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Abstract

The fundamental problem of causal inference is a missing data problem – the com-
parison of responses to two hypothetical treatment assignments is made difficult
because for every experimental unit, only one treatment assignment is actually
observed. Simple identification results in causal inference that link observed and
counterfactual quantities using the stable unit treatment value assumption and ig-
norability has been extended to a complete general theory using graphical causal
models [9, 8, 7], and a rich estimation theory for resulting functionals of observed
data has been developed.
We consider the implications of the converse view: that missing data problems
are a form of causal inference. We consider the classical missing data problem of
identifying the full data law from the observed data law as a problem of inferring
a joint law over counterfactual variables from a joint law over factual variables.
We encode the relationship between the factual and counterfactual variables in
graphical models, in an approach closely related to similar modeling approaches in
causal inference, review recent identification results developed in this framework,
and develop a new algorithm for identifying the full data law in settings with both
missing data and hidden variables. Our algorithm can be viewed as a version of the
ID algorithm for identifying causal effects adapted to peculiarities of the missing
data setting. Completeness of our algorithm is currently an open problem.

1 Introduction

Missing data is a common difficulty in the analysis of survey, experimental and observational data,
both for the purpose of creating classifiers in machine learning, and for drawing causal inferences.
Existing approaches to missing data include inference on a parametric model of missing variables,
such as the expectation minimization algorithm [1], and multiple imputation [5], matrix comple-
tion methods that use ideas from the sparsity literature [4], and methods closely related to causal
inference that exploit information about the mechanism that drives missingness [3, 2, 6].

Simple versions of the missing mechanism based methods use assumptions known as Missing Com-
pletely At Random (MCAR) and Missing At Random (MAR) to recover functions of the underlying
data distribution exactly, without the need for strong parametric assumptions on missing variables.
A recent strand of work has used graphical models to show cases where it is possible to recover
functions of the underlying data law under assumptions weaker than MAR, in other words when
data is Missing Not At Random (MNAR). In particular [6] has given a general algorithm for recov-
ering the full data distribution given a set of constraints, possibly weaker than MAR, represented by
a graphical model.

We review these results, and show that the existing algorithm is not complete for the problem of
identification of the full data distribution. We provide a repaired algorithm which recursively de-
composes the identification problem into subproblems that are processed either in parallel or sequen-
tially, and generalize it to settings with completely hidden variables. Our algorithm can be viewed
as a version of the ID algorithm for identification of causal effects, extended to missing data settings
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Figure 1: An example where the MID algorithm in [6] and g-computation inspired algorithms for
missing data problems fail, but our new algorithm succeeds.

where constraints on the missingness model can be expressed as a graph. The purpose of our work
is to build towards a characterization of missing data problems where the full data law is identifiable
from the observed data law, and only equality constraints between variables and missingness indica-
tors are permitted. Here equality constraints are taken to mean conditional independence constraints,
and generalized independence constraints, also known as Verma constraints [10].

Our framework uses missingness graphs, which display relationships between underlying missing
variables (represented as counterfactual outcomes in the causal inference sense), missingness indi-
cators (represented as treatments in the causal inference sense), and observed proxies (represented
as observed data variables in the causal inference sense) as a graphical model. For example, in Fig.
1, the variables Li(1) represent underlying variables in the full data law that we do not always get
to observe, Li are observed proxies that either assume values of Li(1) (if Ri = 1) or assume values
“missing” (if Ri = 0) and Ri are missingness indicators. The relationships between these vari-
ables are displayed according to a standard graphical model, which implies certain independence
restrictions on the full data law. The algorithm succeeds if it is able to set, by intervention, all
Ri indicators to 1, thereby forcing observed status on all variables. Unlike classical causal infer-
ence settings, such as the g-computation algorithm or the ID algorithm where interventions can be
viewed as applied sequentially, in our algorithm interventions are sometimes applied sequentially
and sometimes in parallel. Moreover, a single step of the algorithm (where we potentially intervene
on multiple variables simultaneously) which in the ID algorithm involves a single application of the
g-formula, in our case potentially involves an entire recursively solvable subproblem to identify the
relevant propensity score distribution p(Ri | parents of Ri).

As an example, we show that our algorithm is able to identify the full data law
p(L1(1), L2(1), L3(1), L4(1)) in the model in Fig. 1 (a). To identify p(L1(1), L2(1), L3(1), L4(1))
in Fig. 1 (a), the algorithm first identifies p(R4), and intervenes on R4, resulting in L4(1)
becoming observed, and the subproblem shown in Fig. 1 (b). Next, the algorithm identifies
p(R3 | L2(1), L4(1)) and p(R2 | L3(1), L4(1)) in the subproblem, and intervenes on both R2

and R3, resulting L2(1) and L3(1) becoming observed, and the subproblem shown in Fig. 1 (c).
Finally, the algorithm identifies p(R1 | L2(1), L3(1)) in the new subproblem, and intervenes on R1,
resulting in an expression that is a function of the observed data distribution and which is equal to
the underlying full data law.

While our algorithm is very general and subsumes all previously known graph-based non-parametric
identification approaches for missing data, it is not currently known whether it is complete.
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