A Contextual Research Program

John Langford Microsoft Research (In collaboration with many!)

In 2006, I stopped working on traditional RL.

PAC Model-Free Reinforcement Learning

Alexander L. Strehl STREHL@CS.RUTGERS.EDU Lihong Li LIHONG@CS.RUTGERS.EDU Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA

Eric Wiewiora EWIEWIOR@CS.UCSD.EDU Computer Science and Engineering Department University of California, San Diego

John Langford TTI-Chicago, 1427 E 60th Street, Chicago, IL 60637 USA

Michael L. Littman Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA

JL@HUNCH.NET

MLITTMAN@CS.RUTGERS.EDU

Traditional RL had become stale

- 1. Q functions can represent credit assignment.
- 2. Asymptotically valid update rules (Watkins 1989, Williams 1992)
- 3. MDP Sample complexity (Kearns&Singh 1998)

4. ??

In 2007, Contextual Bandits started

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits

John Langford Yahoo! Research jl@yahoo-inc.com Tong Zhang Department of Statistics Rutgers University tongz@rci.rutgers.edu

Abstract

We present Epoch-Greedy, an algorithm for contextual multi-armed bandits (also known as bandits with side information). Epoch-Greedy has the following properties:

What are Contextual Bandits?

- Repeatedly:
- 1. See features **x**
- 2. Choose actions *a* in *A*
- 3. See reward r for action a in context x
- Goal: maximize sum of rewards.

Why Not Contextual Bandits?

- Eh... No credit assignment, easy exploration.
- Why Contextual Bandits?
- Supervised Learning: ∀classifiers ∀ data sources: good performance
- 2. Contextual Bandits: Can we get the same?
- 3. Contextual RL: Can we get there?

CBs: Actually started in 1995!

The non-stochastic multi-armed bandit problem*

Peter Auer

Institute for Theoretical Computer Science Graz University of Technology A-8010 Graz (Austria) pauer@igi.tu-graz.ac.at

Nicolò Cesa-Bianchi

Department of Computer Science Università di Milano I-20135 Milano (Italy) cesabian@dsi.unimi.it

Yoav Freund Robert E. Schapire

AT&T Labs 180 Park Avenue Florham Park, NJ 07932-0971 {yoav, schapire}@research.att.com

 \forall classifiers \forall data sources $O\left(\left(\frac{|A| \log |\Pi|}{T}\right)^{0.5}\right)$ regret

Q: How do you make the computation work? A: Use reduction to Supervised Learning

Efficient Optimal Learning for Contextual Bandits

2011

Miroslav Dudik mdudik@yahoo-inc.com Daniel Hsu djhsu@rci.rutgers.edu Satyen Kale skale@yahoo-inc.com Nikos Karampatziakis nk@cs.cornell.edu

John Langford jl@yahoo-inc.com Lev Reyzin lreyzin@cc.gatech.edu

Tong Zhang tzhang@stat.rutgers.edu

Taming the Monster:

A Fast and Simple Algorithm for Contextual Bandits

Alekh Agarwal¹, Daniel Hsu², Satyen Kale³, John Langford¹, Lihong Li¹, and Robert E. Schapire^{1,4} 2014

Can it actually work in practice?

A Multiworld Testing Decision Service

2016

 Alekh Agarwal
 Sarah Bird
 Markus Cozowicz
 Luong Hoang
 John Langford

 Stephen Lee*
 Jiaji Li*
 Dan Melamed
 Gal Oshri*
 Oswaldo Ribas*

 Siddhartha Sen
 Alex Slivkins

Microsoft Research, *Microsoft

Deployable system optimizing *business* metrics. Open Source, cloud based. <u>http://aka.ms/mwt</u> for more

But What about Reinforcement Learning?

Learning to Search Better than Your Teacher		
Kai-Wei Chang University of Illinois at Urbana Champaign, IL	KCHANG10@ ILLINOIS.EDU	
Akshay Krishnamurthy Carnegie Mellon University, Pittsburgh, PA	AKSHAYKR@CS.CMU.EDU	
Alekh Agarwal Microsoft Research, New York, NY	ALEKHA@ MICROSOFT.COM	
Hal Daumé III University of Maryland, College Park, MD, USA	HAL@UMIACS.UMD.EDU	
John Langford Microsoft Research, New York, NY	JCL@MICROSOFT.COM	

Imitation Learning is another plausible island of consistent tractability.

But what about REAL Reinforcement Learning?

PAC Reinforcement Learning with Rich Observations

NIPS 2016

Akshay Krishnamurthy *1, Alekh Agarwal ^{†2}, and John Langford ^{‡2}

¹University of Massachusetts, Amherst, Amherst, MA 01003 ²Microsoft Research, New York, NY 10011

Contextual Decision Processes with Low Bellman Rank Arxiv 2016 are PAC-Learnable

Nan Jiang[‡] Akshay Krishnamurthy^{*} Alekh Agarwal[†] nanjiang@umich.edu akshay@cs.umass.edu alekha@microsoft.com

> John Langford[†] Robert E. Schapire[†] jcl@microsoft.com schapire@microsoft.com

Contextual Decision Processes

- Repeatedly:
 - For h = 1 to H
 - 1. See features *x*
 - 2. Choose actions *a* in *A*
 - 3. See reward r for action a in context x and history h
- Goal: maximize sum of rewards.

OLIVE: Optimism Led Iterative Value Elimination Given: Set of value functions $F = \{f : X \times A \rightarrow (-\infty, \infty)\}$ Repeatedly:

Pick most optimistic f at h = 1Rollout with *f* repeatedly If (predicted value = real value) then return fElse find horizon *h* maximizing: $\widehat{E} \max_{a} f(x_h, a) - r - \max_{a} f(x_{h+1}, a)$ Rollout with f except acting randomly at h Eliminate all *f* with a large bellman error at *h*

Bellman Rank = new general notion of tractability

Model	tabular MDP	low-rank MDP	reactive POMDP	reactive PSR	LQR
Bellman rank	# states	rank	# hidden states	PSR rank	# state variables
PAC Learning	known	new	extended	new	known ³

Theorem: \forall CDPs, \forall self-consistent *F* with Bellman rank *B* with probability $1 - \delta$, OLIVE requires:

$$\tilde{O}\left(\frac{B^2H^3|A|\log\frac{|F|}{\delta}}{\epsilon^2}\right)$$

trajectories to find an ϵ optimal f.

My History of RL Foundations

- 1. Q functions can represent credit assignment.
- 2. Asymptotically valid update rules (Watkins '89, Williams '92)
- 3. Contextual Bandits first results (ACFS 1995)
- 4. MDP Sample complexity (Kearns&Singh 1998)
- 5. Efficient Contextual Bandit Learning (DHKKLRZ 2011)
- 6. Imitation w/ Reinforcement (Ross&Bagnell '14, CKADL '15)
- 7. Deployable Contextual Bandit System (ABCHLLLMORSS 2016)
- 8. Contextual Decision Process first results (KAL, JKALS 2016)
- 9. ... Join us