11, 2]). These
methods work with the following model of the world. There
is a variable X which is the variable we are interested in later
intervening on, often called the causal variable (this may be
vector valued). This variable is described by the following
structural equation:

X = ε+ Uψ.

There is a variable y which is the outcome we are trying to
achieve which is generated by the linear structural equation

Y = Xβ + Uγ + η.

The focus on the linear model is justified either because it
is the simplest possible model to solve or because we are
interested in relatively small interventions.1

1For this abstract assume all variables are centered and have
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The focus of causal inference is to learn the parameter
vector β.

Figure 1 shows the directed acyclic graph (DAG, [12])
which describes this system. If all variables in our system
were observed, causal inference would be easy (we could sim-
ply run a linear regression). However, what makes causal
inference hard in these situations is that the variable U is
unobserved to the learning agent. This omitted variable bias
means that simply applying a standard technique optimized
for prediction can lead one astray (as in our ice cream and
drowning example above). There are many methods devel-
oped to try to deal with this problem ([11, 2]), however,
they are highly optimized for much smaller data sets and
much smaller numbers of parameters than we are used to in
modern machine learning.

Figure 1: DAG representing our baseline structural
equation models.

We now summarize our full paper on how to combine
many randomized trials to learn causal models and espe-
cially those where X is high dimensional. Note that these
trials can even be ones that were conducted with very dif-
ferent goals in mind, such as the A/B testing that internet
companies routinely conduct to optimize various parts of
their sites. We can think of this as ‘upcycling’ existing data.

2. LEARNING CAUSAL RELATIONSHIPS
BY META ANALYSIS OF MANY RAN-
DOMIZED EXPERIMENTS

We now introduce instrumental variables (henceforth IV,
[1]) as a method for estimating β and then discuss the spe-
cial properties of the estimator when we use it to meta-
analyze existing randomized experiments. Suppose that we
have some variable Z that has two properties.

First, Z is not caused by anything in the (X,U, Y ) system.

well behaved distributions.
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Second, Z affects Y only via X. This latter assumption is
known as the exclusion restriction.

Formally this modifies the structural equations to be

X = Zµ+ Uψ + V

and

Y = Xβ + Uγ + εX

with the DAG as below:

Figure 2: DAG representing our new structural
equations with the IV added. Crosses represent
causal relationships that are ruled out by the IV
assumptions.

A standard way to use the existence of an IV to recover
causal effects is to use least squares (TSLS). In the first stage
we regress X on Z. We then replace X by the predicted
values from the regression. In the second stage, we regress
Y on these fitted values. This can be performed in one shot
by taking the projection matrix

P = Z(Z′Z)−1Z′

and computing

β̂TSLS = (X ′PX)−1(X ′PY ).

It is straightforward to show that as n approaches infinity
this estimator converges to the true causal effect β ([1], [2]).

The mathematical intuition behind the IV estimator is as
follows: the variance in X can be broken down into 2 com-
ponents. The first component is confounded with the true
causal effect (i.e. comes from U). The second component,
on the other hand, is independent of U . Thus, if we could
regress Y only on the random component, we could recover
the causal effect β. Knowing Z allows us to do exactly this
(i.e. by using only the variation in X caused by Z not U).

Traditional IV analyses in the social sciences use randomly
assigned shocks (eg. which month someone was born in com-
bined with the lottery for the draft) to study causal relation-
ships of interest (eg. the effect of education on wages [2]).
However, these kinds of analyses focus on small numbers of
causal variables and small numbers of instruments.

A great potential instrument is actual randomized exper-
imentation. These are generally randomly assigned (satisfy-
ing IV assumption 1) and with a little bit of thinking, we can
write down the exclusion restrictions (for example, experi-
ments on a spam prevention algorithm can only affect user
sentiment via the channel of which emails the user sees). In-
deed some modern research uses randomized experiments as
IVs (eg. [8] study peer effects by looking at the assignment
of peers into experimental conditions as an instrument).

However, it is often hard to change just one X at a time
and in addition the dimensionality of X is large then a learn-
ing agent which designs specialized explorations for each pa-
rameter (as a reinforcement learning agent would) would re-
quire a massive amount of time and data to learn what they
need to.

For this reason, we advocate digging into the pile of al-
ready completed experiments which we can pool together
and meta-analyze. For example, a company interested in
learning the effect of different kinds of spam on user senti-
ment (and using that to prioritize different kinds of spam
fighting initiatives) can meta-analyze a large collection of
prior A/B tests of their spam algorithms. Often there may
be hundreds, or thousands of tests available for such a meta-
analysis.

To implement this analysis, for the variable Z we can
use the treatment assignment of each row in the data set.
Note that this one-hot encoding of treatments means that
we don’t need any meta-data about what each trial actually
did, we only need to know who was assigned where. One nice
thing about such an approach is that the projection stage
of the TSLS procedure described above becomes just a re-
gression of X on these one-hot encodings which amounts
to simply taking within-group means of each causal vari-
able. The second stage then is just a regression of group
level means of X and group level means of Y with precision
weighting. This means that learning agents don’t need to
store huge amounts of data, rather summary statistics are
sufficient for all estimation. Standard A/B testing platforms
[3], [19] should already compute and store all the required
statistics, so the method here can be thought of as an “up-
cycling” of existing data.

Note, however, that while this is a consistent estimator (in
the sense of converging to β citeangrist1996identification) as
n goes to infinity, there are actually 2 dimensions to consider
here. We can either consider the asymptotic sequence where
the number of units per treatment arm goes to infinity (nper)
or the case where the number of treatments in the analysis
goes to infinity (we call this K). The natural situation is
to raise K, this corresponds to the data generating process
where we get more potential trials to analyze but each trial
continues to be of a fixed finite size.2

In this case, however, the TSLS estimator is a biased esti-
mate of the true causal effect. Indeed, it can be shown that
it biased towards the observational (confounded) estimate.
To see this, note that we can write structural equations for
our TSLS procedure as

X̄ = ε̄+ Ūψ + Z

and

Ȳ = X̄β + Ūγ + η̄

where bars indicate group level means of X and Y variables.
Note that as nper goes to infinity, Ū , ε̄, η̄ converge to 0 (be-
cause they are themselves means of iid random variables
with mean 0 we can invoke the central limit theorem) but
for any finite nper they are non-degenerate distributions. We
can use some algebra to see that the regression of Ȳ on X̄

2This is what makes much of this analysis different from
other work on IV estimation with weak instruments [16],
[15], [17] and existing research on regularized IV estimation
([4], [?], [7].



gives the coefficient

β +
γCov(X̄, Ū)

ψ2V ar(Ū) + V ar(Z̄) + V ar(ε̄)
.

The second term is the committed variable bias and note
that we can drive that to 0 in one of two ways. Either
we can decrease the numerator (which happens as we raise
nper) or we can increase the denominator. Notice that the
denominator’s variance is proportional to V ar(Z) which is
also the variance of treatment effects on X in our collection
of experiments.

There is a nice takeaway here: suppose that the exper-
iments we are meta-analyzing were drawn from a mixture
distribution (eg. some are ‘strong’ explorations of the pa-
rameter space, some are ‘weak’ optimizations at the margin).
Intuitively, if we knew which experiment was of which type
and we ran TSLS restricted to those experiments, we would
get differentially biased estimates (since weak optimizations
have smaller variance of treatment effects and thus more
bias). This means that when K is large, we can use simple
l0 regularization to isolate, just from observing X, experi-
ments which come from the strong mixture component.

In the case of the finite mixture, we are limited to how
much we can reduce the bias of our estimator but when Z is
drawn from an infinite mixture which includes all variances
(eg. a t distribution) we show in the full version of this
paper that, with large K, we can completely remove finite
sample IV bias by using first stage regularization. In the
full version of the paper we also show why standard cross-
validation cannot be used to set the hyperparameter (loosely
speaking because cross-validation will try to optimize for the
best predictive, not the beast causal model) but we also show
how to select the regularization hyperparameter using a type
of cross-validation.

3. REINFORCEMENT LEARNING
Before we close this abstract, we turn to another impor-

tant recent development in the field of artificial decision-
making: reinforcement learning (RL) [18]. We view rein-
forcement learning and causal inference as two complemen-
tary approaches to decision-making and we now discuss how
we imagine they can be integrated.

RL is very powerful because it can learn very complex
policies especially when combined with deep neural networks
to represent complex state spaces [14]. In addition, because
RL models have an explicit value model, they automatically
are able to make decisions like explore vs. exploit. On the
other hand, causal inference models are static and make no
explicit suggestions about what to do about pathways that
the model simply doesn’t have the data to estimate.

However, RL has two key disadvantages. First, it can only
learn policies not causal relationships. Thus, standard RL
cannot make predictions about the effects of an action that
it has not tried in the past (or maybe has not existed in
the past). Second, standard RL does not have the ability
to generalize from observation or from the past experiences
of others (though we note that variants of these algorithms
which can do that have been around in game theory for a
long time [10]).

Each approach to making decisions appears to cover the
weaknesses of the other, so we believe there is much to be
gained from understanding and fusing RL and causal mod-
eling.
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