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Abstract

Estimating treatment effect is crucial in many fields, including but not limited to
medicine, psychology and economics. Accurate estimation of treatment effect is
difficult in most observational studies, as those collected examples are inevitably
biased: distributions of sample covariates between treatment and control groups
are misaligned due to experimental conditions or constraints. To address this issue,
we borrow covariate shift correction techniques from the transfer machine learning
community and incorporate them into weighted Gaussian process for effective bias
correction. Our method can (1) correct sample bias, (2) predict both population and
individual treatment effects, and (3) provide corresponding confidence intervals.

1 Introduction

A patient’s clinical treatment should be based on his/her individual conditions. In order to identify
whether and to what degree a treatment is helpful, researchers often have to estimate its effect from
observational data. This is because running randomized control trials are at best expensive, or in
most cases, infeasible. Therefore, accurate estimation of treatment effect from observational studies
is of crucial importance. We can estimate the treatment effect by looking at the different outcomes
of treatment and control groups. However, naïve estimation methods may suffer from sample bias
because, realistically, the assignment of treatment can depend on characteristics of the patient: for
example, clinicians are more likely to provide treatments to sicker patients. Moreover, the treatment
effect may be different for different individuals, and practitioners would prefer to know the confidence
of the estimation.

The issues of sample bias and the correction techniques involved are not limited to medical domain.
Another plausible application is A/B testing in the web/app industry (Crook et al., 2009). In A/B
testing, two groups of users are respectively presented with two variants of a product (website/app
layout), and then the test designer will examine the difference in outcome (website visits/revenue).
Similar to medical domain, here the outcome difference (in analogy to treatment effect) could be
inaccurate if the user groups are biased. As such, the approach described in this paper remains
applicable for A/B testing.

In this work, we borrow certain covariate shift techniques (Sugiyama and Kawanabe, 2012) from
the transfer learning community to handle sample bias of treatment effect estimation, and more
importantly, provide confidence on the estimation using weighted Gaussian process (GP). We will
first provide the problem specification and related work (Section 2), then we will describe the sample
bias issue in treatment effect estimation and how to solve it with importance reweighting in Section 3,
followed by our Bayesian interpretation of weighted learning (Section 4). We will show that the
resultant weighted Gaussian process can (1) correct the sample bias, (2) predict population/individual
treatment effect, and (3) provide respective confidence intervals. Finally, in Section 5, we will
demonstrate the effectiveness of our method in both synthetic and real-world RCT datasets.
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2 Problem Specification and Related Work

Throughout the paper, we use capital letters (e.g., X,K) for matrices, bold letters (e.g., x,y) for
vectors, and non-bold letters (e.g., x, y) for scalars. We will also abuse these notations to represent
both random variables and their realizations. We are given a dataset pX,y0,y1, tq, where X P Rnˆd

is the covariate data matrix, t P t0, 1un is the vector of indicator variables whose ith entry represents
whether the ith patient belongs to control or treatment group, and y0,y1 P Rn represent the outcomes
after being controlled or treated respectively. Note that for the ith patient, only one of yi0, yi1 will
be observed and the other will be missing. For example, when ti “ 1, we observed the treatment
outcome yi1 but not the control outcome yi0. The goal is to estimate the sample average treatment
effect on the treated (SATT): Ex„pppx|t“1qry1´ y0s, where the expectation is taken over the empirical
distribution pppx|t “ 1q. Because of sample bias (i.e., ppx|t “ 1q ‰ ppx|t “ 0q), a major difficulty
lies in effectively estimating Ex„pppx|t“1qry0s. Of course, it would be advantageous to have models
that can predict treatment effect on unseen new patients.

Many existing methods focus on estimating the propensity score epxq def
“ ppt “ 1|xq (Rosenbaum

and Rubin, 1983; Rubin, 2006) by employing, for instance, logistic regression, and then correcting
sample bias with it. However, estimating epxq can be as difficult as finding y1pxq, y0pxq for patient
x. Instead, our proposed method models y1pxq, y0pxq directly with (weighted) Gaussian process,
which is also beneficial for extrapolation to unseen new patients. Matching and inverse probability
weighting (IPW) are two types of methods among others (Austin, 2011) that are most relevant to our
method.

Matching methods (Stuart, 2010) couple each treated individual with another “similar” individual
in the control group (or a combination of several controlled individuals). The similarity is usually
measured by some metrics, such as the distance in the covariate space X or their propensity score
difference. After matching, hopefully the matched sample would have reduced bias so that the
treatment effect can be estimated as usual. A major drawback of matching is that the sample is not
utilized effectively: some data in the control group could be left out and completely ignored. Our
method does intend to match the treatment and control groups, but we achieve it by aligning the
whole groups instead, which is closely related to IPW.

Inverse probability weighting (Lunceford and Davidian, 2004) assigns all individuals a weight:
wpxq “ 1 for treated individual and wpxq “ pepxq{p1´ pepxqq for controlled individual, where the
estimated propensity score pe is computed from sample. SATT is then estimated from this weighted
sample. The performance of IPW is highly dependent on the accuracy of propensity score estimation,
which might be a complicated task especially in high dimensional X space. To overcome this obstacle,
we aim to estimate the ratio pepxq{p1 ´ pepxqq directly, using techniques from the transfer learning
community (Sugiyama et al., 2007; Sugiyama, Suzuki, and Kanamori, 2012). Combining these
well-developed techniques with weighted Gaussian process, we are able to effectively estimate SATT
together with confidence intervals.

3 Treatment Effect Estimation

In this section, we will discuss the sample bias issue in treatment effect estimation, and we will
address it using weighted Gaussian process in the next section. To begin, we can decompose the joint
distribution ppx, y, tq as

ppx, y, tq “ pptq ¨ ppx|tq ¨ ppy|x, tq.

Even when there is no prior preference (i.e., ppt “ 0q “ ppt “ 1q), ppx|t “ 0q and ppx|t “ 1q
are generally different, so are ppy|x, t “ 0q and ppy|x, t “ 1q. Since the difference yi1 ´ yi0 is
never observed, we could instead model regressors f0pxiq, f1pxiq : X ÞÑ R for ppy|x, t “ 0q and
ppy|x, t “ 1q respectively, and then use their difference f1 ´ f0 to estimate the treatment effect.
Such modelling is appealing as it allows us to predict outcome and possibly its associated confidence
interval for any individual or group.

Gaussian process (Rasmussen and Williams, 2005) is a reasonable choice for the task. In order to
estimate SATT, the key problem is measuring the hypothetical control outcome of a treated patient
(y0|x, t “ 1). Applying direct Gaussian process modelling on ppy|x, t “ 0q could be problematic
due to sample bias (i.e., ppx|t “ 0q ‰ ppx|t “ 1q). As shown in Figure 1a, modelling with equal
weights on control group may result in inaccurate estimation of y0|x, t “ 1 due to sample bias.
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(a) Gaussian process (b) Weighted Gaussian process

Figure 1: The blue/red curves are the true models for treatment/control outcomes respectively. The
blue/red crosses are examples from treatment/control groups respectively. Note that the treatment
group concentrates on r´1.5, 0s while the control group spreads all over the x-axis. The dashed
red curves have different meanings in the figures: Figure 1a shows the mean of GP learned from
control group with equal weights wi “ 1, while Figure 1b shows the mean of weighted GP learned
from control group with adjusted weights (patients similar to treatment group have larger weights).
The weights are shown at the bottom graphs as purple bars for each control patient (note that their
y-scales are different). It is clear that such adjustment on weights is beneficial since the prediction of
y0|x, t “ 1 (hypothetical control outcome of treated patient in r´1.5, 0s) is more accurate. Moreover,
the confidence interval (red shades) shrinks significantly on the treatment region, meaning that we
are more confidence about the prediction.

Such sample bias is very plausible in practice because, for instance, doctors are more inclined to
offer treatment to sicker patients (or based on some other internal criteria of theirs). With proper
importance weights wi on the control data points, we could achieve better estimation on y0|x, t “ 1
(Figure 1b). Therefore, our method can be summarized as follows:

1. Use GP to model the treatment outcome ppy|x, t “ 1q from treatment group with equal weights.
2. Use weighted GP to model the control outcome ppy|x, t “ 0q from weighted control group.
3. Apply both GPs to the treatment group and calculate the model differences as SATT. Both

individual and sample treatment effects can be estimated. It is also convenient to provide relevant
confidence intervals from Eq.(2) and Eq.(3) in the next section.

The only problem left is how to compute importance weights for control group patients. In the
statistics community, the weight is usually computed by pwpxq “ pepxq{p1 ´ pepxqq, where pepxq is
estimated propensity score. A closer look at the propensity score reveals its connection to importance
weight in the transfer learning community. In transfer learning, or specifically in the covariate shift
scenario (Shimodaira, 2000; Sugiyama and Kawanabe, 2012), there are two marginal distributions: the
source and target distributions of inputs pSpxq, pT pxq. If we look epxq as the target marginal pT pxq
and 1´ epxq as the source marginal pSpxq, then finding wpxq “ epxq{p1´ epxqq “ pT pxq{pSpxq
is just usual weight function estimation, which has been extensively studied in transfer learning
community (Huang et al., 2007; Sugiyama, Suzuki, and Kanamori, 2012; Wen, Yu, and Greiner,
2014; Cortes, Mohri, and Muñoz Medina, 2015). In fact, in our context, pT pxq “ ppx|t “ 1q and
pSpxq “ ppx|t “ 0q. With equal prior ppt “ 1q “ ppt “ 0q, we have

wpxq “
epxq

1´ epxq
“
ppt “ 1|xq

ppt “ 0|xq
“
ppx|t “ 1q

ppx|t “ 0q
“
pT pxq

pSpxq
.

In the following, we will use Kullback-Leibler Importance Estimation Procedure (KLIEP) (Sugiyama
et al., 2007) to compute this weight, which has been well recognized for its good performance
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in the transfer learning community (Kanamori, Hido, and Sugiyama, 2009). KLIEP minimizes
KLrpT pxq}ppT pxqs, the KL divergence between true target marginal pT pxq and estimated target
marginal ppT pxq “ pwpxqpSpxq. Since neither pT pxq nor pSpxq is known in practice, empirical
substitutions are used and after basic manipulations, the objective of KLIEP becomes:

max
pw

nT
ÿ

j“1

log
´

pw
´

x
pT q
j

¯¯

s.t.
1

nS

nS
ÿ

i“1

pw
´

x
pSq
i

¯

“ 1 and pwpxq ě 0,@x P X

where nT , nS are number of treated (target) patients and number of controlled (source) patients
respectively. The non-negativity constraint is not hard to understand since pwpxq is modelling density
ratio pT pxq{pSpxq. The normalization constraint comes from the fact that the estimated target
marginal ppT pxq should be a proper density function:

1 “

ż

ppT pxqdx “

ż

pwpxqpSpxqdx «
1

nS

nS
ÿ

i“1

pw
´

x
pSq
i

¯

.

Eventually, the weight function is parametrized as a mixture of Gaussians: pwpxq “
ř

l αlϕlpxq,
where αl ě 0 are the mixing coefficients and ϕlpxq are basis Gaussians. KLIEP is then optimized
over αl. It is a convex problem and thus can be solved efficiently.

4 Weighted Gaussian Process

This section describes how to incorporate importance weights into Gaussian process (GP) and derive
relevant posterior distributions. We will briefly review GP before going to its weighted version. There
are two equivalent perspectives of GP regression: parameter-space and function-space view.

4.1 Parameter-space View

First of all, let us investigate the standard linear generative model:

fpxiq “ θJxi, yi “ fpxiq ` εi,

where θ is model parameters with Gaussian prior1 N p0, Iq and εi are i.i.d. additive noise drawn from
N p0, σ2q. Given a dataset pX,yq, it is easy to see that the posterior distribution of θ satisfies

ppθ|X,yq 9 ppy|X,θq ¨ ppθq 9 exp

ˆ

´
1

2σ2
pXθ ´ yqJpXθ ´ yq

˙

exp

ˆ

´
1

2
θJθ

˙

9 exp

ˆ

´
1

2
pθ ´ sθqJ

`

σ´2XJX ` I
˘

pθ ´ sθq

˙

, (1)

where sθ “ pXJX`σ2Iq´1XJy. That is, the posterior is also Gaussian with mean sθ and covariance
Σ “ pσ´2XJX ` Iq´1. Now consider the distribution of the predictive value f‹

def
“ fpx‹q at a new

point x‹. By marginalizing θ, we have

ppf‹|x‹, X,yq “

ż

ppf‹|x‹,θq ¨ ppθ|X,yq dθ “ N pxJ‹ sθ, xJ‹ Σx‹q.

Because

pXJX ` σ2Iq´1XJ “ pXJX ` σ2Iq´1XJpXXJ ` σ2IqpXXJ ` σ2Iq´1

“ pXJX ` σ2Iq´1pXJXXJ ` σ2XJqpXXJ ` σ2Iq´1

“ pXJX ` σ2Iq´1pXJX ` σ2IqXJpXXJ ` σ2Iq´1

“ XJpXXJ ` σ2Iq´1,

we can rewrite the mean as

xJ‹
sθ “ xJ‹ pX

JX ` σ2Iq´1XJy “ xJ‹X
JpXXJ ` σ2Iq´1y.

1Note that the prior can be specified in other forms. We use zero mean and identity covariance here for
notation simplicity.
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We can use the matrix inversion lemma (Boyd and Vandenberghe, 2004) to rewrite the covariance Σ:

Σ “ pσ´2XJX ` Iq´1 “ I ´XJpXXJ ` σ2Iq´1X.

These variational representations allow us to use the “kernel trick” and replace all inner products of x
by a kernel κp¨, ¨q, so that

f‹|x‹, X,y „ N
`

µ‹, σ
2
‹

˘

with µ‹
def
“ kJ‹ pK ` σ2Iq´1y

σ2
‹

def
“ κpx‹,x‹q ´ kJ‹ pK ` σ2Iq´1k‹,

(2)

where k‹ “ rκpx‹,x1q, ¨ ¨ ¨ , κpx‹,xnqs
J and Kij “ κpxi,xjq with i, j “ 1, ¨ ¨ ¨ , n. Therefore, we

can both predict f‹ by the mean and provide its associated confidence interval because we have its
distribution.

4.2 Function-space View

Gaussian process is defined as a (possibly infinite) collection of random variables, any finite subset
of which have a joint Gaussian distribution. It is completely specified by its mean function and
covariance function. For instance, a real process fpxq indexed by x can be written as fpxq „
GPpµpxq, κpx,x1qq.
Suppose we use zero mean function µpxq “ 0 and assume y “ fpxq ` ε with ε „ N p0, σ2q. Given
a dataset tX,yu and a new point x‹, the joint distribution of the outcomes is

„

y
f‹



„ N
ˆ

0,

„

K ` σ2I k‹
kJ‹ κpx‹,x‹q

˙

.

Then we can find the marginal distribution of f‹:

f‹|x‹, X,y „ N
`

µ‹, σ
2
‹

˘

,

which is exactly the same as Eq.(2). The chosen kernel is now interpreted as covariance function.

4.3 Reweighting Data Instances

To understand the Bayesian interpretation of weighted GP, consider maximizing the posterior (Eq.(1)),
which is equivalent to minimizing its negative in log scale:

min
θ
´ log ppθ|X,yq ðñ min

θ

1

2
}Xθ ´ y}22 `

σ2

2
}θ}22 ðñ min

θ

1

2

n
ÿ

i“1

pxJi θ ´ yiq
2 `

σ2

2
}θ}22.

It is clear that this is ridge regression (Hastie, Tibshirani, and Friedman, 2009), treating every data
point with equal importance (here, with weight one). In order to correct sample bias (or specifically
covariate shift), one may impose different importance weights wi and optimize the following instead:

min
θ

1

2

n
ÿ

i“1

wi ¨ px
J
i θ ´ yiq

2 `
σ2

2
}θ}22 ðñ min

θ

1

2
pXθ ´ yqJW pXθ ´ yq `

σ2

2
}θ}22

with wi ě 0,
ř

i wi “ n and W being a diagonal matrix with wi on the diagonal. Equivalently, we
are now maximizing ppθq

ś

i p
wipyi|xi,θq. Beyond this point, it is straightforward to see that by

replacing X with rX “W
1
2X and y with ry “W

1
2y, we can obtain the distribution of f‹:

f‹|x‹, rX, ry „ N
`

rµ‹, rσ
2
‹

˘

with rµ‹
def
“ rkJ‹ p

rK ` σ2Iq´1
ry

rσ2
‹

def
“ κpx‹,x‹q ´ rkJ‹ p

rK ` σ2Iq´1
rk‹,

(3)

where rk‹ “W
1
2k‹ and rK “W

1
2KW

1
2 . The importance of understanding the distribution of f‹ in

weighted GP is that we can now provide its confidence interval when instances are weighted. The
adjustments with W in Eq.(3) are similar to that of normalized kernel (Weiss, 1999; Xu, White, and
Schuurmans, 2009). The difference is that, instead of computed from the kernel K, the weights here
are pre-computed for sample bias correction.

5



5 Experiments

In this section, we evaluate the proposed method, denoted as weighted Gaussian process (WGP),
based on how accurately it can calculate sample average treatment effect on the treated (SATT) on
both synthetic datasets and a real-world study. In order to acquire true treatment effect, we investigate
randomised control trial (RCT) data, in which the true effect can be calculated as sy1 ´ sy0, the
difference in means of treated and controlled outcomes.

5.1 Synthetic Data

We generated a synthetic dataset to compare the effectiveness of the proposed method against the
other methods in the literature.

Data Generation. Two quadratic functions were constructed to represent the true underlying outcome
for control group and another for treatment group:

f0pxq “ x2, f1pxq “ x2 ` |x´ 3.5|{2

We generated X0 and X1 (each representing samples from control and treatment group respectively)
with 250 random one-dimensional examples from N p0, 1q. The outcome vectors y0 and y1 were
generated from f0pX0q and f1pX1q plus a small Gaussian noise from N p0, 0.32q. This is basically
how we generated data in Figure 1 earlier. Figure 2 (top) shows the Gaussian distributions fitted
by the control and treatment samples. These distributions are almost identical, suggesting that this
synthetic data is indeed RCT.

To mimic observational data, we skewed the dataset such that examples with larger x-values have a
higher chance to be assigned to the control group. Likewise, examples with smaller x-values have a
higher chance to be assigned to the treatment group. In other words, the skewed dataset is a subset
of the original RCT data, but it is clearly biased in its treatment assignment procedure. The true
SATT can be computed from each skewed treated sample based on the shift in the second term
of f1. This sampling procedure is repeated 50 times to imitate 50 different observational studies.
Figure 2 (middle) shows the 50 skewed datasets fitted by Gaussian distributions.

Methods and Results. We are going to compare our method with Baseline, Bayesian additive
regression trees (BART) (Chipman, George, and McCulloch, 2010) and targeted maximum likelihood
learning (TMLE) (van der Laan and Rubin, 2006). The Baseline method is simply modelling the
skewed dataset with Gaussian process on the control group, and then estimate SATT using the
difference in true treated outcome and estimated controlled outcome of the treatment group patients.
On such observational dataset, training a naïve model like this without adjustment for discrepancy
between distributions would usually result in an inaccurate estimation of SATT. BART is an ensemble
method that can be viewed as a representative of matching approaches because of its tree nature.
TMLE is an efficient doubly robust approach for estimating any target value of data distribution (in
our case, the SATT). For our method, we used Gaussian kernel as covariance function with kernel
width chosen by the median pair-wise distance in the dataset, and σ2 was selected from a wide range
of candidates by cross-validation.

The results are shown in the Table 1. Entries marked as Truth reflect the true SATT calculated based
on f1 ´ f0 on the treated set. The Baseline method performs poorly on estimating SATT since it
does not consider sample bias correction. Both BART and WGP have effectively corrected sample
bias and produced reasonable SATT estimates. Their standard deviations are also very close. The
correction of WGP can be directly seen in Figure 2 (bottom), where the control group is obviously
shifted towards treatment group. TMLE did correct the bias to some extend compared to Baseline,
but not as significant as BART or WGP. Moreover, its standard deviation is higher than the others.

5.2 CO-MED Dataset

Dataset Overview. The real-world RCT dataset that we used is Combining Medications to Enhance
Depression Outcomes (CO-MED) (Rush et al., 2011). This study was designed and conducted by the
U.S. National Institute of Mental Health (NIMH), to compare the effectiveness of administering a
combination of antidepressant medications in the first treatment step instead of one antidepressant
medication alone, for people with chronic or recurrent major depressive disorder. The control group
had received Escitalopram + Placebo , while the treatment group had received Venlafaxine XR
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Figure 2: Gaussian distributions fitted to control and
treatment groups for the synthetic RCT dataset (top);
50 observational (i.e., skewed) datasets (middle); and
adjusted control distributions by KLIEP that attempts
to shift the control distribution to match the treatment
distribution (bottom).

Method Synthetic CO-MED
Truth 2.02 (˘ 0.02) -1.43

Baseline 2.18 (˘ 0.10) -0.69 (˘ 0.18)

BART 1.87 (˘ 0.09) -1.19 (˘ 0.32)

TMLE 2.21 (˘ 0.34) -1.28 (˘ 0.65)

WGP 2.13 (˘ 0.10) -1.48 (˘ 0.32)

Table 1: SATT estimation results. Mean
and standard deviation (in parenthesis)
over 50 runs.

# Description
1 Gender
2 Feel more self confident than usual
3 Feel heart racing
4 Been having lots of great ideas
5 Plan to commit suicide
6 Ability to focus / sustain attention
7 Somatic anxiety
8 Work and interests
9 Retardation

10 Mood (anxious)
11 Mood (irritable)
12 Sympathetic arousal
13 Worry daily
14 Probability of fall asleep b/c worry
15 Tension in muscles b/c anxiety
16 Trouble concentrating b/c worry
17 Snappy/irritable b/c worry
18 Sleep onset insomnia
19 Suicidal ideation
20 Money satisfaction
21 Friends satisfaction
22 Back pain
23 Severity of nasal congestion
24 Severity of muscular cramps
25 Menstrual irregularities
26 Work hours missed due to reasons

other than health problems

Table 2: Most predictive features by LARS

+ Mirtazapine. The eligible participants were randomly allocated to one of the groups. Several
assessment forms were completed throughout the study by both the patients and their respective
psychiatrists including demographic information, as well as psychiatric and medical measurements.

The primary outcome measure of the study is QIDS-SR16 score2 at the end-point (week 28, post-
treatment). The study had recruited 444 patients, 261 of whom completed the 28 weeks duration of
the study (136 in the control group and 125 in the treatment group). 362 features were compiled from
the assessment forms. We then used least-angle regression (LARS) (Efron et al., 2004) and found
26 key features (cross-validated) that were most predictive for estimating outcome. Table 2 lists the
description of these key features.

Preprocessing. Existing analysis of the CO-MED study showed no significant difference in outcome
between prescribing a combination of medications over mono-therapy with Escitalopram in patients
with chronic and/or recurrent major depressive disorder (Rush et al., 2011). This is further confirmed
by calculating the true effect from the RCT dataset using sy1 ´ sy0. The effect is ´0.457, which is a
small remission for a score that ranges from 0 to 27.

Such small effect makes subsequent analysis overwhelmingly difficult for all methods due to the
presence of noise in the dataset. Therefore, we leverage (increase) the effect by removing some
controlled patients with huge remission as well as some treated patients with insignificant remission at
the end-point of the study. It should be noted that, this leverage process maintained the RCT nature of
the data. This is confirmed in Figure 3a, which shows the distributions fitted to control and treatment

2Quick Inventory of Depressive Symptomatology - Self-Report. It ranges from 0 (none) to 27 (severe).

7



First Principal Component

-5 0 5

P
ro

b
a
b
ili

ty

0

0.1

0.2

0.3
Original Data

Control

Treatment

First Principal Component

-5 0 5

P
ro

b
a
b
ili

ty

0

0.1

0.2

0.3
Leveraged Data

Control

Treatment

First Principal Component

-5 0 5

P
ro

b
a
b
ili

ty

0

0.1

0.2

0.3
Skewed Data

Control

Treatment

(a)

pre-treatment QIDS

0 10 20 30

p
o
s
t-

tr
e
a
tm

e
n
t 
Q

ID
S

0

5

10

15

20

25
Original - Control

pre-treatment QIDS

0 10 20 30

p
o
s
t-

tr
e
a
tm

e
n
t 
Q

ID
S

0

5

10

15

20

25
Original - Treatment

pre-treatment QIDS

0 10 20 30

p
o
s
t-

tr
e
a
tm

e
n
t 
Q

ID
S

0

5

10

15

20

25
Leveraged - Control

pre-treatment QIDS

0 10 20 30

p
o
s
t-

tr
e
a
tm

e
n
t 
Q

ID
S

0

5

10

15

20

25
Leveraged - Treatment

pre-treatment QIDS

0 10 20 30

p
o
s
t-

tr
e
a
tm

e
n
t 
Q

ID
S

0

5

10

15

20

25
Skewed - Control

pre-treatment QIDS

0 10 20 30

p
o
s
t-

tr
e
a
tm

e
n
t 
Q

ID
S

0

5

10

15

20

25
Skewed - Treatment

(b)

Figure 3: CO-MED dataset. (a) Distributions of control versus treatment groups over the first
principal component direction. The control and treatment groups are well-aligned before (top) and
after (middle) leveraging the treatment effect, which suggests that the leveraged data remains RCT.
After skewing the dataset to mimic observational study, the distributions are no longer matched (bot-
tom), indicating that the skewed data is not RCT anymore. (b) Patients’ QIDS-SR16 scores measured
at end-point versus start-point. Note that the size of the circles represent the number of patients with
same [start-point, end-point] QIDS-SR16 score tuple. The 45˝ line indicates patients with no effect
after the study. We can see that the leveraged dataset closely resembles the original dataset, while in
the skewed dataset, patients with severe depressive disorder are more likely to receive treatment.

groups are still closely aligned after leverage process. The treatment effect on this leveraged dataset
is now ´1.43, which would be considered as the true effect for estimation algorithms.

Finally, we generate observational data by assigning higher probability of being treated for sicker
patients (based on pre-treatment QIDS-SR16 score) in the treatment group, and higher probability
of being controlled for healthier patients in the control group. This sampling procedure is repeated
50 times to generate 50 observational studies for further analysis. Figure 3b is a visualization
that summarizes the effect of treatment and control on each participant in this study (original data,
leveraged data and one particular skewed data).

Results. We again compare WGP with BART and TMLE. For this dataset, we use linear kernel since
it achieves better performance than Gaussian kernel, in terms of cross-validated prediction error. The
experiment results are shown in Table 1. The Truth value in CO-MED is a single number because
it is directly computed based on the whole RCT dataset with fixed treated and controlled patients.
Again, we can see that without proper sample bias correction, the Baseline method performs very
poorly on estimating SATT. Our method, although slightly over-claims the remission effect, produces
the closest value to the truth compared to BART and TMLE. Moreover, WGP maintains a reasonable
deviation on the prediction compared to the competitors.
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