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Better policies from Dem. or Rep. presidents?

Figure: y-axis: %GDP growth; x-axis: incumbent president; color:
party affiliation of incumbent president.

• D− R = +1.8% if policy effect lag=0 yrs; D− R = +0.7% if lag
= 4 yrs; D− R = −1.07% if lag = 8 yrs.
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Outline of problem

• We focus on simple multiagent systems (e.g., auctions).

• Two policies: policy 0 (baseline) and policy 1 (new).

• Agents experimentally assigned to policies.

• Goal is to compare policy 0 with policy 1 and decide which
one is best using short-term experimental data.
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Illustration of problem
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Long-Term Average Causal Effect (LACE)

• Z = binary assignment vector; Zi = 1 agent i was assigned
to policy 1; Zi = 0means agent i was assigned to policy 0.

• A = action set same for each agent; observed data = agent
actions at t = 0, 1, . . . , to for every policy g.

• T = long-term horizon.

• Rg,t(Z) = value of actions in policy g at period t under
assignment Z (e.g., revenue as function of bids)

Definition

The long-term causal effect is defined as follows:

τ = R1,T (Z = 1)− R0,T (Z = 0).
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Methological challenges

• Need to extrapolate from Z to 1 and 0; and from [0, to] to T .

• We need stability assumptions on both dimensions (c.f.,
policy invariance, SUTVA)

• A critical analysis choice:

Work on the (observed) action space or on a latent space?

• We argue in favor of working on latent behavioral space.
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Behavioral Model

• A behavior b ∈ B given a policy maps to a strategy
(distribution over actions):

G × B ∈ 4|A|

• Example: random behavior, risk averse,...

• βg,t(Z) ∈ 4|B| = population behavior— fraction of agents
adopting each behavior —in policy g, at period t, under
assignment Z.
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Assumption #1: Stability

Assumption [stability of initial behaviors]

Let ρZ be the proportion of agents assigned to new policy
under assignment Z. Then, for every Z,

ρZβ1,0(Z) + (1− ρZ)β0,0(Z) = β(0), (1)

where β(0) is population behavior invariant to Z.

• Agents “have made up their minds” to adopt β(0) before
the experiment (no anticipation).

• Invariant quantities wrt to Z are necessary to extrapolate
across assignments.
- e.g. SUTVA (Cox, Rubin): if Y(Z)= outcome under Z then

Y(Z) = Zi · ·Y1 + (1− Zi) · Y0.
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Assumption #2: Behavioral ignorability of
treatment assignment

Assumption [behavioral ignorability]

Let φ, ψ denote vector parameters, then

βg,0(Z) ∼ πφ,

βg,t(Z) ∼ fψ(Hg,<t), ∀g, t (2)

where π, f are known models and Hg,<t denotes behavior
history up to t.

• φ, ψ may depend on Z only through ρZ ; also on g.

• Adaptation of β in policy g is independent of Z conditional
on history (Markovian assumption).
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More on space of assumptions

• Stability assumptions on behavioral space are plausible
because behavior does not depend on policy. Not
plausible on actions.
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Main Result

Theorem [estimation of long-term effect]

Suppose that assumptions of no-anticipation and be-
havioral ignorability hold. Then, the long-term average
causal effect (LACE) is identifiable and can be consistently
estimated.
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Illustration of estimation method

• Assumption 1 (Stability) is crucial in (B) → (C) → (D).

• Assumption 2 (Ignorability) is crucial in (A) → (B) and
(D) → (E).
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In practice: QLk and VAR(1)

For the behavioral model we adopt QL3 model (Stahl and
Wilson, 1984) with parameters (λ1, λ1(2), λ2):

• Level-0 agent cannot compute expected utilities, and

plays actions w.p. ∝ 1;

• level-1 agent computes expected utilities u1 assuming
play against Level-0, and

plays actions w.p. ∝ eλ1u
1
;

• level-2 agent computes expected utilities u2 assuming
play against Level-1 agent with precision λ1(2), and

plays actions w.p. ∝ eλ2u
2
.
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In practice: QLk and VAR(1)

We choose a lag-one autoregressive model, VAR(1), for the
evolution of population behavior:

wg,t = ψ0 + ψ1 · wg,t−1 + ψ2 · εg,t,

where

• εg,t ∼ N(0, σ2I) iid;

• temporal parameters (ψ0, ψ1, ψ2)may depend on policy g;

• and w is the logit transform of population behavior β.
[logit(x) = (log(x2/x1), log(x3/x1), . . .)]
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Application: Rapoport and Boebel (1992)

a′1 a′2 a′3 a′4 a′5

a1 W L L L L

a2 L L W W W

a3 L W L L W

a4 L W L W L

a5 L W W L L

• RB randomly people to play row or column; 20 players in
each game; four sessions, each for multiple rounds;

We re-appropriate the data for our needs:

What is the effect switching from (W , L) = ($10, $6) to
(W , L) = ($15, $1)?
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Data

row agent column agent

Policy Period a1 a2 a3 a4 a′1 a′2 a′3 a′4
0 0 0.308 0.307 0.113 0.120 0.350 0.218 0.202 0.092

0 1 0.293 0.272 0.162 0.100 0.333 0.177 0.190 01.40

0 2 0.273 0.350 0.103 0.123 0.353 0.133 0.258 0.102

0 3 0.295 0.292 0.113 0.135 0.372 0.192 0.222 0.063

1 0 0.258 0.367 0.105 0.143 0.332 0.115 0.245 0.140

1 1 0.290 0.347 0.118 0.110 0.355 0.198 0.208 0.108

1 2 0.355 0.313 0.082 0.100 0.355 0.215 0.187 0.110

1 3 0.323 0.270 0.093 0.105 0.343 0.243 0.168 0.107

• We define hold-out set at T = 3;

• Revenue is linear combination of actions.
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Adaptation of behavior

We estimate significant ψ1 6= 0, indicating temporal trend
and learning—recall wg,t = ψ0 + ψ1 · wg,t−1 + ψ2 · εg,t.

red: period 0, green: period 1, blue: period 2
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Results: estimates of long-term causal effect

DID: mse = 0.361; Naive: mse=0.183; LACE: mse = 0.045.

• Naive: estimate causal effect as R1,3 − R0,3.

• DID: estimate causal effect as (R0,3 − R0,1)− (R1,3 − R1,1).
18



Conclusion

• Leverage behavioral game theory for causal estimation of
long-term effects.

• Effects are estimable under stability assumption on initial
behaviors; ignorability assumption on behavior
adaptation.

Extensions:

• How to define long-term T? Depends crucially on choice of
temporal assumption and model.

• Combine with richer temporal behavioral models (e.g.,
agent-level learning).

• Combine with payoff uncertainty.

• Apply on large-scale real-world experiment.
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Thank you!
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