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In 2006, | stopped working on traditional RL.
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Traditional RL had become stale

1. Q functions can represent credit assignment.

2. Asymptotically valid update rules (Watkins 1989,
Williams 1992)

3. MDP Sample complexity (Kearns&Singh 1998)
4, ??



In 2007, Contextual Bandits started

The Epoch-Greedy Algorithm for Contextual
Multi-armed Bandits

John Langford Tong Zhang
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Abstract

We present Epoch-Greedy. an algorithm for contextual multi-armed bandits {also
known as bandits with side information). Epoch-Greedy has the following prop-

ertes:



What are Contextual Bandits?

Repeatedly:

1. See features x

2. Choose actions a in A

3.See reward 7 for action a in context x
Goal: maximize sum of rewards.



Why Not Contextual Bandits?
Eh... No credit assignment, easy exploration.
Why Contextual Bandits?

1. Supervised Learning: Vclassifiers V' data sources:
good performance

2. Contextual Bandits: Can we get the same?
3. Contextual RL: Can we get there?



CBs: Actually started in 1995!

The non-stochastic multi-armed bandit problem™
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Q: How do you make the computation work?
A: Use reduction to Supervised Learning

Efficient Optimal Learning for Contextual Bandits 2011
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Taming the Monster: 2014
A Fast and Simple Algorithm for Contextual Bandits
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Can it actually work in practice?

A Multiworld Testing Decision Service

2016
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Deployable system optimizing business metrics.
Open Source, cloud based.
http://aka.ms/mwt for more
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But What about Reinforcement Learning?

Learning to Search Better than Your Teacher
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Imitation Learning is another plausible island of consistent tractability.



But what about REAL Reinforcement Learning?

PAC Reinforcement Learning with Rich Observations
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Contextual Decision Processes with Low Bellman Rank Arxiv 2016
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Contextual Decision Processes

Repeatedly:
Forh = 1toH
1. See features x
2. Choose actions a in A
3. See reward 7 for action a in context x and history h

Goal: maximize sum of rewards.



OLIVE: Optimism Led Iterative Value Elimination
Given: Set of value functions /' = {f: X X A — (—0c0,00) }

Repeatedly:

Pick most optimistic f ath = 1

Rollout with [ repeatedly

If (predicted value = real value) then return |
Else find horizon 1 maximizing:

FE maxf(xp,, a) —r — maxf(xn.q, )
d a

Rollout with | except acting randomly at h
Eliminate all / with a large bellman error at h



Bellman Rank = new general notion of tractability

Model tabular MDP | bow-rank MDP | reactive POMDP | reactive PSR LOR
Bellman rank 41 rank + hidden states PSR rank 41 VATI
FAC Learning known new ex tended new IO I

Theorem: V' CDPs, V self-consistent F with
Bellman rank B with probability 1 — 6, OLIVE

(BZH?’\A\ logl%l)

requires:
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trajectories to find an € optimal f.




© 00 N O U A WN R

My History of RL

. MDP Sample comp
. Efficient Contextua

. ... Join us

Foundations

. Q functions can represent credit assighment.
. Asymptotically valid update rules (Watkins ‘89, Williams ‘92)
. Contextual Bandits first results (ACFS 1995)

exity (Kearns&Singh 1998)
Bandit Learning (DHKKLRZ 2011)

mitation w/ Reinforcement (Ross&Bagnell ‘14, CKADL ‘15)
Deployable Contextual Bandit System (ABCHLLLMORSS 2016)
. Contextual Decision Process first results (KAL, JKALS 2016)



