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DEF
DEF

I In: Ratings or click data

I Out: A system that provides recommendations



Classical solution: Matrix factorization

ITEM ATTRIBUTES USER PREFERENCES

✓uˇi yui

✓u ⇠ f .�/
ˇi ⇠ g.�/
yui ⇠ exp-fam

�
✓>u ˇi

�

I Users have latent preferences �u.
Items have latent attributes ˇi .

I A users rating comes from an exponential family,
e.g., Poisson, Bernoulli, Gaussian.

Koren et al., Computer 2009



Classical solution: Matrix factorization
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Figure 6: The top 10 items by the expected weight �i from
three of the 100 components discovered by our algorithm
for the New York Times data set.

A Exploratory analysis

The fitted HPF model can be explored to discover latent structure
among items and users and to confirm that the model is captur-
ing the components in the data in a reasonable way. For exam-
ple, in Figure 6 we illustrate the components discovered by our
algorithm on the news articles in the New York Times. The illus-
tration shows the top items—items sorted in decreasing order of
their expected weight �i—from three of the 100 components dis-
covered by our algorithm. From these, we see that learned compo-
nents both cut across and differentiate between conventional top-
ics and categories. We find that multiple business-related topics
(e.g., self help and personal finance) comprise separate compo-
nents, whereas other articles that appear across different sections
of the newspaper (e.g., business and regional news) are unified by
their content (e.g., airplanes).

B The variational algorithm

Given an observed matrix of user behavior y, we would like
to compute the posterior distribution of user preferences ✓uk,
item attributes �ik, user activity ⇠u and item popularity ⌘i,
p(✓,�, ⇠, ⌘ | y). Our derivation of the variational algorithm for
HPF makes use of general results about the class of conditionally
conjugate models [11, 16]. We define the class, show that HPF is
in the class, and then derive the variational inference algorithm.

Complete conditionals. Variational inference fits the variational
parameters to minimize their KL divergence to the posterior. For
the large class of conditionally conjugate models, we can easily
perform this optimization with a coordinate-ascent algorithm, one
in which we iteratively optimize each variational parameter while
holding the others fixed. A complete conditional is the condi-
tional distribution of a latent variable given the observations and
the other latent variables in the model. A conditionally conjugate
model is one where each complete conditional is in an exponential
family.

HPF, with the zui variables described in Section 2.2, is a condi-
tionally conjugate model. (Without the auxiliary variables, it is
not conditionally conjugate.) For the user weights ✓uk, the com-
plete conditional is a Gamma,

✓uk |�, ⇠, z, y ⇠ Gamma(a +
P

i zuik, ⇠u +
P

i �ik). (3)

The complete conditional for item weights �ik is symmetric,

�ik | ✓, ⌘, z, y ⇠ Gamma(a +
P

u zuik, ⌘i +
P

i ✓uk). (4)

These distributions stem from conjugacy properties between the
Gamma and Poisson. In the user weight distribution, for example,
the item weights �ik act as “exposure” variables [9]. (The roles
are reversed in the item weight distribution.) We can similarly
write down the complete conditionals for the user activity ⇠u and
the item popularity ⌘i.

⇠u | ✓ ⇠ Gamma(a0 + Ka, b0 +
P

k ✓uk).

⌘i |� ⇠ Gamma(c0 + Kc, d0 +
P

k �ik).

The final latent variables are the auxiliary variables. Recall that
each zui is a K-vector of Poisson counts that sum to the observa-
tion yui. The complete conditional for this vector is

zui |�, ✓, y ⇠ Mult
✓

yui,
✓u�iP

k ✓uk�ik

◆
. (5)

Though these variables are Poisson in the model, their complete
conditional is multinomial. The reason is that the conditional dis-
tribution of a set of Poisson variables, given their sum, is a multi-
nomial for which the parameter is their normalized set of rates.
(See [20, 5].)

Deriving the algorithm. We now derive variational inference for
HPF. First, we set each factor in the mean-field family (see Sec-
tion 2.2) to be the same type of distribution as its complete con-
ditional. The complete conditionals for the item weights �ik and
user weights ✓uk are Gamma distributions (Equations 3 and 4);
thus the variational parameters �ik and �uk are Gamma parame-
ters, each containing a shape and a rate. Similarly, the variational
user activity parameters u and the variational item popularity pa-
rameter ⌧i are Gamma parameters, each containing a shape and a
rate. The complete conditional of the auxiliary variables zuik is a
multinomial (Equation 5); thus the variational parameter �ui is a
multinomial parameter, a point on the K-simplex, and the varia-
tional distribution for zui is Mult(yui,�ui).

In coordinate ascent we iteratively optimize each variational pa-
rameter while holding the others fixed. In conditionally conjugate
models, this amounts to setting each variational parameter equal
to the expected parameter (under q) of the complete conditional.
4 The parameter to each complete conditional is a function of the
other latent variables and the mean-field family sets all the vari-
ables to be independent. These facts guarantee that the parameter
we are optimizing will not appear in the expected parameter.

For the user and item weights, we update the variational shape
and rate parameters. The updates are

�uk = ha +
P

i yui�uik, b +
P

i �
shp
ik /�rte

iki (6)

�ik = hc +
P

u yui�uik, d +
P

u �shp
ik /�rte

iki. (7)

These are expectations of the complete conditionals in Equa-
tions 3 and 4. In the shape parameter, we use that the expected

4It is a little more complex then this. For details, see [16].
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A Exploratory analysis

The fitted HPF model can be explored to discover latent structure
among items and users and to confirm that the model is captur-
ing the components in the data in a reasonable way. For exam-
ple, in Figure 6 we illustrate the components discovered by our
algorithm on the news articles in the New York Times. The illus-
tration shows the top items—items sorted in decreasing order of
their expected weight �i—from three of the 100 components dis-
covered by our algorithm. From these, we see that learned compo-
nents both cut across and differentiate between conventional top-
ics and categories. We find that multiple business-related topics
(e.g., self help and personal finance) comprise separate compo-
nents, whereas other articles that appear across different sections
of the newspaper (e.g., business and regional news) are unified by
their content (e.g., airplanes).

B The variational algorithm

Given an observed matrix of user behavior y, we would like
to compute the posterior distribution of user preferences ✓uk,
item attributes �ik, user activity ⇠u and item popularity ⌘i,
p(✓,�, ⇠, ⌘ | y). Our derivation of the variational algorithm for
HPF makes use of general results about the class of conditionally
conjugate models [11, 16]. We define the class, show that HPF is
in the class, and then derive the variational inference algorithm.

Complete conditionals. Variational inference fits the variational
parameters to minimize their KL divergence to the posterior. For
the large class of conditionally conjugate models, we can easily
perform this optimization with a coordinate-ascent algorithm, one
in which we iteratively optimize each variational parameter while
holding the others fixed. A complete conditional is the condi-
tional distribution of a latent variable given the observations and
the other latent variables in the model. A conditionally conjugate
model is one where each complete conditional is in an exponential
family.

HPF, with the zui variables described in Section 2.2, is a condi-
tionally conjugate model. (Without the auxiliary variables, it is
not conditionally conjugate.) For the user weights ✓uk, the com-
plete conditional is a Gamma,
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The complete conditional for item weights �ik is symmetric,
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These distributions stem from conjugacy properties between the
Gamma and Poisson. In the user weight distribution, for example,
the item weights �ik act as “exposure” variables [9]. (The roles
are reversed in the item weight distribution.) We can similarly
write down the complete conditionals for the user activity ⇠u and
the item popularity ⌘i.
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P

k ✓uk).

⌘i |� ⇠ Gamma(c0 + Kc, d0 +
P

k �ik).

The final latent variables are the auxiliary variables. Recall that
each zui is a K-vector of Poisson counts that sum to the observa-
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◆
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Though these variables are Poisson in the model, their complete
conditional is multinomial. The reason is that the conditional dis-
tribution of a set of Poisson variables, given their sum, is a multi-
nomial for which the parameter is their normalized set of rates.
(See [20, 5].)

Deriving the algorithm. We now derive variational inference for
HPF. First, we set each factor in the mean-field family (see Sec-
tion 2.2) to be the same type of distribution as its complete con-
ditional. The complete conditionals for the item weights �ik and
user weights ✓uk are Gamma distributions (Equations 3 and 4);
thus the variational parameters �ik and �uk are Gamma parame-
ters, each containing a shape and a rate. Similarly, the variational
user activity parameters u and the variational item popularity pa-
rameter ⌧i are Gamma parameters, each containing a shape and a
rate. The complete conditional of the auxiliary variables zuik is a
multinomial (Equation 5); thus the variational parameter �ui is a
multinomial parameter, a point on the K-simplex, and the varia-
tional distribution for zui is Mult(yui,�ui).

In coordinate ascent we iteratively optimize each variational pa-
rameter while holding the others fixed. In conditionally conjugate
models, this amounts to setting each variational parameter equal
to the expected parameter (under q) of the complete conditional.
4 The parameter to each complete conditional is a function of the
other latent variables and the mean-field family sets all the vari-
ables to be independent. These facts guarantee that the parameter
we are optimizing will not appear in the expected parameter.

For the user and item weights, we update the variational shape
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tions 3 and 4. In the shape parameter, we use that the expected

4It is a little more complex then this. For details, see [16].

Example components from New York Times click data

I Condition on click data y to estimate the posterior p.�;ˇ j y/.
– estimates of user preferences and item attributes

I Form predictions with the posterior predictive distribution.

I This is the backbone of many recommender methods.

Salakhutdinov and Mnih, International Conference on Machine Learning 2008
Gopalan et al., Uncertainty in Artificial Intelligence 2015



Today

I Two related ideas that build on matrix factorization.

– Causal inference for recommendation (new; feedback wanted!)
– Modeling user exposure in recommendation

I Both ideas use the theory around causal inference.

– Key idea: The exposure model (aka the assignment mechanism)

Liang et al., ACM Conference on Recommendation Systems, 2016



Causal Inference for Recommendation

(with Dawen Liang and Laurent Charlin)



Causal inference and recommendation

I Causal inference

– Expose a unit to a treatment
– What would happen if a patient received a treatment?
– Biased data from observational studies

I Recommendation

– Expose a user to an item
– What would happen if a user was recommended an item?
– Biased data from logged user behavior



Causal recommendation

DEF

DEF

I Treat the inference of user preferences as a causal inference

I We want preferences �i to answer (from attributes ǰ ):

What if user i saw item j? How would user i like it?

I This leads to a different approach from classical matrix factorization.



A potential outcomes perspective

I Consider a single user i and fix the attributes of all items ǰ .

I Assume a potential outcomes model

aij � pij

yij .0/ � ı0.�/
yij .1/ � exp-fam.�>

i ǰ /

I Usual inference about �i is causal if we have ignorability,

aij ?? .yij .0/; yij .1//

(This is typically the main issue behind observational data.)

Rubin, 1974, 1975
Imbens and Rubin, 2015



A potential outcomes perspective

I Clearly, aij ?? yij .0/, because yij .0/ is known.

I But is aij ?? yij .1/?

– Probably not. Users seek out items that they will like.

I This biases our estimates of the users’ preferences.

Marlin and Zemel, 2009
Schnabel et al., 2016



Causal recommendation

I In ratings data we observe

– which items each user saw aij (binary).
– how they rated those items, yij .1/ when aij D 1
– and y.0/, trivially

I Fit an exposure model, how users find items.
(This is also called the assignment mechanism.)

I Fit preferences by using the exposure model to correct for self-selection



Causal recommendation

I Fit the exposure model using Poisson factorization,

aij � Poisson.�>
i �j /

I Use inverse propensity weighting to estimate user preferences �i ,

O� D MAP.faij ; yij .aij /; 1=p.aij D 1/g/
I Intuition: if a user sees and likes a difficult-to-find movie then we upweight its

influence on her preferences.



Why propensity weighting works

Suppose our data come from this model:

aij

yij .0/

yij .1/

ǰ

✓i

Then inference about preferences �i are not causal inferences.



Why propensity weighting works

We want data to come from this model:

aij

yij .0/

yij .1/

ǰ

✓i

The exposure probabilities are known and independent of ˇi .
Solution: Importance sampling, divide each sample by 1=p.aij /.



Data sets
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Learning in Implicit Generative Models

Shakir Mohamed and Balaji Lakshminarayanan
DeepMind, London

{shakir,balajiln}@google.com

Abstract
Generative adversarial networks (GANs) provide an algorithmic framework for
constructing generative models with several appealing properties: they do not
require a likelihood function to be specified, only a generating procedure; they
provide samples that are sharp and compelling; and they allow us to harness our
knowledge of building highly accurate neural network classifiers. Here, we de-
velop our understanding of GANs with the aim of forming a rich view of this
growing area of machine learning—to build connections to the diverse set of sta-
tistical thinking on this topic, of which much can be gained by a mutual exchange
of ideas. We frame GANs within the wider landscape of algorithms for learning in
implicit generative models—models that only specify a stochastic procedure with
which to generate data—and relate these ideas to modelling problems in related
fields, such as econometrics and approximate Bayesian computation. We develop
likelihood-free inference methods and highlight hypothesis testing as a principle
for learning in implicit generative models, using which we are able to derive the
objective function used by GANs, and many other related objectives. The test-
ing viewpoint directs our focus to the general problem of density ratio estimation.
There are four approaches for density ratio estimation, one of which is a solution
using classifiers to distinguish real from generated data. Other approaches such
as divergence minimisation and moment matching have also been explored in the
GAN literature, and we synthesise these views to form an understanding in terms
of the relationships between them and the wider literature, highlighting avenues
for future exploration and cross-pollination.

1 Implicit Generative Models
It is useful to make a distinction between two types of probabilistic models: prescribed and im-
plicit models [11]. Prescribed probabilistic models are those that provide an explicit parametric
specification of the distribution of an observed random variable x, specifying a log-likelihood func-
tion log qθ(x) with parameters θ. Most models in machine learning and statistics are of this form,
whether they be state-of-the-art classifiers for object recognition, complex sequence models for ma-
chine translation, or fine-grained spatio-temporal models tracking the spread of disease. Alterna-
tively, we can specify implicit probabilistic models that define a stochastic procedure that directly
generates data. Such models are the natural approach for problems in climate and weather, popu-
lation genetics, and ecology, since the mechanistic understanding of such systems can be used to
directly create a data simulator, and hence the model. It is exactly because implicit models are more
natural for many problems that they are of interest and importance.
Implicit generative models use a latent variable z and transform it using a deterministic function Gθ

that maps from Rm → Rd using parameters θ. Such models are amongst the most fundamental
of models, e.g., many of the basic methods for generating non-uniform random variates are based
on simple implicit models and one-line transformations [10]. In general, implicit generative models
specify a valid density on the output space that forms an effective likelihood function:

x = Gθ(z′); z′ ∼ q(z) (1)

qθ(x) =
∂

∂x1
. . .

∂

∂xd

∫

{Gθ(z)≤x}
q(z)dz, (2)

I MovieLens 1M, 10M: Users rating movies

I Yahoo R3: Users listening to music

I Arxiv: Users downloading PDFs (exposure = seeing the abstract)



How good is the exposure model?

Model ML-1M ML-10M Yahoo-R3 ArXiv

Popularity -1.39 -1.64 -1.81 -3.83
Poisson factorization -0.97 -1.08 -1.58 -2.71

Tran et al., Arxiv, 2016
Golapan et al., Uncertainty in Artificial Intelligence, 2015



Self-selection on ML 1M
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Self-selection on ML 1M
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(Workshop confession: What does this mean?)



Different confounding on the Arxiv
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Aside: Two test sets
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Histogram of popularities of the standard and skewed test set

I A test set is biased by the same process that created the training set.

I We created “skewed” test sets, where any item has equal probability.

I Main idea: Test set distribution is different from the training distribution.



Causal inference improves predictions

ML-1M ML-10M Yahoo-R3 ArXiv
REG SKEW REG SKEW REG SKEW REG SKEW

Pop OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65
CAU -1.61 -1.95 -1.67 -1.89 -1.51 -1.56 -1.74 -1.76

PF OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65
CAU -1.48 -1.84 -1.51 -1.96 -1.49 -1.55 -1.60 -1.62

Predictive log tail probability (bigger is better)



ML-1M (regular test set)
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ML-1M (skewed test set)
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Modeling User Exposure in Recommendation

(with Dawen Liang, Laurent Charlin, and James McInerney)
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I Implicit data is about users interacting with items

– clicks, likes, purchases, ...

I Less information than explicit data (e.g. ratings), but more prevalent

I Challenge: We only observe positive signal.



ITEM ATTRIBUTES USER PREFERENCES

✓uˇi yui

✓u ⇠ f .�/
ˇi ⇠ g.�/
yui ⇠ exp-fam

�
✓>u ˇi

�

I Classical solution: matrix factorization

I Users are associated with latent preferences �u.
Items are associated with latent attributes ˇi .

I Whether a user clicked on an item comes from an exponential family,
e.g., Poisson, Bernoulli, Gaussian.

Koren et al., Computer 2009
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I Tacit assumption—each user considered clicking on each item.

I I.e., every zero indicates that a user decided not to click on an item.

I This is false! Users are only exposed to a subset of items.

Hu et al., International Conference on Data Mining 2008
Rendle et al., Uncertainty in Artificial Intelligence 2009
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I This issue biases estimates of preferences and attributes.

I In practice, researchers correct for this bias by downweighting the 0’s.

I This gives state-of-the-art results, but it is ad-hoc.

Hu et al., International Conference on Data Mining 2008
Rendle et al., Uncertainty in Artificial Intelligence 2009
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I Idea: Model clicks from a two-stage process.

I First, a user is exposed to an item.

I Then, she decides whether to click on it.

I (Inspired by, but different from, potential outcomes.)
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I Challenge: Exposure is (partly) latent.

I Clicks mean that the user was exposed.

I But non-clicks can arise in two ways:

– The user didn’t see the item.
– The user chose not to click on it.



✓uˇi yui

aui

EXPOSURE
INDICATOR

aui ⇠ Bern.�i /

yui j aui D 0 ⇠ ı0

yui j aui D 1 ⇠ exp-fam
�
✓>u ˇi

�
�i

I Exposure MF: an exposure model and a click model

I First generate whether the user was exposed to the item.

I Conditional on the exposure, generate whether the user clicked.



✓uˇi yui

aui

EXPOSURE
INDICATOR

aui ⇠ Bern.�i /

yui j aui D 0 ⇠ ı0

yui j aui D 1 ⇠ exp-fam
�
✓>u ˇi

�
�i

I Popularity-based exposure: aui � Bernoulli.�i /

I Location-based exposure: aui � Bernoulli.�.x>
u `i //

I Others: social-network exposure, author-preference exposure, ...



✓uˇi yui

aui

EXPOSURE
INDICATOR

aui ⇠ Bern.�i /

yui j aui D 0 ⇠ ı0

yui j aui D 1 ⇠ exp-fam
�
✓>u ˇi

�
�i

I Given data y we find MAP estimates of the parameters M D f�;ˇ;�g
I Recall that the exposure indicator is sometimes latent.

I We use expectation maximization.



✓uˇi yui

aui

EXPOSURE
INDICATOR

aui ⇠ Bern.�i /

yui j aui D 0 ⇠ ı0

yui j aui D 1 ⇠ exp-fam
�
✓>u ˇi

�
�i

I E-step: Estimate the posterior of each unclicked exposure,

�ui D p.aui D 1 jyui D 0;M/:

I M-step: Estimate M from the expected complete log likelihood of y.
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I E-step: Exposure prior interacts with probability of not clicking,

p.aui D 1 jyui D 0;M/ / p.aui D 1 jM/p.yui D 0 j aui D 1;M/

I In this example:

– Posterior exposure to Return of the Jedi is smaller than the prior.
– Posterior exposure to When Harry Met Sally is larger.
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I M-step: Weighted factorization

– Zeros weighted by the posterior probability of exposure.
– Related to WMF, but emerges from a probabilistic perspective
– And, not all 0s are reweighted by the same amount

I E.g., the zero for Return of the Jedi does not pull the user’s preferences.

I (Exposure M-step: MLE with expected sufficient statistics.)
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I This user likes Interpol and Radiohead.

I Songs that she might like are down-weighted more than usual.
This distinguishes the algorithm from WMF.

I But, it’s a modeling choice. (The alternative could also be plausible.)



TPS Mendeley Gowalla ArXiv

Type Music Papers Venues Clicks
# of users 220K 45K 58K 38K
# of items 23K 76K 47K 45K
# interactions 14.0M 2.4M 2.3M 2.5M
% interactions 0.29% 0.07% 0.09% 0.15%

We studied several large data sets of implicit data.



TPS Mendeley ArXiv
WMF ExpoMF WMF ExpoMF WMF ExpoMF

Recall@20 0.195 0.201 0.128 0.139 0.143 0.147
NDCG@100 0.255 0.263 0.149 0.159 0.154 0.157
MAP@100 0.092 0.109 0.048 0.055 0.051 0.054

Weighted MF vs. popularity-based exposure



WMF Popularity Exposure Location Exposure

Recall@20 0.122 0.118 0.129
NDCG@100 0.118 0.116 0.125
MAP@100 0.044 0.043 0.048

WMF vs. popularity-based vs. location-based exposure (Gowalla)



Related work:

I Causal inference and potential outcomes

I Weighted matrix factorization

I Missing data and recommender systems

I Spike and slab models

Pearl, Causality
Imbens and Rubin, Causal Inference in Statistics, Social and Biomedical Sciences: An Introduction
Gelman et al., Bayesian Data Analysis
Hu et al., International Conference on Data Mining 2008
Marlin et al., Uncertainty in Artificial Intelligence 2007
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Summary:

I We developed a latent exposure process for modeling implicit data.

I Enables us to consider two models—one of clicks and one of exposure.

I Outperforms weighted matrix factorization; opens the door to new methods

I See our paper at WWW 2016.



Causal Inference and Recommendation Systems

I Learning the assignment mechanism is useful for causal inference

– It helps us better learn user preferences
– It helps us better model implicit data

I Other work on recommender systems from our group

– Hierarchical Poisson factorization
– Social networks and recommender systems
– Dynamic recommender systems
– Combining content and clicks
– Embeddings for recommendation

Gopalan et al., Uncertainty in Artificial Intelligence 2015
Chaney et al., ACM Conference on Recommendation Systems 2015
Charlin et al., ACM Conference on Recommendation Systems 2015
Gopalan et al., Neural Information Processing Systems 2014
Gopalan et al., Artificial Intelligence and Statistics 2014
Wang and Blei, Knowledge Discovery and Data Mining 2013
Liang et al., ACM Conference on Recommendation Systems 2016



Why it’s not crazy to model integer data with a Normal distribution.

I OK, it is a little.

I Let � D �>
u ˇi .

Consider the Poisson with parameter expf�g.

p.y/ / expfy� � expf�g � log yŠg

Now consider a (unit-variance) Gaussian

p.y/ / expfy� � �2=2 � y2=2g
I These are different distributions. But both contain

– y�

– A “penalty” for large parameters
– A “penalty” for large variables


