Long-term causal effects via behavioral game theory

Panagiotis (Panos) Toulis

University of Chicago, Booth School

December 10, 2016

Better policies from Dem. or Rep. presidents?

Figure: *y*-axis: %GDP growth; *x*-axis: incumbent president; color: party affiliation of incumbent president.

Better policies from Dem. or Rep. presidents?

Figure: *y*-axis: %GDP growth; *x*-axis: incumbent president; color: party affiliation of incumbent president.

• D - R = +1.8% if policy effect lag=0 yrs; D - R = +0.7% if lag = 4 yrs; D - R = -1.07% if lag = 8 yrs.

2

Outline of problem

- We focus on simple multiagent systems (e.g., auctions).
- Two policies: policy 0 (baseline) and policy 1 (new).
- Agents experimentally assigned to policies.
- Goal is to compare policy 0 with policy 1 and decide which one is best using short-term experimental data.

Illustration of problem

Long-Term Average Causal Effect (LACE)

- Z = binary assignment vector; $Z_i = 1$ agent *i* was assigned to policy 1; $Z_i = 0$ means agent *i* was assigned to policy 0.
- *A* = *action set* same for each agent; observed data = agent actions at *t* = 0, 1, ..., *t*_o for every policy *g*.
- *T* = long-term horizon.
- $R_{g,t}(Z)$ = value of actions in policy g at period t under assignment Z (e.g., revenue as function of bids)

Long-Term Average Causal Effect (LACE)

- Z = binary assignment vector; $Z_i = 1$ agent *i* was assigned to policy 1; $Z_i = 0$ means agent *i* was assigned to policy 0.
- *A* = *action set* same for each agent; observed data = agent actions at *t* = 0, 1, ..., *t*_o for every policy *g*.
- *T* = long-term horizon.
- $R_{g,t}(Z)$ = value of actions in policy g at period t under assignment Z (e.g., revenue as function of bids)

Definition

The *long-term causal effect* is defined as follows:

$$\tau = R_{1,T}(Z = \mathbf{1}) - R_{0,T}(Z = \mathbf{0}).$$

Methological challenges

• Need to extrapolate from Z to **1** and **0**; and from $[0, t_o]$ to T.

Methological challenges

- Need to extrapolate from Z to **1** and **0**; and from $[0, t_o]$ to T.
- We need stability assumptions on both dimensions (c.f., policy invariance, SUTVA)
- A critical analysis choice:

Work on the (observed) action space or on a latent space?

• We argue in favor of working on latent behavioral space.

Behavioral Model

• A behavior *b* ∈ *B* given a policy maps to a strategy (distribution over actions):

$$\mathcal{G} \times \mathbf{B} \in \triangle^{|\mathbf{A}|}$$

• Example: random behavior, risk averse,...

Behavioral Model

• A behavior *b* ∈ *B* given a policy maps to a strategy (distribution over actions):

$$\mathcal{G} \times \mathbf{B} \in riangle^{|\mathbf{A}|}$$

- Example: random behavior, risk averse,...
- $\beta_{g,t}(Z) \in \triangle^{|B|}$ = population behavior— fraction of agents adopting each behavior—in policy g, at period t, under assignment Z.

Assumption #1: Stability

Assumption [stability of initial behaviors]

Let ρ_Z be the proportion of agents assigned to new policy under assignment Z. Then, for every Z,

$$\rho_{\mathsf{Z}}\beta_{1,0}(\mathsf{Z}) + (1 - \rho_{\mathsf{Z}})\beta_{0,0}(\mathsf{Z}) = \beta^{(0)},$$
(1)

where $\beta^{(0)}$ is population behavior invariant to Z.

• Agents "have made up their minds" to adopt $\beta^{(0)}$ before the experiment (no anticipation).

Assumption #1: Stability

Assumption [stability of initial behaviors]

Let ρ_Z be the proportion of agents assigned to new policy under assignment Z. Then, for every Z,

$$\rho_{\mathsf{Z}}\beta_{1,0}(\mathsf{Z}) + (1 - \rho_{\mathsf{Z}})\beta_{0,0}(\mathsf{Z}) = \beta^{(0)},$$
(1)

where $\beta^{(0)}$ is population behavior invariant to Z.

- Agents "have made up their minds" to adopt $\beta^{(0)}$ before the experiment (no anticipation).
- Invariant quantities wrt to Z are necessary to extrapolate across assignments.

Assumption #1: Stability

Assumption [stability of initial behaviors]

Let ρ_Z be the proportion of agents assigned to new policy under assignment Z. Then, for every Z,

$$\rho_{\mathsf{Z}}\beta_{1,0}(\mathsf{Z}) + (1 - \rho_{\mathsf{Z}})\beta_{0,0}(\mathsf{Z}) = \beta^{(0)},$$
(1)

where $\beta^{(0)}$ is population behavior invariant to Z.

- Agents "have made up their minds" to adopt $\beta^{(0)}$ before the experiment (no anticipation).
- Invariant quantities wrt to *Z* are necessary to extrapolate across assignments.
 - e.g. SUTVA (Cox, Rubin): if Y(Z) = outcome under Z then

$$Y(Z) = Z_i \cdot Y^1 + (1 - Z_i) \cdot Y^0.$$

Assumption #2: Behavioral ignorability of treatment assignment

Assumption [behavioral ignorability]

Let ϕ, ψ denote vector parameters, then

$$eta_{g,0}(Z) \sim \pi_{\phi}, \ eta_{g,t}(Z) \sim f_{\psi}(H_{g,< t}), \quad \forall g, t$$
 (2)

where π , f are known models and $H_{g,<t}$ denotes behavior history up to t.

Assumption #2: Behavioral ignorability of treatment assignment

Let ϕ, ψ denote vector parameters, then

$$eta_{g,0}(Z) \sim \pi_{\phi}, \ eta_{g,t}(Z) \sim f_{\psi}(H_{g,< t}), \quad \forall g, t$$
 (2)

where π , f are known models and $H_{g,<t}$ denotes behavior history up to t.

- ϕ, ψ may depend on *Z* only through ρ_Z ; also on *g*.
- Adaptation of β in policy *g* is independent of *Z* conditional on history (Markovian assumption).

More on space of assumptions

• Stability assumptions on behavioral space are plausible because behavior does not depend on policy. Not plausible on actions.

Main Result

Theorem [estimation of long-term effect]

Suppose that assumptions of no-anticipation and behavioral ignorability hold. Then, the long-term average causal effect (LACE) is identifiable and can be consistently estimated.

Illustration of estimation method

- Assumption 1 (Stability) is crucial in $(B) \rightarrow (C) \rightarrow (D)$.
- Assumption 2 (Ignorability) is crucial in $(A) \rightarrow (B)$ and $(D) \rightarrow (E)$.

In practice: QL_k and VAR(1)

For the behavioral model we adopt QL_3 model (Stahl and Wilson, 1984) with parameters $(\lambda_1, \lambda_{1(2)}, \lambda_2)$:

In practice: QL_k and VAR(1)

For the behavioral model we adopt QL_3 model (Stahl and Wilson, 1984) with parameters $(\lambda_1, \lambda_{1(2)}, \lambda_2)$:

• Level-0 agent cannot compute expected utilities, and

plays actions w.p. $\propto 1$;

• **level-1** agent computes expected utilities u^1 assuming play against Level-0, and

plays actions w.p. $\propto e^{\lambda_1 u^1}$;

• **level-2** agent computes expected utilities u^2 assuming play against Level-1 agent with precision $\lambda_{1(2)}$, and

plays actions w.p. $\propto e^{\lambda_2 u^2}$.

In practice: QL_k and VAR(1)

We choose a lag-one autoregressive model, VAR(1), for the evolution of population behavior:

$$\mathbf{W}_{g,t} = \psi_0 + \psi_1 \cdot \mathbf{W}_{g,t-1} + \psi_2 \cdot \epsilon_{g,t},$$

where

- $\epsilon_{g,t} \sim \mathcal{N}(0, \sigma^2 I)$ iid;
- temporal parameters (ψ_0, ψ_1, ψ_2) may depend on policy *g*;
- and *w* is the logit transform of population behavior β .

 $[logit(x) = (log(x_2/x_1), log(x_3/x_1), \ldots)]$

Application: Rapoport and Boebel (1992)

	a'_1	a_2'	a'_3	a'_4	a'_5
a_1	W	L	L	L	L
a_2	L	L	W	W	W
a_3	L	W	L	L	W
a_4	L	W	L	W	L
a_5	L	W	W	L	L

 RB randomly people to play row or column; 20 players in each game; four sessions, each for multiple rounds;

We re-appropriate the data for our needs:

What is the effect switching from (W, L) = (\$10, \$6) *to* (W, L) = (\$15, \$1)?

Data

		row agent				column agent			
Policy	Period	<i>a</i> ₁	a_2	a_3	a_4	a'_1	a_2'	a'_3	a'_4
0	0	0.308	0.307	0.113	0.120	0.350	0.218	0.202	0.092
0	1	0.293	0.272	0.162	0.100	0.333	0.177	0.190	01.40
0	2	0.273	0.350	0.103	0.123	0.353	0.133	0.258	0.102
0	3	0.295	0.292	0.113	0.135	0.372	0.192	0.222	0.063
1	0	0.258	0.367	0.105	0.143	0.332	0.115	0.245	0.140
1	1	0.290	0.347	0.118	0.110	0.355	0.198	0.208	0.108
1	2	0.355	0.313	0.082	0.100	0.355	0.215	0.187	0.110
1	3	0.323	0.270	0.093	0.105	0.343	0.243	0.168	0.107

- We define hold-out set at T = 3;
- Revenue is linear combination of actions.

Adaptation of behavior

We estimate significant $\psi_1 \neq 0$, indicating temporal trend and learning—recall $w_{g,t} = \psi_0 + \psi_1 \cdot w_{g,t-1} + \psi_2 \cdot \epsilon_{g,t}$.

Results: estimates of long-term causal effect

DID: mse = 0.361; Naive: mse=0.183; LACE: mse = 0.045.

- Naive: estimate causal effect as $R_{1,3} R_{0,3}$.
- DID: estimate causal effect as $(R_{0,3} R_{0,1}) (R_{1,3} R_{1,1})$.

Conclusion

- Leverage behavioral game theory for causal estimation of long-term effects.
- Effects are estimable under stability assumption on initial behaviors; ignorability assumption on behavior adaptation.

Conclusion

- Leverage behavioral game theory for causal estimation of long-term effects.
- Effects are estimable under stability assumption on initial behaviors; ignorability assumption on behavior adaptation.

Extensions:

- How to define long-term *T*? Depends crucially on choice of temporal assumption and model.
- Combine with richer temporal behavioral models (e.g., agent-level learning).
- Combine with payoff uncertainty.
- Apply on large-scale real-world experiment.

Thank you!