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Abstract

Matching methods such as propensity score matching are commonly used to con-
struct artificial treatment and control groups from observational data, to determine
the causal effect of treatment. However, propensity scores, once estimated, are
frequently treated as known, and the uncertainty inherent in their estimation is
ignored. We introduce probabilistic matching, an improvement on propensity score
matching, that incorporates the uncertainty of the estimated propensity score into
the subsequent matching process by weighting matches by the estimated probabil-
ity of matching. Notably, this is equivalent to averaging the estimated treatment
effect over the propensity score distribution, given the data. Preliminary results
demonstrate that our approach achieves comparable or lower bias and lower vari-
ance, when compared to vanilla propensity score matching. While we focus on
matching in this paper, the idea of incorporating uncertainty can also be brought
into other ways of utilizing estimated propensity scores, such as weighing and
substratification.

1 Introduction

Causal inference on observational data is challenging, as observational data is plagued with treatment
selection bias [1]. Matching methods, commonly using propensity scores - the probability of treatment
selection conditional on observed features [2] - aim to construct artificial treatment and control groups
with similar distributions for observed features. If the unconfoundedness assumption holds [2], where
treatment selection is independent of outcome given features, any differences between the treatment
and control groups must necessarily be only due to the treatment, and hence the desired causal effect
of treatment can be obtained.

However, propensity scores, however they are estimated, are frequently treated as known [1], and the
uncertainty inherent in the propensity score estimation model is ignored. We motivate our proposed
method, probabilistic matching, as a means of accounting for the uncertainty of our propensity score
within our estimate of the treatment effect as well as in its uncertainty. Weighting by the estimated
probability of matching is equivalent to averaging the estimated treatment effect over the propensity
score distribution, given the data. This treats the propensity score as a random effect and we expect
our procedure to regularize our estimates.

Previous work to address uncertainty in the estimation of propensity scores has been Bayesian in
flavor, including the joint estimation of propensity scores and treatment effects, then sampling from
the joint posterior distribution [3, 4], and a fully-Bayesian treatment using Bayesian model averaging
[3]. In this paper, we offer a frequentist approach.
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2 Method

We motivate our method with the illustration in Figure 1 which plots the densities of a randomly
selected treated observation and three closest controls in terms of estimated propensity scores. The
figure illustrates that the propensity score model is imperfect, but also the difficulty of picking
between any of these candidates for matching, especially when the differences in estimated propensity
scores appear miniscule.

Figure 1: Densities of one randomly selected treated observation and three closest controls in terms
of estimated propensity scores.. The dotted vertical lines are the true propensity scores.

We propose a variation on propensity score matching that incorporates uncertainty into the matching
process by comparing the distributions of pairs of candidate matches to estimate the probability of
matching.

Estimating the probability of matching. Denote the estimated propensity scores for a treated
observation, T , and control candidates for matching, Cj , where j = 1, . . . , nc where c is the number
of control observations in the data set. Considering their asymptotic normality property from the
maximum likelihood estimation of the logistic regression coefficients, we can write:

T ∼ N(µT , σ
2
T ) Cj ∼ N(µCj

, σ2
Cj
) for j = 1, . . . , nc (1)

with Cov(T,Cj) = σT,Cj
. From (1), it follows that:

T − C1 ∼ N(µT−C1 , σ
2
T + σ2

C1
+ 2σT,C1)

T − C2 ∼ N(µT−C2 , σ
2
T + σ2

C2
+ 2σT,C2)

with

Cov(T − C1, T − C2) = V ar(T )− Cov(T,C2)− Cov(T,C1) + Cov(C1, C2)

= σ2
T − σT,C2 − σT,C1 + σC1,C2 .

We observe that the probability that C1 instead of C2 is matched to T is

P (T − C1 < T − C2) = P ((T − C2)− (T − C1) > 0). (2)

Since we have that

(T − C2)− (T − C1) ∼ N(µC1−C2
, 4σ2

T + σ2
C1

+ σ2
C2

+ 2σC1,C2
). (3)

Equation (2) can be calculated directly or approximated by simulating repeatedly from the distribution
in (3) and counting how many times the simulated points exceed zero. Equation (2) is exactly the
estimated probability of matching T to C1 instead of C2, and we call this probability a weight,
w(C1, C2), where the ordering of the arguments matters.

The significance of 0.5. When the weight function w(C1, C2) = 0.5, C1 and C2 have equal
probability of being selected for matching with T . Hence, we use 0.5 to rank candidates for matching
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(details below). In the following five variations on our probabilistic matching method, 0.5 plays a
role in the first four.

Let C1 be the control with estimated propensity closest to that of T , and compute w(C1, Cj) for
j = 1, . . . , nc.

1. k=1: Let C2 = argminj=1,...,nc
|w(C1, Cj) − 0.5|. The counterfactual outcome for T is

calculated as a weighted average of C1 and C2’s outcomes:

Counterfactual YT = w(C1, C2)YC1 + (1− w(C1, C2))YC2 .

2. k=3: Let C2, C3, C4 be the three controls with minimum |w(C1, Cj)− 0.5|. The counter-
factual outcome for T is similarly as a weighted average of C1 to C4’s outcomes:

Counterfactual YT =

4∑
j=2

{w(C1, Cj)YC1 + (1− w(C1, Cj))YCj}/3.

3. 0.48 ≤weight ≤ 0.52: Let j = C2, . . . , Ck+1 be the set of controls for which 0.48 ≤
w(C1, Cj) ≤ 0.52.

Counterfactual YT =

k+1∑
j=2

{w(C1, Cj)YC1
+ (1− w(C1, Cj))YCj

}/k. (4)

4. 0.45 ≤weight ≤ 0.55: Let j = C2, . . . , Ck′+1 be the set of controls for which 0.45 ≤
w(C1, Cj) ≤ 0.55. Then we have equation (4) with k′ in lieu of k.

5. All weights: All controls are used, making this variation attractive because it does not
require parameter tuning for k, wlower, or wupper. The hope is that the effect of bad controls
is diminished because their weights going into equation (4) are small.

Here we pick two options for each of k, wlower, or wupper for illustrative purposes, but emphasize the
need for tuning.

Estimating ATE. ATE = E(Ytreated − Ycontrol) = E(E(Ytreated − Ycounterfactual|X)).

Propensity Score Estimation. While we estimated propensity scores using logistic regression, any
propensity score estimation method with computable uncertainty could be used.

3 Experimental Setup

3.1 Evaluation Criteria

We compare methods by computing absolute bias of estimated ATE compared to ground truth, as
well as the standard error of estimated ATE across simulations.

3.2 Competitor Methods

1. Propensity score [2]. Propensities for treatment estimated using logistic regression, then
one-to-one matching with replacement.

2. Bayesian propensity score [4]. Joint posterior distribution of estimated propensities and
outcomes is sampled from. Implementation used: R package IUPS [5].

3. Mahalanobis distance [6]. Mahalanobis distance on features computed, then one-to-one
matching with replacement. Note that treatment is not include in the computation of distance.
Implementation used: R package Matching [7].

4. Covariate-balanced propensity score [8]. The objective of achieving balance in treatment
and control samples is built into the propensity score model, with generalized method-of-
moments estimation. Implementation used: R package cbps [9].

5. Boosted-regression estimated propensity score [10]. One of the first papers [1] to use
more advanced methods, beyond logistic or probit regression, to estimate propensity scores.
Implementation used: R package twang [11].
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4 Results

1. Simulated data (n = 100, p = 10). We follow the simulation setup first developed by
Setoguchi et al. [12] and extended by Lee et al. [13] and Austin [14]. In this setup, seven
treatment scenarios were introduced, covering a variety of non-additivity and non-linearity
in features. We demonstrate our method on two scenarios (italicized below), and leave the
remaining for subsequent work:

A: Additivity and linearity E: Mild non-additivity and non-linearity
B: Mild non-linearity F: Moderate non-additivity
C: Moderate non-linearity G: Moderate non-additivity and non-linearity
D: Mild non-additivity

For each scenario, we simulated 125 data sets, each of n = 100 observations and p = 10
features, a mix of continuous and categorical. Of these ten features, three are associated with
only treatment selection, and three are associated with only the outcome. The remaining
four are associated with both. The inclusion of features associated with not only treatment
but also outcome in the treatment selection process is intended to make matching more
challenging. The coefficients for the true treatment selection and outcome models are in
Appendix A of [6].

Table 1: Methods compared on data A. True ATE equals -0.4. The * gives the value determined by
the data.

Method Estimated ATE Weight k

Mean SD Bias Min Max
Mahalanobis -0.33 0.46 0.07
Propensity -0.37 0.61 0.03
Boosting-estimated propensity -0.38 1.02 0.02
Covariate-balanced propensity -0.38 0.58 0.02
Bayesian propensity -0.36 0.61 0.04
Probabilistic, k=1 -0.35 0.52 0.05 0.5* 1
Probabilistic, k=3 -0.37 0.51 0.03 0.49* 0.51* 3
Probabilistic, 0.48 ≤ weight ≤ 0.52 -0.39 0.51 0.01 0.48 0.52 8*
Probabilistic, 0.45 ≤weight ≤ 0.55 -0.33 0.44 0.07 0.45 0.55 21*
Probabilistic, all weights -0.29 0.46 0.11 0.43* 0.57* 48*

Vanilla propensity score matching performs well in Scenario A - unsurprising since the
model is close to the true treatment model, with little nonlinearity or nonadditivity. For both
scenarios, certain variations of probabilistic matching achieves bias comparable to vanilla
propensity score matching, but with lower standard deviation. In Scenario G, the majority
of probabilistic matching variations achieve lower bias. More advanced methods such as
covariate-balanced propensities, and boosting-estimated propensities also demonstrate good
performance.

Table 2: Methods compared on data G. True ATE equals -0.4. The * gives the value determined by
the data.

Method Estimated ATE Weight k

Mean SD Bias Min Max
Mahalanobis distance -0.27 0.47 0.13
Propensity -0.33 0.57 0.07
Boosting-estimated propensity -0.54 1.01 0.14
Covariate-balanced propensity -0.37 0.57 0.03
Bayesian propensity -0.37 0.61 0.03
Probabilistic, k=1 -0.39 0.54 0.01 0.5* 1
Probabilistic, k=3 -0.36 0.51 0.04 0.49* 0.51* 3
Probabilistic, 0.48 ≤weight ≤ 0.52 -0.35 0.49 0.05 0.48 0.52 9*
Probabilistic, 0.45 ≤weight ≤ 0.55 -0.30 0.46 0.10 0.45 0.55 23*
Probabilistic, all weights -0.26 0.46 0.14 0.44* 0.58* 48*
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2. Semi-simulated data, with simulated ground truth: Schafer Kang health survey data
[15] (n = 200, p = 14). To study if dieting makes adolescent girls depressed, Schafer
& Kang simulated data based on the marginal distributions of features such as health
characteristics and adolescent behavior from the National Longitudinal Study of Adolescent
Health [16], a representative sample of American adolescents. To simulate ground truth, a
simple, unconfounded treatment selection model, and a confounded model for outcome with
interactions were used. Variants of probabilistic matching achieved lowest bias and standard
deviation.

Table 3: Methods compared on Schafer Kang data. True ATE equals 0.003. The * gives the value
determined by the data, with 0.51 being the maximum.

Method Estimated ATE Weight k

Mean SD Bias Min Max
Mahalanobis distance -0.03 0.08 0.033
Propensity -0.08 0.11 0.083
Boosting-estimated propensity -0.17 0.24 0.173
Covariate-balanced propensity -0.08 0.10 0.083
Bayesian propensity 0.02 0.10 0.017
Probabilistic, k=1 -0.06 0.09 0.063 0.49* 1
Probabilistic, k=3 -0.05 0.07 0.053 0.49* 0.50* 3
Probabilistic, 0.48 ≤weight ≤ 0.52 -0.03 0.05 0.033 0.48 0.51* 29*
Probabilistic, 0.45 ≤weight ≤ 0.55 0.03 0.08 0.027 0.45 0.51* 55*
Probabilistic, all weights -0.01 0.07 0.013 0.44* 0.51* 60*

3. Real data, with simulated ground truth: Lalonde job training data [6] (n = 445, p =
10). The Lalonde data set is a classic, somewhat controversial data set often used to
benchmark methods for causal inference on observational data [6]. The National Support
Work program was a 1970s government-run job training program conducted as a randomized
experiment, where eligible people were randomly selected to participate or not, with the
goal of determining if the program increased participants’ earnings. Lalonde made this
randomized experiment observational by adding in observations from two observational
surveys - PSID [17] and CPS [18] who resembled program participants. To simulate ground
truth, a nonlinear treatment selection model, and a simple outcome model were used. With
vanilla propensity scores performing badly, almost all other methods performed better. The
best results were achieved by modern techniques, i.e. boosted-estimated propensity score.

Table 4: Methods compared on Lalonde data. True ATE equals $1,000. The * gives the value
determined by the data.

Method Estimated ATE Weight k

Mean SD Bias Min Max
Mahalanobis distance 401 606 599
Propensity 235 966 765
Boosting-estimated propensity 953 2095 47
Covariate-balanced propensity 213 1036 787
Bayesian propensity 349 1228 651
Probabilistic, k=1 459 970 541 0.5* 1
Probabilistic, k=3 379 703 621 0.49* 0.50* 3
Probabilistic, 0.48 ≤weight ≤ 0.52 360 727 640 0.48 0.52 135*
Probabilistic, 0.45 ≤weight ≤ 0.55 477 1248 523 0.45 0.55 200*
Probabilistic, all weights 262 974 738 0.45* 0.54* 208*

5 Discussion and Ongoing Work

We estimated propensity scores using logistic regression, however our way of incorporating uncer-
tainty translates to any estimation method with quantifiable uncertainty. Moreover, while we have
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focused on one-to-one matching with replacement as it is “more versatile" [19], being able to handle
the case of more treated observations than controls, and generally has lower bias than one-to-one
matching without replacement [1], we note the idea of incorporating the uncertainty in propensity
score estimation can be brought into propensity score weighing and sub-stratification as well.

For tractable computation, we compared pairs of matches, but note that triplets or beyond, which give
multivariate normal distributions, can also be used. In this case, estimating the weights by sampling
from the distribution will be more tractable than calculating probabilities from large multivariate
normal systems.

We are working on demonstrating our method on the remaining simulated data scenarios and more
real data.

We have proposed a method to account for the uncertainty inherent in estimated propensity scores by
weighing possible matches by the estimated probability of matching. By averaging the estimated
treatment effect over the propensity score distribution. the propensity score is effectively being treated
as a random effect to be marginalized out. Here, we have five variations on our method, but will go on
to investigate other variations, vary the tuning parameters k, wlower, or wupper, as well as demonstrate
the method on other data sets.
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