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Abstract

We introduce Joint Causal Inference (JCI), a powerful formulation of causal dis-
covery over multiple datasets in which we jointly learn both the causal structure
and targets of interventions from independence test results. While offering many
advantages, JCI induces faithfulness violations due to deterministic relations, so
we extend a recently proposed constraint-based method to deal with this type of
violations. A preliminary evaluation shows the benefits of JCI.

1 Introduction

Answering hypothetical and counterfactual “what if?” questions requires some knowledge about
the causal relations of the underlying system. While sometimes these causal relations are known,
in many cases we still have to infer them from the available data. Traditionally, causal relations
are either recovered from experimental data in which the variable of interest is perturbed, or from
observational data, e.g. using the seminal PC/FCI algorithms [16, 19].

Recently, there have been several proposals for combining observational and experimental data to
discover causal relations, showing that this combination can improve greatly on the accuracy and
identifiability of the predicted causal relations. Some of the proposed methods are score-based (e.g.,
[4, 6]), i.e. they evaluate models using a penalized likelihood score, while others (e.g., [7, 18, 15]) are
constraint-based, i.e. they use statistical independences to express constraints over possible models.
One of the primary advantages of constraint-based methods over score-based methods is their ability
to naturally handle latent variables, in particular, confounders.

In [11] we propose Joint Causal Inference (JCI), a formulation of causal discovery over multiple
datasets in which we jointly learn both the causal structure and targets of interventions from inde-
pendence test results. A similar approach was already proposed for score-based methods in [4],
but here we extend it to constraint-based methods. Our goal is to unify the idea of joint inference
from observational and experimental data from [4] with the advantages that constraint-based meth-
ods have over score-based methods, namely, the ability to handle latent confounders naturally, and,
especially in the case of logic-based methods, an easy integration of background knowledge.

Existing constraint-based methods for multiple datasets typically learn the causal structure on each
dataset separately and then merge the inferred structures. Typically, they support only (perfect)
interventions on known targets [7, 18]. Instead, JCI: (1) allows for several different types of in-
terventions and learns intervention targets; (2) systematically pools data across different datasets,
which improves the statistical power of independence tests; and (3) improves the identifiability and
accuracy of the predicted causal relations.
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R I1 I2 X1 X2 X4

1 20 0 0.1 0.2 0.5
1 20 0 0.13 0.21 0.49
1 20 0 . . . . . . . . .
2 20 1 . . . . . . . . .
3 30 0 . . . . . . . . .
4 30 1 . . . . . . . . .
5 30 2 . . . . . . . . .
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Figure 1: A set of five experimental datasets in a raw data form (left) and as a causal influence
diagram representing the causal structure of the system variablesX1, . . . , X4, the regime variableR
and the intervention variables I1, I2 (right). The intervention variable I1 represents the temperature
at which each experiment was performed, while the intervention variable I2 represents the dosage
of a drug added in some of the experiments. In the causal diagram, we represent system variables
{Xj}j∈X as circles, which are filled for hidden variables, while we represent the regime R and the
intervention variables I1, I2 as squares.

JCI is a challenge for current constraint-based methods because of their susceptibility to violations
of the Causal Faithfulness assumption. Specifically, it induces faithfulness violations due to deter-
ministic relations between intervention variables, which cannot be handled by standard constraint-
based methods. A simple example of this type of violation is shown in the graph in Figure 1 where
X1 ⊥⊥ I1 |R, because I1 is determined by R. We propose a simple but effective strategy for dealing
with this type of faithfulness violations. We implement it in ACID, a determinism-tolerant extension
of ACI [10], a recently proposed logic-based causal discovery method that improves reliability of the
output by exploiting redundant information in the data. In our preliminary evaluation on synthetic
data we show that JCI with ACID improves on the accuracy of the causal predictions with respect
to simply merging separately learned causal graphs.

2 Joint Causal Inference (JCI)

We propose to model jointly in a single causal graph several observational or experimental datasets
{Dr}r∈{1...n}, each representing the data after a (possibly empty) set of interventions on one or
more, possibly unknown, targets. We assume that there is a unique underlying causal DAG G
in all of these datasets, defined over the same set of variables that we call the system variables,
{Xj}j∈X , some of which are possibly hidden. This assumption precludes certain types of inter-
ventions, notably, perfect interventions [14]. On the other hand, it allows for many other types of
interventions, e.g., soft interventions [12], mechanism changes [17], fat-hand interventions [4], ac-
tivity interventions [13], etc., as long as they do not induce new (in)dependences, which can be seen
as modifications to the underlying DAG.

Each dataset Dr has an associated joint probability distribution Pr((Xj)j∈X ). Using the terminol-
ogy from [3], we call the different distributions in the datasets regimes. In related work different
names have been used, e.g. experimental conditions or environments [15]. We introduce two types
of dummy variables in the data:

• a regime variableR, representing which datasetDr a data point is from, i.e., ∀r = 1 . . . n,
R = r for data from Dr.
• intervention variables {Ii}i∈I , which are functions of the regime R. Intuitively, inter-

vention variables represent the interventions performed in each dataset. We describe an
example in Figure 1. In absence of any information on the interventions performed in the
datasets, we can use as intervention variables the indicator variables for each of the datasets.
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We assume G with the introduced dummy variables can be represented as an acyclic Structural
Causal Model (SCM) with independent exogenous variables {Ek}k∈X∪{R}:

P ((Ek)k∈X∪{R}) =
∏

k∈X∪{R}

P (Ek)

R = ER

∀i ∈ I : Ii = gi(R)

∀j ∈ X : Xj = fj(Xpa(Xj), Iipa(Xj), Ej)

(1)

Here, pa(Xj) are the system variable parents of j, ipa(Xj) the intervention parents and Ej is the
exogenous parent of Xj .

We represent this SCM with a causal influence diagram C, see e.g. [3], and assume the Causal
Markov and Minimality assumptions hold in C. We show an example of a causal influence diagram
in Figure 1, where we model five datasets with the same underlying causal graph.

Intervention variables are functions of the regime variable, and do not have any associated noise.
This means that they are determined by the regime. In general, other deterministic relations may
arise. For example, consider an intervention variable that is an indicator of whether the regime is
an odd number, and another which indicates if the regime is an even number. These two variables
determine each other, even if it is not clear from the causal influence diagram.

In this extended abstract, we do not consider the general case, and assume that the only deterministic
relations are the regime R determining each of the intervention variables {Ii}i∈I . For this restricted
case of functionally determined relations, defined recursively as variables that are fully determined
by their parents, Geiger et al. [5] proved that D-separation is sound and complete under the Causal
Markov and Minimality assumption. For the more general case, an extension of D-separation is
presented in [16], which retains completeness for the restricted case, but is not proven to be complete
in general. We conjecture that for the more general case of deterministic relations between dummy
variables, D-separation is complete, but we leave the completeness proof for future work.

We are interested in the completeness of D-separation, because we wish to use it to relax the standard
Causal Faithfulness assumption. In our setting this assumption is too restrictive, so we relax it to
allow for violations due to deterministic relations between the regime and the intervention variables.
We define our relaxed version, that we call D-Faithfulness assumption, as follows: for three disjoint
sets of variables X,Y ,W and a probability distribution P that satisfies both the Causal Markov
assumption for C and the list of deterministic relations D, we assume that X ⊥⊥ Y |W [P ] =⇒
X ⊥D Y |W [D, C], where ⊥D represents D-separation as defined in [16].

Finally, we define Joint Causal Inference (JCI) as the problem of reconstructing the causal inference
diagram that represents jointly all datasets and intervention variables from independence test results.
It can be shown that the ideas behind some previous approaches, e.g., [2, 8, 15], can be seen as
special cases of JCI.

3 Extending constraint-based methods for JCI

JCI provides some challenges for current constraint-based methods:

• faithfulness violations due to deterministic relations between the dummy variables,
• the availability of complex background knowledge on the dummy variables that can im-

prove structure learning and recover from some of the faithfulness violations, e.g. R can
only cause a system variable through an intervention variable.

There is some work on dealing with faithfulness violations in the PC algorithm [9], but it assumes
causal sufficiency (in our context, no hidden variables in G), and cannot handle complex background
knowledge. Other constraint-based algorithms, specifically, logic-based causal discovery methods,
e.g., [7, 18, 10] can handle complex background knowledge and causal insufficiency, but cannot deal
with faithfulness violations due to deterministic relations.

We propose a simple but effective strategy for dealing with faithfulness violations due to determin-
istic relations. We rephrase the constraints of a constraint-based algorithm in terms of d-separations
and d-connections, instead of independence test results. At testing time we decide for each indepen-
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dence test result which d-separations and d-connections can be soundly derived from it and provide
them as input to the modified constraint-based algorithm. We use the following rules:

• X 6⊥⊥ Y |W =⇒ X 6⊥d Y |W ,
• X 6∈ DET(W ) ∧ Y 6∈ DET(W ) ∧X ⊥⊥ Y |W =⇒ X ⊥d Y |DET(W ),

where ⊥d is standard d-separation, 6⊥d is d-connection, and DET(W ) are the variables determined
by (a subset of) W . Note that the above procedure outputs d-separations only for a subset of in-
dependence test results, ignoring independences when X or Y ∈ DET(W ). It can be shown that
we can get sound d-separations and d-connections using this procedure, under the Causal Markov,
Minimality and D-Faithfulness assumptions.

This simple strategy can be applied to any constraint-based method, providing that it can deal with
partial inputs, i.e. missing results for a certain independence test. Logic-based methods as [7, 10]
can be run out-of-the-box with partial inputs, while other standard algorithms like FCI [19] would
require possibly complicated extensions. Anytime FCI [1] allows one to ignore (in)dependences
above a certain order, but up to that order they should all be available.

4 Ancestral Causal Inference With Determinism (ACID)

We implement the proposed strategy in ACID (Ancestral Causal Inference with Determinism) as
a determinism-tolerant extension of ACI (Ancestral Causal Inference) [10]. ACI is a recently-
introduced logic-based causal discovery method that accurately reconstructs ancestral structures
(“indirect” causal relations), also in the presence of latent variables and statistical errors. Moreover,
it provides a method for scoring the reliability of causal predictions, which roughly approximates
their marginal probability. For brevity, in this extended abstract we only provide a few examples of
the extension from ACI to ACID.

ACI is based on a set of logical rules. For example, for variables X,Y and a set of variables Z,
where X 699K Z represents the fact that X does not cause any of the variables in set Z:

(X ⊥⊥ Y | Z) ∧ (X 699K Z) =⇒ X 699K Y. (2)

ACID reformulates the logical rules of ACI in terms of d-separation. This reformulation com-
pletely decouples the rules from any assumption on the relation between (in)dependences and d-
separations/d-connections, e.g., Causal Faithfulness. For example, the above rule can be simply
rewritten as:

(X ⊥d Y | Z) ∧ (X 699K Z) =⇒ X 699K Y. (3)

The new rules can be then used with the procedure for deriving d-separations from independence
test results described in the previous Section. To improve the identifiability and accuracy of the
predictions, we also add as background knowledge a series of logical rules. For brevity, we omit the
complete list of rules, and just show a simple example:

∀i ∈ I,∀j ∈ X : (Xj 699K R) ∧ (Xj 699K Ii).

This rule expresses the fact that the regime variable is, by definition, never caused by any other
variable. Adding this and other background knowledge rules provides a simple means to ruling out
several spurious candidate causal structures, showcasing a main advantage of logic-based causal
discovery methods.

5 Preliminary evaluation

We run a preliminary evaluation of ACID on 600 randomly generated datasets. Each dataset contains
one observational and three experimental regimes for a causal system with four system variables.
The simulator builds up on the simulator for linear acyclic models with latent variables and Gaussian
noise described in [7, 10] and implements soft interventions on unknown targets. This constrains
the comparison with many constraint-based methods like [7, 18].

In our preliminary evalution we compare the ancestral structure (“indirect” causal relations) pre-
dicted by ACID with a naive baseline, in which we merge ancestral structures learned on each
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Figure 2: Results on synthetic data sets showing the potential gain in precision and quality that can
be obtained via JCI. The left column shows the precision-recall (PR) curve for ancestral predictions,
the middle column shows a zoomed-in version in the interval (0,0.02), while the right column shows
the PR curve for nonancestral predictions.

dataset separately with ACI. As inputs to both algorithms we provide the same weighted indepen-
dence test results, computed with a test based on partial correlation and Fisher’s z-transform with
significance threshold α = 0.05, and weighted using the frequentist weighting scheme from [10]. In
Figure 2 we report the precision and recall (PR) curves for predicting ancestral relations (“indirect”
causal relations) and nonancestral relations (the absence of such a causal relation). We can see from
the figure that ACID improves significantly on the accuracy of the predictions with respect to the
baseline. Although limited, the preliminary results are quite promising.

6 Conclusions and future work

In this extended abstract, we briefly presented Joint Causal Inference (JCI), a powerful formulation
of causal discovery over multiple datasets that was previously unexploited by constraint-based meth-
ods. Current constraint-based methods cannot be applied to JCI because of faitfulness violations, so
we proposed a simple strategy for dealing with this type of faithfulness violations, and showed some
preliminary results on its performance. For the full story, we refer the reader to [11].

In future work, we plan to investigate other possible strategies or extensions to existing algorithms
for dealing with faithfulness violations. Moreover, we plan to improve on the preliminary evaluation
by comparing with more state-of-the-art algorithms and also on different tasks, e.g. learning inter-
vention targets, both on synthetic and real-world data. Finally, although very accurate and flexible,
logic-based methods as [7, 10] are limited in the number of possible variables they can handle. JCI
introduces additional variables, reducing their scalability. We plan to investigate improvements to
the execution times of methods like ACID.
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