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> In: Ratings or click data

> Qut: A system that provides recommendations



Classical solution: Matrix factorization
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» Users have Jatent preferences 6,,.
ltems have latent attributes 3; .

» A users rating comes from an exponential family,
e.g., Poisson, Bernoulli, Gaussian.

Koren et al., Computer 2009



Classical solution: Matrix factorization

“All Things Airplane”

“Personal Finance”

Flying Solo

Crew-Only 787 Flight Is Approved By FAA

All Aboard Rescued After Plane Skids Into Water at Bali Airport
Investigators Begin to Test Other Parts On the 787

American and US Airways May Announce a Merger This Week

In Hard Economy for All Ages Older Isn't Better It's Brutal
Younger Generations Lag Parents in Wealth-Building
Fast-Growing Brokerage Firm Often Tangles With Regulators
The Five Stages of Retirement Planning Angst

Signs That It's Time for a New Broker

Example components from New York Times click data

» Condition on click data y to estimate the posterior p(8, B |y).
— estimates of user preferences and item attributes

» Form predictions with the posterior predictive distribution.

» This is the backbone of many recommender methods.

Salakhutdinov and Mnih, International Conference on Machine Learning 2008

Gopalan et al., Uncertainty in Artificial Intelligence 2015




Today

» Two related ideas that build on matrix factorization.

— Causal inference for recommendation (new; feedback wanted!)
— Modeling user exposure in recommendation

» Both ideas use the theory around causal inference.
— Key idea: The exposure model (aka the assignment mechanism)

Liang et al., ACM Conference on Recommendation Systems, 2016



Causal Inference for Recommendation

(with Dawen Liang and Laurent Charlin)



Causal inference and recommendation

» Causal inference
— Expose a unit to a treatment
— What would happen if a patient received a treatment?
— Biased data from observational studies

» Recommendation
— Expose a user to an item
— What would happen if a user was recommended an item?
— Biased data from logged user behavior



Causal recommendation
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» Treat the inference of user preferences as a causal inference

> We want preferences 6; to answer (from attributes 8 )

What if user i saw item j ? How would user i like it?

» This leads to a different approach from classical matrix factorization.



A potential outcomes perspective

> Consider a single user i and fix the attributes of all items f3;.

» Assume a potential outcomes model
aij ~ Ppij
ij (0) ~ o(")
T
yij (1) ~ exp-fam(6; B;)
» Usual inference about 6; is causal if we have ignorability,

aij 1L (yi(0), yij (1))

(This is typically the main issue behind observational data.)

Rubin, 1974, 1975
Imbens and Rubin, 2015



A potential outcomes perspective

» Clearly, a;; 1L y;;(0), because y;; (0) is known.
J J J

» Butisa;; 1L y;;j(1)?
— Probably not. Users seek out items that they will like.

» This biases our estimates of the users’ preferences.

Marlin and Zemel, 2009
Schnabel et al., 2016



Causal recommendation

» In ratings data we observe

— which items each user saw a;; (binary).
— how they rated those items, y;; (1) when a;; =1
— and y(0), trivially

» Fit an exposure model, how users find items.
(This is also called the assignment mechanism.)

» Fit preferences by using the exposure model to correct for self-selection



Causal recommendation

> Fit the exposure model using Poisson factorization,
ajj ~ Poisson(r; A;)
» Use inverse propensity weighting to estimate user preferences 6;,
0 = MAP({aij. yij(aij), 1/ p(aij = 1)})

> Intuition: if a user sees and likes a difficult-to-find movie then we upweight its
influence on her preferences.



Why propensity weighting works

Suppose our data come from this model:
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Then inference about preferences 6; are not causal inferences.




Why propensity weighting works

We want data to come from this model:
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The exposure probabilities are known and independent of ;.
Solution: Importance sampling, divide each sample by 1/ p(a;;).



Data sets

Learning in Implicit Generative Models

» MovieLens 1M, 10M: Users rating movies
» Yahoo R3: Users listening to music

> Arxiv: Users downloading PDFs (exposure = seeing the abstract)



How good is the exposure model?

Model ML-1M  ML-10M  Yahoo-R3 ArXiv
Popularity -1.39 -1.64 -1.81 -3.83
Poisson factorization -0.97 -1.08 -1.58 -2.71

Tran et al., Arxiv, 2016
Golapan et al., Uncertainty in Artificial Intelligence, 2015



Self-selection on ML 1M
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Correlation of the log odds of assignment to the observed rating



Self-selection on ML 1M
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Correlation of the log odds of assignment to the predicted rating
(Workshop confession: What does this mean?)



Different confounding on the Arxiv
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Correlation of the log odds of assignment to the predicted rating



Aside: Two test sets
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Histogram of popularities of the standard and skewed test set

> A test set is biased by the same process that created the training set.
> We created “skewed” test sets, where any item has equal probability.

> Main idea: Test set distribution is different from the training distribution.



Causal inference improves predictions

ML-1M ML-10M Yahoo-R3 ArXiv
REG SKEW REG SKEW REG SKEW REG SKEW
Pop OBS -150 -2.07 -162 -259 -158 -1.75 -1.61 -1.65
CAU -1.61 -195 -167 -1.89 -1.51 -1.56 -1.74 -1.76
PF OBS -150 -207 -162 -259 -158 -1.75 -1.61 -1.65
CAU -148 -1.84 -1.51 -196 -149 -155 -1.60 -1.62

Predictive log tail probability (bigger is better)



ML-1M (regular test set)
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ML-1M (skewed test set)
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Modeling User Exposure in Recommendation

(with Dawen Liang, Laurent Charlin, and James Mclnerney)



Users

Items

» Implicit data is about users interacting with items
— clicks, likes, purchases, ...

» Less information than explicit data (e.g. ratings), but more prevalent

» Challenge: We only observe positive signal.



ITEM ATTRIBUTES USER PREFERENCES
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» Classical solution: matrix factorization

» Users are associated with latent preferences 0,,.
ltems are associated with /atent attributes ;.

» Whether a user clicked on an item comes from an exponential family,
e.g., Poisson, Bernoulli, Gaussian.

Koren et al., Computer 2009
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Users

» Tacit assumption—each user considered clicking on each item.
> l.e., every zero indicates that a user decided not to click on an item.

» This is false! Users are only exposed to a subset of items.

Hu et al., International Conference on Data Mining 2008
Rendle et al., Uncertainty in Artificial Intelligence 2009



Items

Users
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» This issue biases estimates of preferences and attributes.

» In practice, researchers correct for this bias by downweighting the 0’s.

» This gives state-of-the-art results, but it is ad-hoc.

Hu et al., International Conference on Data Mining 2008
Rendle et al., Uncertainty in Artificial Intelligence 2009
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Idea: Model clicks from a two-stage process.

First, a user is exposed to an item.

Then, she decides whether to click on it.

(Inspired by, but different from, potential outcomes.)
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» Challenge: Exposure is (partly) latent.
» Clicks mean that the user was exposed.
» But non-clicks can arise in two ways:

— The user didn’t see the item.
— The user chose not to click on it.



EXPOSURE
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» Exposure MF: an exposure model and a click model

» First generate whether the user was exposed to the item.

» Conditional on the exposure, generate whether the user clicked.
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» Popularity-based exposure: a,; ~ Bernoulli(u;)
» Location-based exposure: dy; ~ Bernoulli(a(x,;r £;))

» Others: social-network exposure, author-preference exposure, ...
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» Given data y we find MAP estimates of the parameters M = {0, 8, i}

» Recall that the exposure indicator is sometimes latent.

» We use expectation maximization.
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» E-step: Estimate the posterior of each unclicked exposure,
ui = p(aui = 1| yui =0, M).

» M-step: Estimate .M from the expected complete log likelihood of y.



&
g DR N
@’b- O S Q’b X0
& RO @

A XX \-

Q RS N\
&2 @%\ @ & \?\'b(d oo\\ » o

\\
@ @@Q Q\e° O Q;b@ e

» E-step: Exposure prior interacts with probability of not clicking,
playi = 1| yui =0, M) < payi = 1[M)p(yui =0]aui =1, M)

> In this example:

— Posterior exposure to Return of the Jedi is smaller than the prior.
— Posterior exposure to When Harry Met Sally is larger.
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» M-step: Weighted factorization

— Zeros weighted by the posterior probability of exposure.
— Related to WMF, but emerges from a probabilistic perspective
— And, not all Os are reweighted by the same amount

» E.g., the zero for Return of the Jedi does not pull the user’s preferences.

» (Exposure M-step: MLE with expected sufficient statistics.)
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User A (Radiohead and Interpol listener)
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Empirical item popularity

> This user likes Interpol and Radiohead.

10°

Radiohead: "Kid A"
Radiohead: "Jigsaw Falling Into Place”
Radlohead: "Sail To The Moon"
d: "Sit Down. Stand Up"

d: Blow Out"
Interpol: "C'mere"
Interpol: "Not Even Jail"
Interpol: "Public Pervert"
Interpol: "Next Evil"
Incubus: "Bass Solo"
Great White: "House Of Broken Love"

> Songs that she might like are down-weighted more than usual.
This distinguishes the algorithm from WMF.

> But, it's a modeling choice. (The alternative could also be plausible.)




TPS Mendeley Gowalla ArXiv

Type Music Papers Venues  Clicks
# of users 220K 45K 58K 38K
# of items 23K 76K 47K 45K
# interactions 14.0M 2.4M 2.3M 2.5M

% interactions  0.29% 0.07% 0.09% 0.15%

We studied several large data sets of implicit data.



TPS Mendeley ArXiv
WMF ExpoMF | WMF  ExpoMF | WMF  ExpoMF

Recall@20 0.195  0.201 0.128 0.139 | 0.143 0.147
NDCG@100 0.255  0.263 0.149 0.159 | 0.154  0.157
MAP@100 0.092  0.109 0.048 0.055 | 0.051 0.054

Weighted MF vs. popularity-based exposure



WMF  Popularity Exposure Location Exposure

Recall@20 0.122 0.118 0.129
NDCG@100 0.118 0.116 0.125
MAP@100  0.044 0.043 0.048

WMF vs. popularity-based vs. location-based exposure (Gowalla)



Related work:

v

Causal inference and potential outcomes

v

Weighted matrix factorization

» Missing data and recommender systems

v

Spike and slab models

Pearl, Causality

Imbens and Rubin, Causal Inference in Statistics, Social and Biomedical Sciences: An Introduction
Gelman et al., Bayesian Data Analysis

Hu et al., International Conference on Data Mining 2008

Marlin et al., Uncertainty in Artificial Intelligence 2007
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Summary:

» We developed a latent exposure process for modeling implicit data.

» Enables us to consider two models—one of clicks and one of exposure.

» Outperforms weighted matrix factorization; opens the door to new methods
» See our paper at WWW 2016.



Causal Inference and Recommendation Systems

» Learning the assignment mechanism is useful for causal inference

— It helps us better learn user preferences
— It helps us better model implicit data

» Other work on recommender systems from our group

— Hierarchical Poisson factorization

— Social networks and recommender systems
Dynamic recommender systems

— Combining content and clicks

— Embeddings for recommendation

Gopalan et al., Uncertainty in Artificial Intelligence 2015

Chaney et al., ACM Conference on Recommendation Systems 2015
Charlin et al., ACM Conference on Recommendation Systems 2015
Gopalan et al., Neural Information Processing Systems 2014
Gopalan et al., Artificial Intelligence and Statistics 2014

Wang and Blei, Knowledge Discovery and Data Mining 2013

Liang et al., ACM Conference on Recommendation Systems 2016



Why it's not crazy to model integer data with a Normal distribution.

» OK, itis a little.
> Letp = 9;—,31'.
Consider the Poisson with parameter exp{.}.

p(y) xexp{yu —exp{u} —log y!}

Now consider a (unit-variance) Gaussian

p(y) xexpiyp — pu?/2 —y?/2}

» These are different distributions. But both contain

- yu
— A “penalty” for large parameters
— A “penalty” for large variables



