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1 Introduction

To understand the workings of a high-dimensional complex system such as a gene regulatory network,
it is important to determine how its single components effects the other components. In other words:
can we predict what happens to the thousands of other genes in a genome if we knock out a single
one, and without actually performing the experiment?

In a recent large-scale micro-array experiment, both observational and perturbation data has been
measured [1], offering unique opportunities for training algorithms and validating those predictions
with the interventional data. The data consists of genome-wide expressions for all 6170 genes in
the model species Saccharomyces cerevisiae, under 262 wild-type, observational settings and 1479
single-gene knockout experiments. Here we investigate several simple methods for scoring a causal
effect, i.e. the level change in gene expression when disabling another gene. We validate these
predictions with several different scores calculated on the remaining test set.

In earlier work [2], a conservative set of causal effects is estimated with the ICP method applied
on the same micro-array dataset. Validation was performed by comparing predictions to a small
set of true positives with strong intervention effects and against several external sources from an
on-line curated compendium of true edges and a sparse transcription-factor network as “ground-truth”
networks. Furthermore, other work by Maathuis et al. [3] compared results of the IDA algorithm
trained on the observational part of the data to knock-out data in an experimentally similar setting,
but the validation was found to depend sensitively on the definition of the true causal effect [2].

2 Ground-truth scores

LetXij be the j-th sample of the observed expression level1 for gene i and letAc(i)j be the expression
of gene j when gene i has been knocked-out (intervened), where c is is the gene that is intervened on
in the i’th knockout experiment. The sample observational mean and sample standard deviation are
notated as µj and σj respectively.

We define several data-driven measures Sij to score the causal effect, i.e., the change in expression
level of gene j under an intervention of gene i.

gt.abs Absolute difference of the interventional expression of a gene and its observational
mean, i.e. Saij = |Aij − µj |.

gt.abs.norm Normalized version of Saij , scaled by observational standard deviation, i.e. Sanij =
|Aij−µj |

σj
.

1Log ratio of the mRNA fluorescence intensity of wild-type measurements versus a control.
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gt.rel Similar to Saij but relative to the absolute expression that a gene when it is intervened,

i.e. Srij =
|Aij−µj |

|Ai,c(i)−µc(i)|
.

gt.rel.norm Normalized version of Srij , scaled by observational standard deviation, i.e. Srnij =

Srij
σc(i)

σj
.

3 Predictions and validation

Using observational data Xij , we compute several different scores to Tij to estimate the strength of
a causal effect, i.e., the change in expression level in gene j when disabling gene i. For each pair
Xi., Xj., gene i causing j is scored using Pearson, Spearman and Kendall correlation coefficients,
and the regression coefficient obtained from a simple ridge regression with cross-validation. We also
add the covariance as estimated by the graphical LASSO. Finally, we have several predictions based
on the sample variance:

pred.var.ef Score all i causes j according to the sample variation of j: T ef
ij = σ2

j

pred.var.ca.inv Similar to pred.var.ef but for the reciprocal of the cause: T ca
ij = 1

σc(i)2

pred.var.ratio The combination of the earlier two scores: T ratio
ij =

σ2
j

σc(i)2

The dataset is randomly split in a training set containing 100 expression levels under observational
conditions and 100 expressions under single-gene interventions for all 1479 genes that have knock-out
data available. The remainder 162 observations and 1379 interventions are grouped in a test set for
validation purposes. The predictions methods above are applied once on the observational training
data Xtrain

ij and once on the interventional data Atrain
ij , where expression levels of a gene under 100

different interventions are pooled together and interpreted as observations.

The area-under-the-curve (AUC) statistic is used to compare the performance of each training method
against a set of true positives consisting of the top m percentage of strongest effects in each ground-
truth score. Fig. 1 shows an overview for all methods trained on observational and interventional data
separately, compared against the same validation set.2

Observational coefficient methods, such as Pearson, Spearman, Kendall coefficients, Ridge regression
and GLASSO are showing similar to random performance comparing to the above ground-truth, for
both m = {1, 5}, using either observations or interventions for training.

The variance measures pred.var.ef, pred.var.ca.inv and pred.var.ratio perform very well compared
to the other methods for the pooled interventional data. In particular, pred.var.ef versus the absolute
score gt.abs as true positives has an AUC of 0.81, while a near random AUC was found when
comparing against gt.rel.norm.

4 Conclusions

We defined a set of measures for the strength of causal effect using the data and compared several
methods for predicting the strength of an unknown intervention to these measures. Genome-wide
inference of causal effects using out-of-the-box methods with observational data is shown to be a
difficult task, but pooling interventional data as observational shows promising results. Remarkably,
simple prediction scores using the sample variance perform very well against several of the data-driven
ground-truth.
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Figure 1: Overview of AUC when comparing prediction methods(horizontally) to different ground-
truth measures (vertically). Left: prediction on training set of 100 random observational data-
points; Right: training set of 100 random interventions. The true positives are defined as scores
different cutoff percentile m = {1, 5} and calculated with the remaining 1379 interventions and 162
observations.
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