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Abstract

An important problem in many domains is to predict how a system will respond
to interventions. This task is inherently linked to estimating the system’s underly-
ing causal structure. To this end, Invariant Causal Prediction (ICP) [10] has been
proposed which learns a causal model exploiting the invariance of causal relations
in different environments. When considering linear models, the implementation
of ICP is relatively straightforward; the nonlinear case, however, is more chal-
lenging due to the difficulty of performing nonparametric tests for conditional
independence. In this work, we present one method for nonlinear Invariant Causal
Prediction. As an example, we consider fertility rate modeling which is central
to world population projections. We explore predicting the effect of hypothetical
interventions using the accepted models from nonlinear ICP.

1 Introduction

Developing countries have a significantly higher fertility rate compared to Western countries. The
fertility rate can be predicted well from covariates such as ‘infant mortality rate’ or ‘GDP per capita’.
Classical prediction models, however, do not answer whether an active intervention on some of the
covariates leads to a change in the fertility rate. This can only be answered by exploiting causal
knowledge of the system. Traditionally, in statistics the methods for establishing causal relations rely
on carefully designed randomized studies. Often, however, such experiments cannot be performed.
For instance, factors like ‘infant mortality rate’ are highly complex and cannot be manipulated in
isolation. We may still be interested in the effect of a policy that aims at reducing the infant mortality
rate but this policy cannot be randomly assigned to different groups of people within a country. At
the hand of the example from fertility rate modeling, we shall explore how to exploit the invariance
of causal models for causal discovery in the nonlinear case.

1.1 Notation

Assume an underlying structural equation model (SEM) [e.g. 9]

Z1  g1(Zpa1) + ⌘1,

Z2  g2(Zpa2) + ⌘2,

...
Zq  gq(Zpaq ) + ⌘q,



for which the functions gk, k = 1, . . . , q, as well as the parents pak ✓ {1, . . . , q} \ {k} of each
variable are unknown. Here, we have used the notation ZS = (Zi1 , . . . , Zis) for any set S =

{i1, . . . , is} ✓ {1, . . . , q}. We assume the corresponding directed graph to be acyclic. We further
require the noise variables ⌘1, . . . , ⌘q to be jointly independent and to have zero mean.

Instead of trying to infer the whole graph [e.g. 9, 13, 3, 11, 6, 5] we are here interested in settings
where there is a target variable Y of special interest. W.l.o.g., we write Y = Z1 taking values in Y
and denote all the other covariates by X := Z{2,...,q}. We further write S⇤

:= pa1 for the parents
of Y and " := ⌘1. Thus, the structural equation for Y has the form

Y  f(X) + ", (1)
where f : Rp ! Y with p = q � 1. We let F be the function class of f and let FS be the subclass
of functions that depend only on the set S ✓ {1, . . . , p} of variables. We thus have f 2 FS⇤ .1 The
goal is to infer both the parental set S⇤ and confidence bands for the function f .

1.2 Invariance approach for causal discovery

[10] proposed an invariance approach in the context of linear models. We describe the approach
here in a notationally slightly different way that will simplify statements and results in the nonlinear
case and allow for more general applications.

Definition 1 (Environmental variables) Let XE with E ✓ {1, . . . , p} be a subset of the predictor
variables X , namely the so-called environmental variables XE , such that we know or assume that
XE are not descendants of Y in the causal DAG of (X,Y ).

In [10], the environmental variables were given and non-random. Note that the definition above
leaves open the possibility that there is a direct causal connection between one of the variables in
XE and Y , in contrast to, say, instrumental variable approaches.

Definition 2 (Strict environmental variables) We say the environmental variables XE are strict
environmental variables if there is no direct edge from XE to the outcome Y of interest.

Example (Fertility data) In this work, we analyze a data set provided by [15]. Here, Y,X and
XE correspond to the following quantities:

(i) Y 2 R is the total fertility rate in a country in a given year,
(ii) X 2 Rp with p = 9 are potential causal predictor variables for TFR:

– IMR – infant mortality rate
– Q5 – under-five mortality rate
– Education expenditure (% of GNI)
– Exports of goods and services (% of GDP)
– GDP per capita (constant 2005 US$)
– GDP per capita growth (annual %)
– Imports of goods and services (% of GDP)
– Primary education (% female)
– Urban population (% of total)

(iii) XE 2 R is the continent of the country, divided into the categories Africa, Asia, Europe,
North and South America and Oceania. If viewed as a random variable (which one can argue
about), the assumption is that the continent is not a descendant of the fertility rate, which seems
plausible. For a strict environmental variable, the additional assumption is that the TFR in a
country is only indirectly (that is via one of the other variables) influenced by which continent
it is situated on (cf. Figure 1).

The basic yet central insight underlying the invariance approach is the fact that for the true causal
parental set S⇤ and environmental variables XE we have the following conditional independence
relation

Y ?? XE | XS⇤ . (2)
1In slight abuse of notation, we identify XS⇤ with the variables ZS⇤ .
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Figure 1: Three examples of a causal DAG with target total fertility rate (TFR) and four potential causal
predictor variables. We would like to infer the parents of TFR in the graph. The environment variable XE is
the continent. If we assume that the continent has no direct causal influence on TFR (as in the two DAGs on
the left) we say that the environmental variable is strict.

In case of an SEM, for example, this follows directly from the local Markov condition. In general,
some components in E and S⇤ can be identical as E \ S⇤ 6= ;. However, in this work we assume
strict environmental variables, which implies E \ S⇤

= ;. The goal is to find S⇤ by exploiting the
above relation. Suppose we have a test for the null hypothesis

H0,S : Y ?? XE | XS . (3)

It was then proposed in [10] to define an estimate ˆS for the parental set S⇤ by setting
ˆS :=

\

S:H0,S not rejected

S. (4)

Here, the intersection runs over all sets S, s.t. E \ S = ;. If the tests are conducted at level
↵ 2 (0, 1), we have the coverage guarantee that

P
�
ˆS ✓ S⇤� � 1� ↵,

which follows directly from the fact that S⇤ is accepted with probability at least 1�↵ since H0,S⇤ is
true; see [10] for details. The conditional independence (3) was tested in [10] under the assumption
of a linear model (and strict environmental variables).

1.3 Contribution

Our contributions are fourfold:

(i) Conditional independence test. We propose in Section 2.1 one possible nonlinear and non-
parametric test for conditional independence of the type (3). There has been some progress
towards nonparametric independence tests [1, 7, 2, 12, 14, 16]. However, in the general non-
parametric case, no known test of conditional independence has (even asymptotically) a type I
error rate less than the pre-specified significance level. This stresses the importance of empir-
ical evaluation of conditional independence tests.

(ii) Defining sets. We discuss in Section 2.2 cases of poor identifiability of the causal parents. If
there are highly correlated variables in the dataset, we might get an empty estimator ˆS = ; for
the causal parents (or an ˆS with low cardinality). We can, however, extract more information
via defining sets comparable to a similar issue arising in multiple testing [4]. For example, if
the sets S = {1, 3} and S = {2, 3} are accepted in (3), we have that ˆS = {3} and, with high
probability, X3 is causal for the target Y . Yet we also know that either X1 or X2 has to be
causal for the target variable.

(iii) Confidence bands for causal effects. Beyond identifying the causal parents, we can provide
nonparametric or nonlinear confidence bands for the strength of the causal effects, as shown
in Section 2.3.

3



(iv) Prediction under interventions. Using the accepted models from nonlinear ICP, we are able
to forecast the average causal effect of external interventions. We will discuss this at hand of
examples in Section 2.4.

2 Methodology

2.1 Conditional independence tests

The confidence set ˆS for S⇤ can be constructed in the nonparametric setting analogous to the linear
case by defining

ˆS :=

\

S:H0,S not rejected

S (5)

where
H0,S : Y ?? XE | XS . (6)

Because of (2), the null hypothesis is true for the true set S⇤ of causal parents. If we can guarantee
that the test of (6) has the correct type I error rate in the sense that

P
�
H0,S⇤ is rejected at level ↵

�
 ↵, (7)

then we have as immediate consequence the desired statement

P
�
ˆS ✓ S⇤� � P

�
H0,S⇤ accepted

�
� 1� ↵.

If we assume a linear function f in the structural equation (1), then tests that can guarantee the
level as in (7) are available [see 10]. However, in the general nonlinear and nonparametric case, it
becomes more difficult to guarantee the type I error rate. In a nonlinear setting, where we know an
appropriate basis expansion of f , we can of course revert back to the linear case. Apart from such
special circumstances, we have to find tests that guarantee the type I error rate in (7) as closely as
possible under a wide range of scenarios. In this work, we consider the following method:

Invariant conditional quantile prediction. Predict a 1� � quantile of the conditional distribution
of Y , given X , by pooling the data over all environments and using a Quantile Regression Forest
[8]. Then test whether the exceedance of the conditional quantiles is independent of the environment
variable, using Fisher’s exact test across all discrete environments. This yields a p-value p(�) for
the 1� � quantile. Repeat for a number of quantiles and aggregate the resulting individual p-values
p(�) by Bonferroni correction. For instance, predict the 1� � quantiles for � 2 {0.1, 0.5, 0.9} and
compute the overall p-value as p = 3 ·min�2{0.1,0.5,0.9} p(�).

Invariant conditional quantile prediction does not require the noise variable in (1) to be additive.
However, since additive noise is used in Sections 2.3 and 2.4, we have written the structural equa-
tions in an additive form and shall assume additive noise throughout. In an extended version of this
work, we analyze the type I error rate of the proposed test empirically. We further propose and em-
pirically evaluate various other methods to test the null hypothesis of conditional independence in a
nonlinear setting. One of the inherent difficulties with these tests is that the bias in the estimation of
the optimal function can potentially lead to a more frequent rejection of a true null hypothesis than
the nominal level suggests.

Example (Fertility data) The following sets were accepted at the level ↵ = 0.1 when using
nonlinear ICP with invariant conditional quantile prediction:

S1 = {Q5}
S2 = {IMR, Imports of goods and services, Urban pop. (% of total)}
S3 = {IMR, Education expenditure (% of GNI), Exports of goods and services, GDP per capita}

As the intersection of S1, . . . , S3 is empty, we have ˆS = ;. This motivates the concept of defining
sets.
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2.2 Defining sets

It is often impossible to distinguish between highly correlated variables. For example, infant mortal-
ity IMR and under-five mortality Q5 are highly correlated in the data and can often be substituted for
each other. We thus accept sets that contain either of these variables. When taking the intersection
as in (5), this leads to exclusion of both variables in ˆS and potentially to an altogether empty set ˆS.
We can instead ask for the defining sets [4], where a defining set ˆD ✓ {1, . . . , p} has the properties

(i) S \ ˆD 6= ; for all S such that H0,S is accepted.

(ii) there exists no strictly smaller set D0 with D0 ⇢ ˆD for which property (i) is true.

Given a defining set ˆD, we thus know that

P (S⇤ \ ˆD = ;)  P (H0,S⇤ rejected)  ↵.

In other words, a) at least one of the variables in the defining set ˆD is a parent of the target, and b)
the data do not allow to resolve it at a less granular level.

Example (Fertility data) We obtain seven defining sets:

ˆ

D1 = {Q5, IMR}
ˆ

D2 = {Q5, Education expenditure (% of GNI), Imports of goods and services}
ˆ

D3 = {Q5, Education expenditure (% of GNI), Urban pop. (% of total)}
ˆ

D4 = {Q5, Exports of goods and services, Imports of goods and services}
ˆ

D5 = {Q5, Exports of goods and services, Urban pop. (% of total)}
ˆ

D6 = {Q5, GDP per capita, Imports of goods and services}
ˆ

D7 = {Q5, GDP per capita, Urban pop. (% of total)}

2.3 Confidence bands

For a given set S, we can in general construct a (1 � ↵)-confidence band ˆFS for the regression
function when predicting Y with the variables XS . Note that f is the regression function when
regressing Y on the true set of causal variables XS⇤ and hence, with probability 1� ↵, we have

P (f 2 ˆFS⇤
) � 1� ↵.

Furthermore, from Section 1.2 we know that H0,S⇤ is accepted with probability 1�↵. We can hence
construct a confidence band for the causal effects as

ˆF :=

[

S:H0,Snot rejected

ˆFS . (8)

Using a Bonferroni correction, we have the guarantee that

P
�
f 2 ˆF

�
� 1� 2↵,

where the coverage guarantee is point-wise or uniform, depending on the coverage guarantee of the
underlying estimators ˆFS for all given S ✓ {1, . . . , p}.

2.4 Predicting the effect of interventions

The confidence bands ˆF themselves can be difficult to interpret. Interpretability can be guided by
looking at the average causal effect in the sense that we compare the expected response at two points
x, x̃ 2 Rp:

�(x, x̃) := E
�
Y
��do(X = x)

�
� E

�
Y
��do(X = x̃)

�
. (9)

For the fertility data, this would involve a hypothetical scenario where, for the first term on the r.h.s.
in (9), we fix the variables to be equal to x for a country and, for the second term, we set the variables
to x̃, which might differ from x just in one or a few coordinates. Eq. (9) then compares the average
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(c) ˆ

�(x, x̃) when varying IMR
and Q5 jointly

Figure 2: Data for Nigeria in 1993: The union of the confidence bands ˆFS , denoted by ˆF , bounds the
average causal effect of varying the variables in the defining set ˆ

D1 = {IMR, Q5} on the target log(TFR).
IMR and Q5 have been varied individually, see panels (a) and (b), as well as jointly, see panel (c), over their
respective quantiles. The chosen significance level is ↵ = 0.1, i.e. P

�
�(x, x̃) 2 ˆ

�(x, x̃)

�
� 0.8.

expected fertility between these two scenarios. Note that the expected response under a do-operation
is just a function of the causal variables S⇤ ✓ {1, . . . , p},

E
�
Y
��do(X = x)

�
= E

�
Y
��do(XS⇤

= xS⇤
)

�
.

In the absence of hidden variables, we even have that the latter is equal to

E
�
Y
��do(XS⇤

= xS⇤
)

�
= E

�
Y
��XS⇤

= xS⇤
�
,

that is it does not matter whether we set the causal variables to a specific value xS⇤ or whether they
were observed in this state.

Once we have a confidence band as defined in (8), we can bound the average causal effect (9) by the
interval

ˆ

�(x, x̃) :=
⇥
inf

f2F̂
{f(x)� f(x̃)}, sup

f2F̂
{f(x)� f(x̃)}

⇤
,

with the immediate guarantee that

P
⇣
�(x, x̃) 2 ˆ

�(x, x̃)
⌘
� 1� 2↵.

Example (Fertility data) The confidence bands ˆF , required for the computation of ˆ

�(x, x̃), are
obtained by a time series bootstrap as the fertility data contain temporal as well as spatial dependen-
cies. We use a level of ↵ = 0.1 for the hypothesis tests as well as for the confidence intervals, so
that P

�
�(x, x̃) 2 ˆ

�(x, x̃)
�
� 0.8. In the examples below, we set x to an observed data point and

vary only x̃.

In the first example, we consider the observed covariates for Nigeria in 1993 as x. The point of
comparison x̃ is set equal to x, except for the variables in the defining set ˆD1 = {IMR, Q5}. In
Figures 2(a) and (b), these are varied individually over their respective quantiles. The overall confi-
dence interval ˆF consists of the union of the shown confidence intervals ˆFS . If x = x̃ (depicted by
the vertical lines), the average causal effect is zero, of course. In neither of the two scenarios shown
in Figures 2(a) and (b), we observe consistent effects different from zero as some of the accepted
models do not contain IMR resp. Q5. However, when varying the variables ˆD1 = {IMR, Q5} jointly
(see Figure 2(c)), we see that all accepted models predict an increase in expected log(TFR) as IMR
and Q5 increase.

In the second example, we compare the expected fertility rate between countries where all covariates
are set to the value x, which is here chosen to be equal to the observed values of all African countries
in 2013. The expected value under this value x of covariates is compared to the scenario where we
take as x̃ the same value but set the values of the variables IMR and Q5 to the respective European
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Figure 3: (a) Bounds for the average causal effect of setting the variables IMR and Q5 in the African countries
in 2013 to European levels (with P

�
�(x, x̃) 2 ˆ

�(x, x̃)

�
� 0.8). (b) Random forest regression model using

all covariates as input (with 80%-confidence intervals).

averages. The union of intervals in Figure 3(a) (depicted by the horizontal line segments) correspond
to ˆ

�(x, x̃) for each country under nonlinear ICP with invariant conditional quantile prediction. The
accepted models make largely coherent predictions for the effect associated with this comparison.
For most countries, the difference is negative, meaning that the average expected fertility declines
if the child mortality rate in a country decreases to European levels. The countries where ˆ

�(x, x̃)
contains 0 typically have a child mortality rate that is close to European levels, meaning that there is
no substantial difference between the two points x, x̃ of comparison.

For comparison, in Figure 3(b), we show the equivalent computation as in Figure 3(a) when all
covariates are assumed to have a causal effect on the target and a random forest is used for estimation.
While the resulting regression bootstrap confidence intervals often overlap with ˆ

�(x, x̃), they are
typically much smaller. This implies that if the regression model containing all covariates was –
wrongly – used as a surrogate for the causal model, the uncertainty of the prediction would be
underestimated. Furthermore, such an approach ignoring the causal structure can lead to a significant
bias in the prediction of causal effects when we consider interventions on descendants of the target
variable, for example.
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3 Discussion and future work

In this work, we have proposed invariant conditional quantile prediction, a nonparametric test for
conditional independence of the type (3). We have used this test for nonlinear ICP to model how
several interventions may affect the total fertility rate of a country. In particular, we provided bounds
on the average causal effect. For some countries, the effect can be bounded away from zero when
interventions are performed simultaneously on infant mortality rate and under-five mortality rate.

In an extended version of this work, we aim to propose and empirically evaluate alternative tests for
assessing the invariance of conditional distributions for nonlinear models. Additionally, we would
like to discuss the case of a direct effect of environmental variables on the outcome of interest Y .
Under certain assumptions the causal parents of Y can then still be identifiable. As this allows for
a direct causal connection between one of the variables in XE and Y , this can be a key advantage
over standard instrumental variable approaches.
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