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Abstract

We consider the problem of off-policy evaluation—estimating the value of a target1

policy using data collected by another policy—under the contextual bandit model.2

We establish a minimax lower bound on the mean squared error (MSE), and show3

that it is matched up to constant factors by the inverse propensity scoring (IPS)4

estimator. Since in the multi-armed bandit problem the IPS is suboptimal [8], our5

result highlights the difficulty of the contextual setting with non-degenerate context6

distributions. We further consider improvements on this minimax MSE bound,7

given access to a reward model. We show that the existing doubly robust approach,8

which utilizes such a reward model, may continue to suffer from high variance even9

when the reward model is perfect. We propose a new estimator called SWITCH10

which more effectively uses the reward model and achieves a superior bias-variance11

tradeoff compared with prior work. We prove an upper bound on its MSE and12

demonstrate its benefits empirically on a diverse collection of datasets, often seeing13

orders of magnitude improvements over a number of baselines.14

1 Introduction15

Contextual bandits refer to a learning setting where the learner repeatedly observes a context, takes16

an action and observes a reward signal for the quality of the chosen action in the observed context.17

Crucially, there is no information on the quality of all the remaining actions that were not chosen18

for the context. As an example, consider online movie recommendation where context describes the19

information about a user, actions are possible movies to recommend and a reward can be whether20

the user enjoys the recommended movie. The framework applies equally well to several other21

applications such as online advertising, web search, personalized medical treatment, etc. The goal of22

the learner is to come up with a policy, that is a scheme for mapping contexts into actions. A common23

question which arises in such settings is, given a candidate target policy, what is the expected reward24

it obtains? A simple way of answering the question is by letting the policy to choose actions (such as25

make movie recommendations to users), and compute the reward it obtains. Such online evaluation,26

is typically costly and time consuming since it involves exposing users to an untested experimental27

policy, and does not easily scale to evaluating the performance of many different policies.28

Off-policy evaluation refers to an alternative paradigm for answering the same question. Suppose we29

have existing logs from the existing system (which might be choosing actions from a very different30

logging policy than the one we seek to evaluate). Can we estimate the expected reward of the target31

policy? This question has been extensively researched in the contextual bandit model (see, e.g.,32

[7, 3, 10, 9] and references therein). In particular, there are several estimators which are unbiased33

under mild assumptions, such as inverse propensity scoring (IPS) [6], and sharp estimates on their34

mean squared error (MSE) for policy evaluation are well-known [5].35
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While the IPS-style methods make no attempt at all to model the underlying dependence of rewards36

on contexts and actions, such information is often available. The simplest approach to off-policy37

evaluation, given such a model, is to simply use the model to predict the reward for the target policy’s38

action on each context. We call this estimator the model-based approach or the direct method (DM).39

The key drawback of DM is that it can be arbitrarily biased when the model is misspecified. Some40

approaches, such as the doubly-robust method (DR) [5] (also see the references therein for its origin41

in statistics and application in causal inference, e.g., [11, 1]), combine the model with an IPS-style42

unbiased estimation and remain consistent, with sharp estimates of the MSE.43

All these works focus on developing specific methods alongside upper bounds on their MSE. Little44

work, on the other hand, exists on the question of the fundamental statistical hardness of off-policy45

evaluation and the optimality (or the lack of) of the existing methods. A notable exception is the46

recent work of Li et al. [8], who study off-policy evaluation in multi-armed bandits—a special case47

of our setting, without any contexts—and provide a minimax lower bound on the MSE. Their result48

shows the suboptimality of IPS (and DR) due to an excessive variance of the importance weights.49

This result is rather intriguing as it hints at one of two possibilities: (i) IPS and variants are also50

suboptimal for contextual bandit setting and we should develop better estimators, or (ii) the contextual51

bandit setting has qualitatively different upper and lower bounds that match. In this quest, our paper52

makes the following key contributions:53

1. We provide the first rate-optimal lower bound on the MSE for off-policy evaluation in54

contextual bandits. In contrast with context-free multi-armed bandits [8], our lower bound55

matches the MSE upper bound for IPS up to constants, so long as the contexts have a56

non-degenerate distribution. This highlights the challenges of the contextual setting; even57

if the reward as a function of contexts and actions has no variance, the lower bound stays58

non-trivial in contrast with context-free multi-armed bandits.59

2. We propose a new class of estimators called the SWITCH estimators, that adaptively interpo-60

late between an available reward model and IPS. We show that SWITCH has MSE no worse61

than IPS in the worst case, but is robust to large importance weights. We also show that62

SWITCH can have a drastically smaller variance than alternatives for combining IPS with a63

reward model, such as DR.64

3. We conduct experiments showing that the new estimator performs significantly better than65

existing approaches on simulated contextual bandit problems using real-life multiclass66

classification data sets.67

Symbols and notations. A context x is a feature vector in X , possibly Rd or {0, 1}d for some large68

d. The stationary distribution of contexts is denoted by Dx. Actions, denoted as a, are drawn from a69

set A. A policy is a function from contexts to distributions over actions, which allows for modeling70

randomized action choice. We will use µ(a|x) and π(a|x) to denote the logging and target policies71

respectively. We use ρ(x, a) to denote the importance weights π(a|x)/µ(a|x). Rewards r have a72

distribution conditioned on x and a denoted by D(r|x, a). Given a policy π which is a distribution73

over actions given contexts, we extend it to a joint distribution over triples (x, a, r), where x is drawn74

according to Dx, action a according to π(a|x), and r according to D(r|x, a). For a policy π, we refer75

to its expected reward as its value, formally defined as vπ := Eπ[r].76

2 Main results77

In this section, we present our main results but leave technical details to the full paper.78

2.1 The limit of model-free off-policy evaluation79

Off-policy evaluation is intrinsically a statistical estimation problem, where the goal is to estimate vπ .80

We study this problem in a standard minimax framework: given n iid samples according to a policy81

µ, what is the smallest mean square error (MSE) any estimator can achieve for evaluating a fixed82

policy π, in the worst case over a particular class of data-generating distributions? Specifically, we83

generalize the results of Li et al. [8] for multi-armed bandits. We analyze the off-policy evaluation84

problems given a fixed Dx, µ and π and consider the worst case over a class of reward-generating85

distributions. Our worst-case bounds are thus allowed to depend on properties of Dx, µ and π.86
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To formulate our class of reward-generating functions, assume we are given maps Rmax : X ×A →87

R+ and σ : X ×A → R+. The class of conditional distributionsR(σ,Rmax) is defined as88

R(σ,Rmax) :=
{
D(r|x, a) : 0 ≤ ED[r|x, a] ≤ Rmax(x, a) and

VarD[r|x, a] ≤ σ2(x, a) for all x, a
}
.

Note that σ2 and Rmax are allowed to change over contexts and actions. Formally, let an estimator be89

any function v̂ : (X ×A× R)n → R that takes n data points collected by µ and outputs an estimate90

of vπ . The minimax risk of off-policy evaluation over the classR(σ2, Rmax) is defined as91

Rn(Dx, π, µ, σ,Rmax) := inf
v̂

sup
D(r|x,a)∈R(σ,Rmax)

E
[
(v̂ − vπ)2

]
. (1)

We prove the following lower bound on the minimax risk:92

Theorem 1 (Minimax rate). For sufficiently large n and |X |1, we have

Rn(Dx, π, µ, σ,Rmax) = Θ

(
1

n

(
Eµ
[
ρ2(x, a)σ2(x, a)

]
+ Eµ

[
ρ2(x, a)R2

max(x, a)
]))

,

where ρ(x, a) = π(a|x)/µ(a|x).93

This result matches the MSE upper bound for the IPS estimator [6], meaning that the estimator94

is unimprovable beyond constant factors in the worst-case. This is somewhat surprising because95

IPS was shown to be strictly suboptimal in multi-arm bandits. Specifically, the minimax rate for96

multi-arm bandits is just 1
nEµ[ρ2σ2], meaning that the second term which depends on ρ2R2

max is the97

sub-optimality of IPS in that setting, which can be arbitarily large when the rewards are deterministic98

so that σ ≡ 0. On the other hand, a non-degenerate context distribution (meaning that there is a large99

number of unique contexts) leads to a significant variance in policy evaluation even when rewards are100

deterministic, due to the randomness in the draw of contexts. This randomness is responsible for the101

gap between contextual and non-contextual lower bounds.102

2.2 Adaptive estimation with an auxiliary direct estimator103

Clearly we cannot do any better than IPS in the worst-case, and yet its upper bound has a dependence104

on ρ2, which results in a severe degradation of performance when the importance weights are large.105

Prior works [4, 5] attempt to address this issue by the development of a doubly robust (DR) estimator106

which combines IPS with a reward model, when the latter is available. The combination is done in107

a way that the overall estimator remains unbiased, albeit with a smaller variance when the reward108

model is good. However, the DR can pay a steep price for being unbiased. Even if we have access109

to reward model r̂(x, a) such that r̂(x, a) ≡ E[r|x, a], that is the true conditional expectation, DR110

suffers from a large variance depending on importance weights whenever the rewards have non-111

trivial conditional variance. On the other hand, the direct method, which simply estimates vπ using112 ∑n
i=1 r̂(xi, π(xi))/n, has no dependence on the importance weights in this extreme case.113

Indeed, this drawback of DR leads to it being sub-optimal, similar to IPS, in the multi-armed bandit114

setting of Li et al. [8], and naturally leads to the question: is there a better way to combine a reward115

model with IPS that achieves a better MSE? Stated differently, DR is on one extreme end of bias-116

variance tradeoff by requiring no bias. Could we do better by allowing a small bias and obtaining a117

significant variance reduction in the process?118

Since we are seeking to avoid variance due to excessive importance weights, it is natural to handle119

the context-action pairs with large importance weights (i.e., those that result in a large variance)120

separately. To this end, we decompose the value of a policy into two components, based on how large121

the importance weights are relative to a threshold τ . Under expectation operators, we write ρ instead122

of a more verbose ρ(x, a):123

vπ = Eπ[r] = Eπ[r1(ρ ≤ τ)] + Eπ[r1(ρ > τ)]

= Eµ[ρr1(ρ ≤ τ)] + EDx

[∑
a∈A

ED[r|x, a]π(a|x)1(ρ(x, a) > τ)
]
.

1n needs to be larger than a constant that depends only on µ and π, and |X | > Cn log |X |, for a C that
measures how uniform Dx is. If X is a continuous domain, then we only need that Dx is a probability density.
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(a) Deterministic reward
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(b) Noisy reward

Figure 1: Cumulative distribution of the mean-squared error (MSE) of various estimators over 10
UCI data sets. The results are normalized by dividing MSE by the MSE of IPS. In the left-hand panel,
the UCI labels are used as is; in the right-hand panel, additional label noise is added. Curves towards
top-left part of the plot are better, as they achieve smaller values of MSE. Methods in dashed lines
are “cheating” by choosing the threshold parameter τ to optimize test MSE. As we see, SWITCH-DR
dominates all other methods and our empirical tuning of τ is not too far from the optimal possible.

The first part, where the importance weights are small, can still be estimated as before in an unbiased124

manner. We estimate the second part using our reward model r̂. This leads to the following family of125

SWITCH estimators, parameterized by the threshold τ :126

v̂SWITCH =
1

n

n∑
i=1

[riρi1(ρi ≤ τ)] +
1

n

n∑
i=1

∑
a:ρ(xi,a)>τ

r̂(xi, a)π(a|xi).

We now analyze the new estimator.127

Theorem 2. Denote ε(a, x) := r̂(a, x) − E[r|a, x] and assume r̂ is pointwise bounded by Rmax.128

Then for every n = 1, 2, 3, . . . ,129

MSE(v̂SWITCH) ≤ Eπ[R2
max]

2n
+

1

n
Eµ
[(

2σ2 +
R2

max

2

)
ρ21(ρ ≤ τ)

]
+ Eπ

[
ε
∣∣ ρ > τ

]2Pπ(ρ > τ)2,

where quantities Rmax, σ, ρ, and ε are functions of random variables x and a.130

The first term of the bound is required even when we use DM with a perfect r̂. The second term131

captures the variance of IPS for estimating the part of the problem with importance weights smaller132

than τ . The third term captures the bias of r̂. As τ moves from 0 to ∞, our bound adaptively133

interpolates between DM and IPS, using DM for the part that causes the high variance for IPS.134

The policy value in the region where the importance weights are small can be estimated using any135

unbiased approach rather than just IPS. For instance, we can use the DR, giving rise to the estimator,136

which we denote SWITCH-DR.137

Automatic parameter tuning: We propose to choose parameter τ by optimizing an empirical138

estimate of the bias-variance tradeoff. The bias of our estimator is captured by the final term involving139

ε in Theorem 2, where we conservatively bound ε by Rmax. For the variance, we use an empirical140

estimate arising from the fact that our estimator can be written as a sum of n i.i.d. terms. This141

conservative procedure ensures that SWITCH (or SWITCH-DR) will perform at least as well as IPS142

(or DR). It thus remains minimax in the worst case and robust to large ρ. The procedure is related143

to the MAGIC estimator [12], but uses different estimates of bias and variance. In more detailed144

experimental results (not included in this abstract), we found that our choice of τ outperforms the145

MAGIC estimator quite substantially in the contextual bandit setting.146

In Figure 1, we compare our estimator with several existing approaches using a similar protocol as in147

the prior work [4]. The methods are compared by plotting the cumulative distribution of their mean-148

squared error (MSE) over 10 UCI data sets (converted into a contextual-bandit format). Methods149

4



that achieve smaller values of MSE are towards the top-left corner of the plot. Since SWITCH-DR150

dominated SWITCH in our experiments, we only show SWITCH-DR. In addition to IPS, DM, DR,151

and SWITCH-DR, we also consider two additional variants of IPS, where importance weights are152

either capped at τ and renormalized [see, e.g., 2], or the terms with weights larger than τ are removed153

altogether as described in Bottou et al. [3]. We use a conservative setting of τ based on the error154

upper bounds of these two methods, and on each data set we select the better of the two, under the155

name Trim/TrunIPS. Finally, since SWITCH-DR and Trim/TrunIPS depend on the parameter τ , which156

we tune in a specific manner, we also show their performance for the optimal choice of τ—this serves157

as a ceiling on their performance, under a possibly smarter tuning of τ .158

As we see, SWITCH-DR dominates all other methods and our empirical tuning of τ is not too far from159

the optimal possible. The advantage of SWITCH-DR is even stronger in the noisy-reward setting,160

where we add label noise to UCI data.161

3 Conclusion162

In this paper we carried out minimax analysis of off-policy evaluation in contextual bandits and163

showed that IPS is optimal in the worst-case. This result highlights the need for using side information,164

potentially provided by modeling the reward directly, especially when importance weights are too165

large. Given this observation, we proposed a new class of estimators called SWITCH that can be used166

to combine any importance sampling estimators, including IPS and DR, with DM. The estimator167

involves adaptively switching to DM when the importance weights are large and switching to either168

IPS or DR when the importance weights are small. We showed that the new estimator has favorable169

theoretical properties and also works well on real-world data.170
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