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Supervised machine learning (ML) provides a myriad of effective methods for solving prediction
tasks. In these tasks, the learning algorithm is trained and validated to do a good job predicting
the outcome for future examples from the same data generating process (DGP). However, decision
makers (and automated decision systems) look to the data to model the effects of a policy change.
Precisely because policy is going to change, the future relationship between inputs and outcomes
will be different from what is in the training data. The ML algorithm will do a poor job of predicting
the many potential futures associated with each policy option.

For example, optimal pricing requires predicting sales under changes to prices, a doctor needs to
know how a patient will respond to various treatment options, and advertisers want to identify ads
that cause sales. To accurately answer such counterfactual questions it is necessary to model the
structural (or causal) relationship between policy (i.e., treatment) and outcome variables. Random-
ized control (‘AB’) trials are the gold standard for establishing causal relationships, but conducting
them is often impractical or excessively expensive. Observational data, by contrast, is abundant.

The instrumental variables (IV) framework is a general class of methods for using observational
data to establish causal relationships. It has a long history, especially in economics [e.g., Wright,
1928, Reiersøl., 1945]. The idea is to use sets of variables that only affect treatment assignment
and not the outcome variable—so-called instruments—to consistently estimate the causal treatment
effect. The framework is most straightforward in the case of an imperfect experiment. Consider
a scenario where one of the inputs to treatment assignment has been randomized, but where other
influences are potentially endogenous: they are connected to unobserved influences on the outcome.
For example, in a medical trial we might have a treatment that is made available to a random sample
of patients. However, only a portion of those patients actually take the treatment (perhaps because
it causes discomfort). In this scenario, the random availability of treatment is our instrument and an
IV analysis is used to infer the causal treatment effect in the face of selective partial adherence.

This paper provides a recipe for combining ML algorithms to solve for causal effects in the presence
of instrumental variables. We show that a flexible IV specification resolves into two prediction tasks
that can be solved with deep neural nets: a first-stage network for treatment prediction and a second-
stage network whose loss function involves integration over the conditional treatment distribution.
This Deep IV framework imposes some specific structure on the stochastic gradient descent routine
used for training, but it is general enough that we can take advantage of off-the-shelf ML capabilities
and avoid extensive algorithm customization. We outline how to obtain out-of-sample causal valida-
tion in order to avoid over-fit and describe schemes for both Bayesian and frequentist inference. The
result is a modular and scalable framework for reliable causal inference from observational data.
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