

Katerina Marazopoulou, Marc Maier, David Jensen

College of Information and Computer Sciences University of Massachusetts Amherst

UAI 2015: Advances in Causal Inference Workshop

1. Representation

- 1. Representation
 - Relational (multiple types of interacting entities)

- 1. Representation
 - Relational (multiple types of interacting entities)
 - Temporal (values of variables change over time)

- 1. Representation
 - Relational (multiple types of interacting entities)
 - Temporal (values of variables change over time)
- 2. Structure learning algorithm

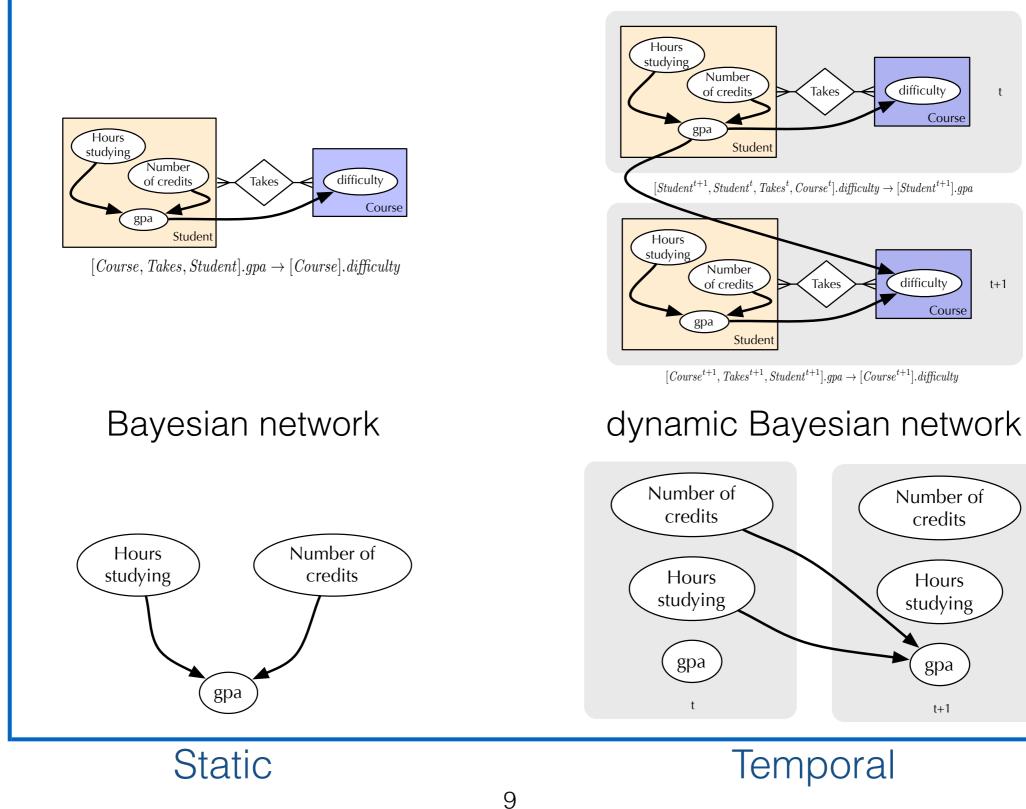
- 1. Representation
 - Relational (multiple types of interacting entities)
 - Temporal (values of variables change over time)
- 2. d-separation for temporal relational models
- 3. Structure learning algorithm

Why?

- Many real-world systems consist of heterogeneous entities that interact with each other (relational) over time (temporal)
 - Authors and citations
 - Social networks
 - Epidemiology
 - Education
- More expressive models can represent such domains more accurately.
- Expressiveness is particularly important for causality.

Representation

Propositional



relational model

temporal relational model

difficulty

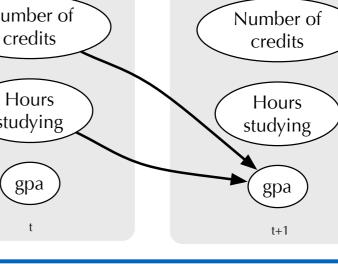
difficulty

Course

Course

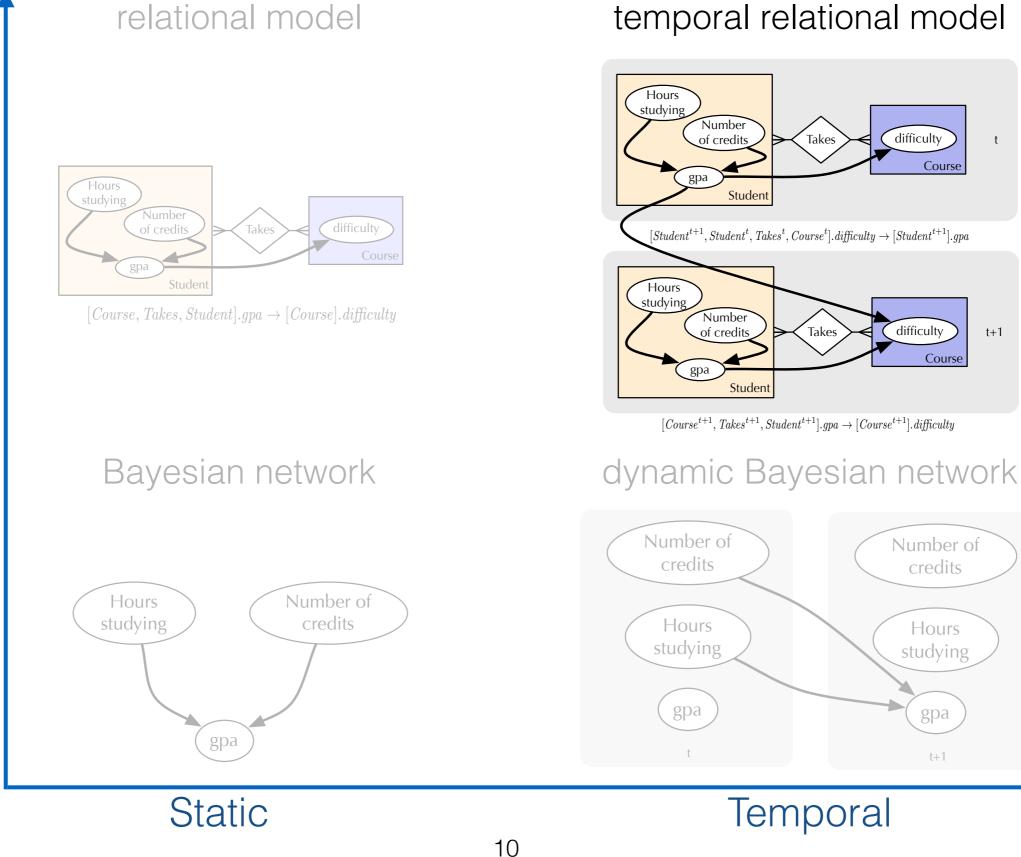
t

t+1



Representation

Propositional



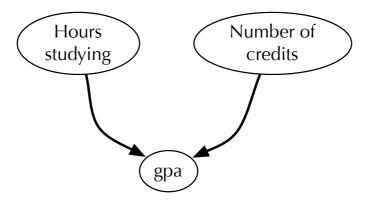
temporal relational model

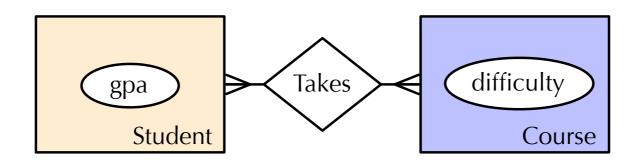
t

t+1

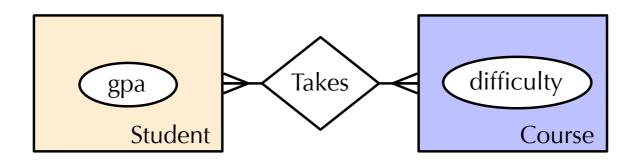
Bayesian networks

- Directed acyclic graphs
- Nodes are random variables
- Model dependencies between variables of a single entity type



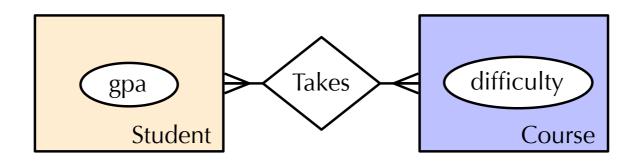


Relational schema



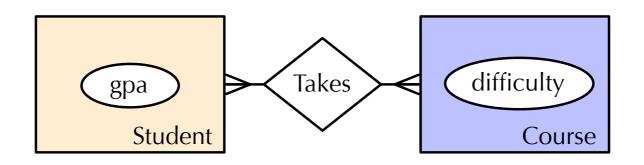
Relational paths: [Course, Takes, Student]

"The students that take a course"



Relational paths: [Course, Takes, Student] Relational variables: [Course, Takes, Student].gpa

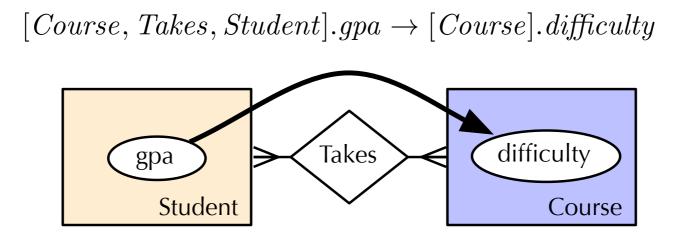
"The GPA of the students that take a course"



Relational paths: [Course, Takes, Student] Relational variables: [Course, Takes, Student].gpa Relational dependencies:

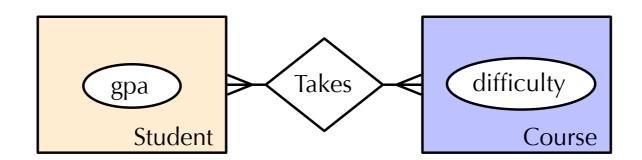
[Course, Takes, Student].gpa → [Course].difficulty

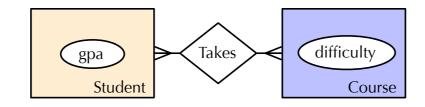
"The difficulty of a course depends on the GPA of the students that take that course."

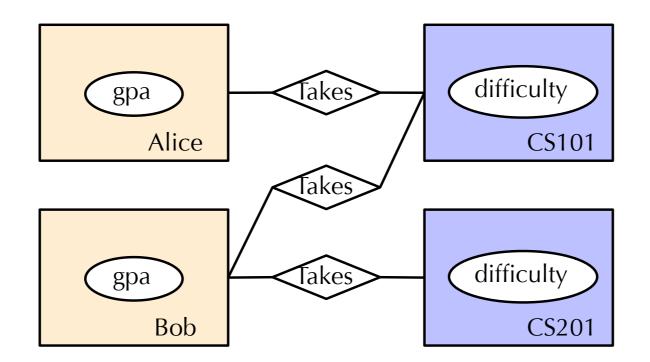


Relational model:

relational schema + set of relational dependencies

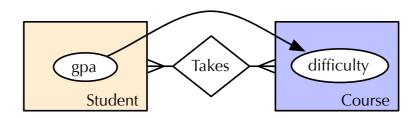


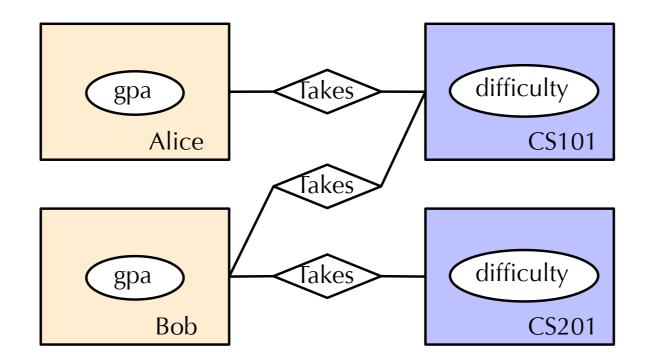




Relational skeleton: Set of entity and relationship instances

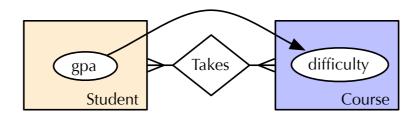
 $[Course, Takes, Student].gpa \rightarrow [Course].difficulty$

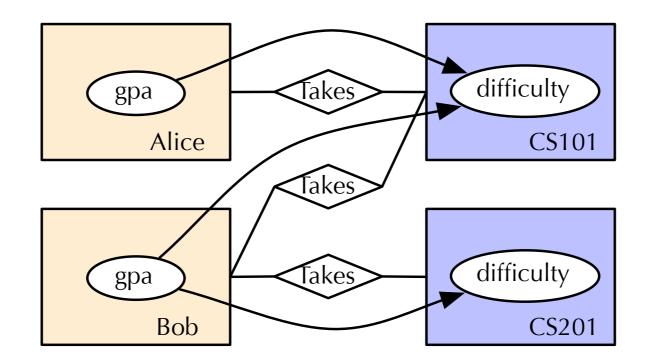




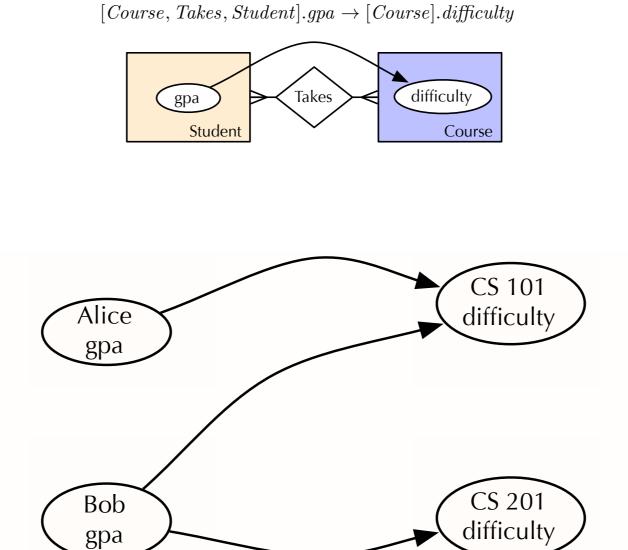
Model + relational skeleton \rightarrow ground graph

 $[Course, Takes, Student].gpa \rightarrow [Course].difficulty$





Ground graph: Apply the model to the relational skeleton



Ground graph: Apply the model to the relational skeleton

Outline

- 1. Relational concepts
- 2. Temporal relational models
- 3. Temporal relational d-separation
- 4. TRCD algorithm

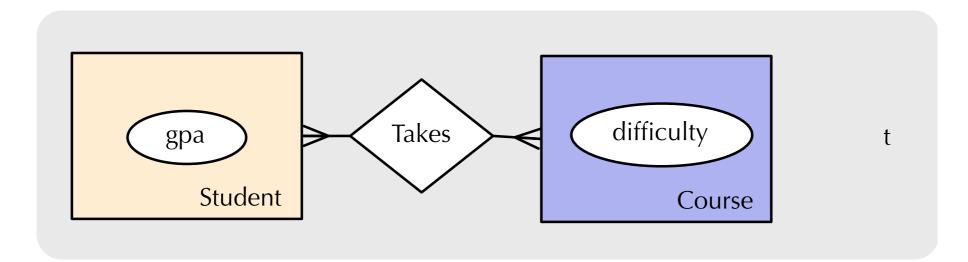
Temporal relational models

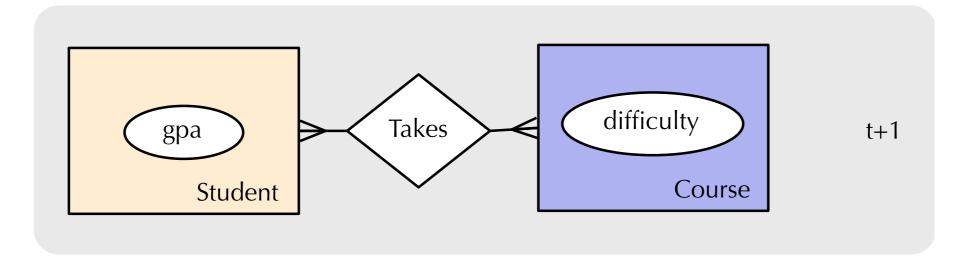
Assumptions for the representation

- 1. Discrete time
- 2. Model is stationary
- 3. Temporal skeleton is known *a priori*
- 4. Dependencies follow first-order Markov assumption

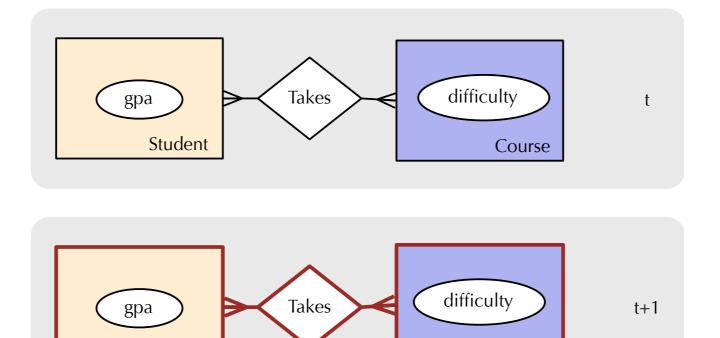
Represent only two consecutive time points (2-slice models)

Temporal relational models





Temporal relational schema

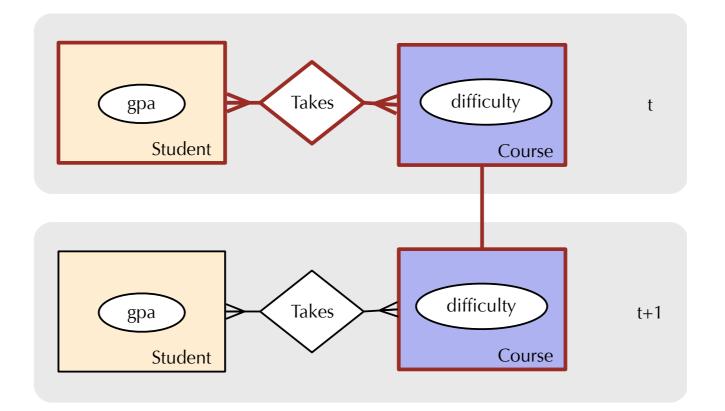


[Course^{t+1}, Takes^{t+1}, Student^{t+1}]

Student

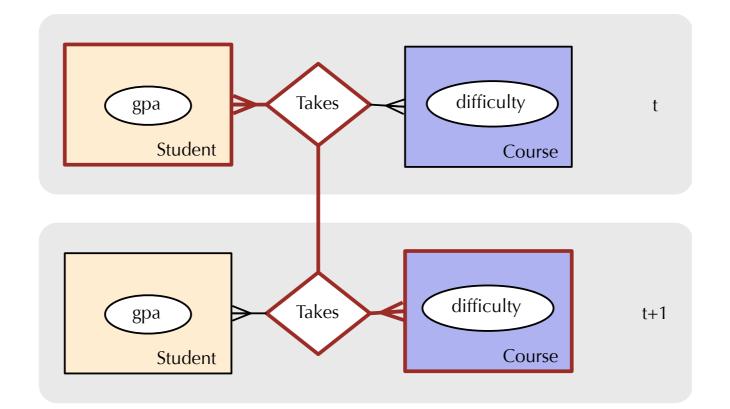
Course

"Students that take a course in the current semester"



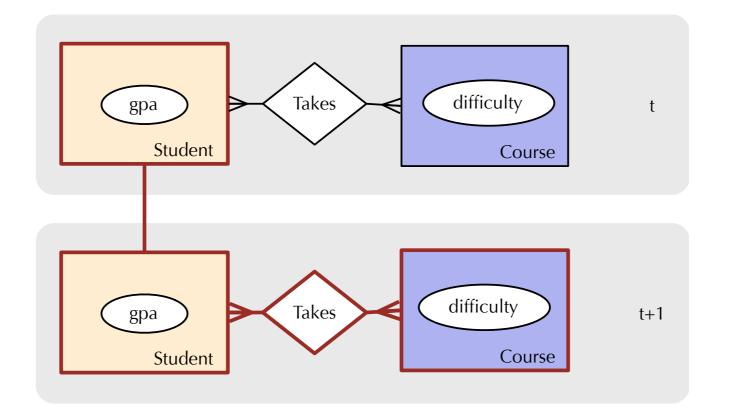
[Course^{t+1}, Course^t, Takes^t, Student^t]

"Students that took the course in the previous semester"



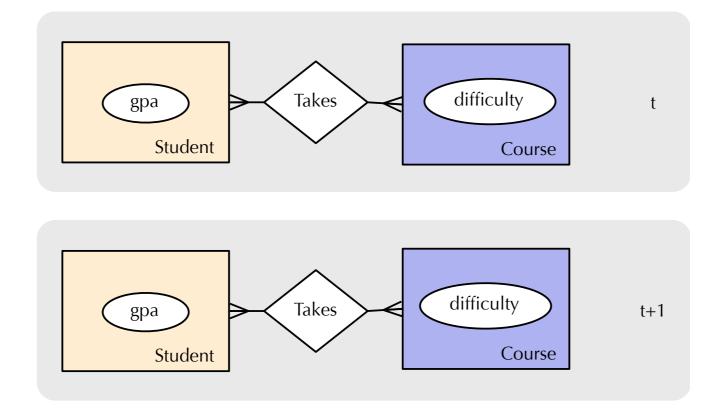
[Course^{t+1}, Takes^{t+1}, Takes^t, Student^t]

"Students that took the course both in the current and in the previous semester"



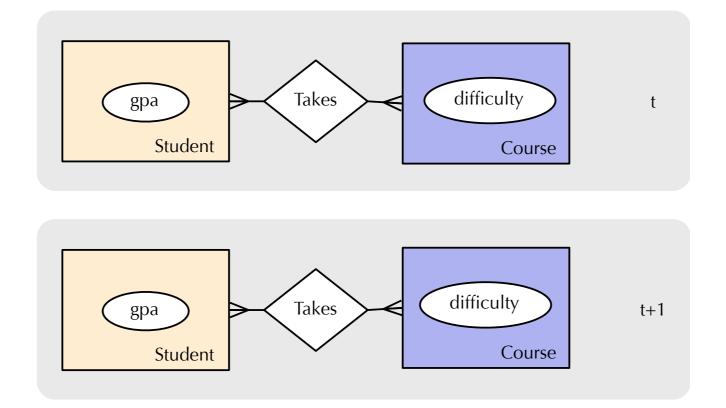
[Course^{t+1}, Takes^{t+1}, Student^{t+1}, Student^t]

"The previous state of the students that took the course in the current semester"



```
[Course<sup>t+1</sup>, Takes<sup>t+1</sup>, Student<sup>t+1</sup>]
[Course<sup>t+1</sup>, Course<sup>t</sup>, Takes<sup>t</sup>, Student<sup>t</sup>]
[Course<sup>t+1</sup>, Takes<sup>t+1</sup>, Takes<sup>t</sup>, Student<sup>t</sup>]
[Course<sup>t+1</sup>, Takes<sup>t+1</sup>, Student<sup>t+1</sup>, Student<sup>t</sup>]
```

Temporal relational variables



[Course^{t+1}, Takes^{t+1}, Student^{t+1}].gpa [Course^{t+1}, Course^t, Takes^t, Student^t].gpa [Course^{t+1}, Takes^{t+1}, Takes^t, Student^t].gpa [Course^{t+1}, Takes^{t+1}, Student^{t+1}, Student^t].gpa

Temporal relational dependencies

[Course^{t+1}, Takes^{t+1}, Student^{t+1}].gpa → [Course^{t+1}].difficulty

"The difficulty of a course in the current semester depends on the GPA of the students that take this course in the current semester."

Temporal relational dependencies

[Course^{t+1}, Takes^{t+1}, Student^{t+1}].gpa → [Course^{t+1}].difficulty

"The difficulty of a course in the current semester depends on the GPA of the students that take this course in the current semester."

[Student^{t+1}, Student^t, Takes^t, Course^t].difficulty → [Student^{t+1}].gpa

"The GPA of a student in the current semester depends on the difficulty of the courses that student took in the previous semester."

Constraints on temporal relational dependencies

[Course^{t+1}, Takes^{t+1}, **Student^{t+1}**].gpa \rightarrow [**Course^{t+1}**].difficulty

[Student^{t+1}, Student^t, Takes^t, **Course^t**].difficulty → [**Student^{t+1}**].gpa

• Never from the future to the past

Constraints on temporal relational dependencies

[Course^{t+1}, Takes^{t+1}, **Student^{t+1}**].gpa → [**Course^{t+1}**].difficulty

[Student^{t+1}, Student^t, Takes^t, **Course^t**].difficulty → [**Student^{t+1}**].gpa

- First order Markov assumption
 - Cause and effect at most one time step apart

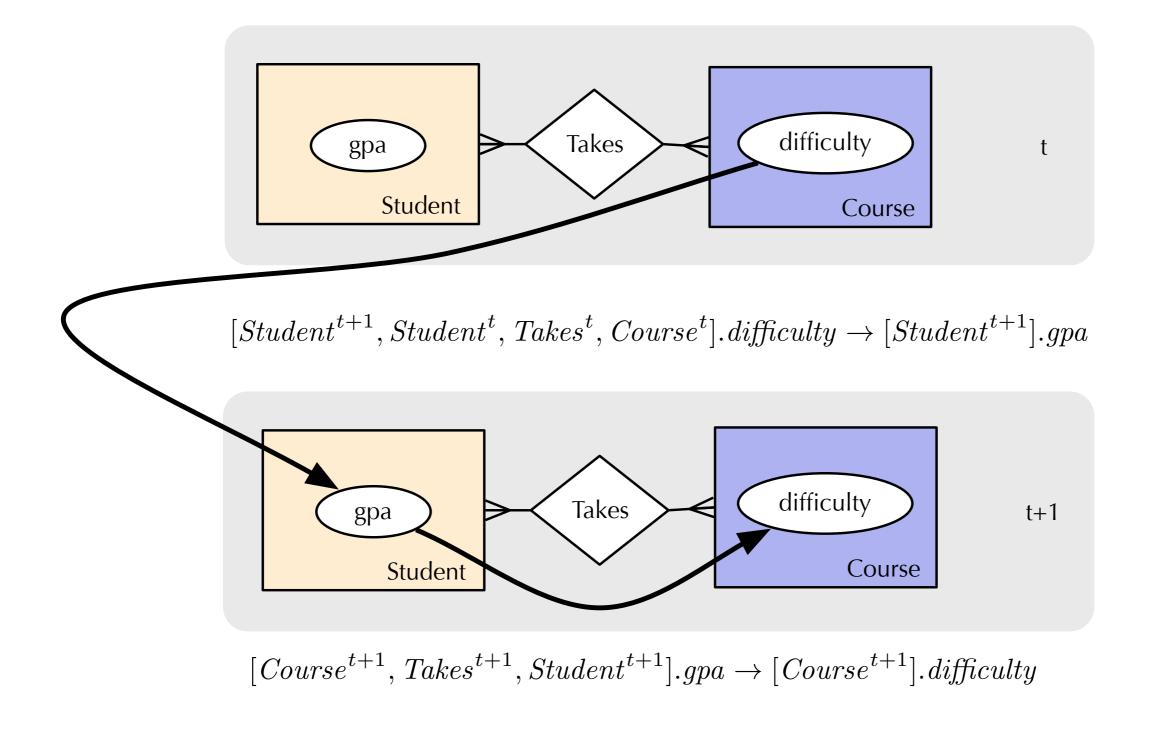
Constraints on temporal relational dependencies

[Course^{t+1}, Takes^{t+1}, Student^{t+1}].gpa → [Student^{t+1}].gpa

[Student^{t+1}, Student^t, Takes^t, Course^t].gpa → [Student^{t+1}].gpa

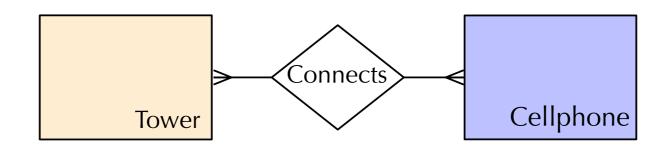
- First order Markov assumption
 - Cause and effect at most one time step apart
 - The temporal path of the cause contains only two time points.

Temporal relational model



What is the value of this added expressivity?

Expressivity

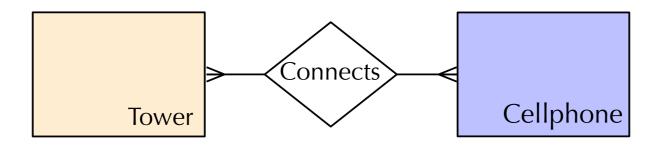


Reality mining domain ^[1]

- Consider different paths starting at the same item class and ending at the same item class.
- How different are the sets of items reached through these paths?

[1] Eagle, N., Pentland, A., *Reality mining: sensing complex social systems*. Journal of Personal and Ubiquitous Computing, Vol. 10 Issue 4, 2006

Real-data example: Value of expressivity

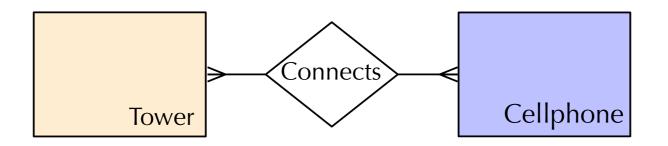


Path 1: [Tower^{t+1}, Tower^t, Connects^t, Cellphone^t] "Cellphones that were connected to a tower yesterday"

Path 2: [Tower^{t+1}, Connects^{t+1}, Connects^t, Cellphone^t] *"Cellphones that connected to a tower both today and yesterday"*

Path 3: [Tower^{t+1}, Connects^{t+1}, Cellphone^{t+1}, Cellphone^t] *"The previous state of the phones that are connected to a tower today"*

Real-data example: Value of expressivity



Path 1: [Tower^{t+1}, Tower^t, Connects^t, Cellphone^t] Path 2: [Tower^{t+1}, Connects^{t+1}, Connects^t, Cellphone^t] Path 3: [Tower^{t+1}, Connects^{t+1}, Cellphone^{t+1}, Cellphone^t]

Jaccard distance	Path 1 vs. Path 3	Path 1 vs. Path 2	Path 2 vs. Path 3
mean	0.47	0.31	0.31
median	0.5	0	0

Outline

- 1. Relational concepts
- 2. Representation for temporal and relational directed graphical models
- 3. Temporal relational d-separation
- 4. TRCD algorithm

d-separation for relational models

- d-separation: a graphical criterion that ties the structure of a Bayesian network to a set of conditional independence facts that hold in the underlying distribution
- d-separation cannot be applied directly to the structure of relational models^[2]
- It can be applied to the ground graph, but the size of the ground graph scales with the number of instances
- Solution: Abstract Ground Graphs

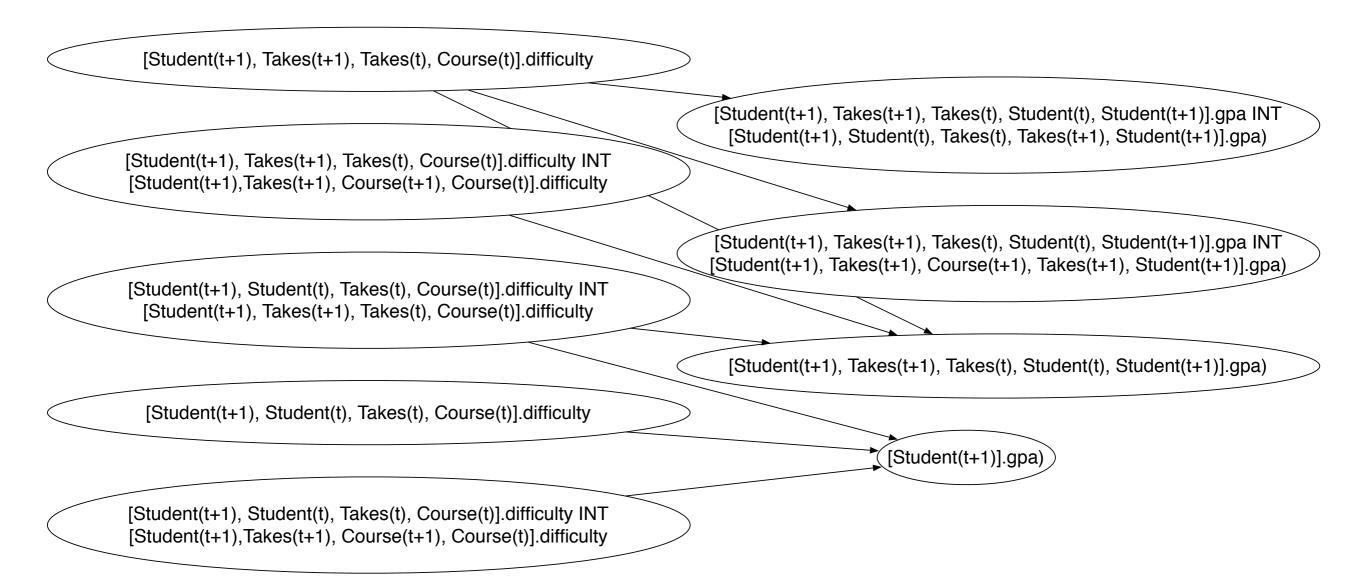
[2] Maier, M., Marazopoulou, K., and Jensen, D. Reasoning about Independence in Probabilistic Models of Relational Data, arXiv preprint arXiv:1302.4381, 2013.

Temporal abstract ground graphs

Abstract ground graph: lifted representation that abstracts paths of dependence over all possible ground graphs for a given relational model.

Temporal abstract ground graph: generalizes abstract ground graphs for 2-slice temporal relational models.

Temporal abstract ground graphs



Temporal relational d-separation

The rules of relational d-separation can be applied to abstract ground graphs in order to infer conditional independencies [Maier et al. 2013].

The rules of relational d-separation can be applied to temporal abstract ground graphs in order to infer conditional independencies.

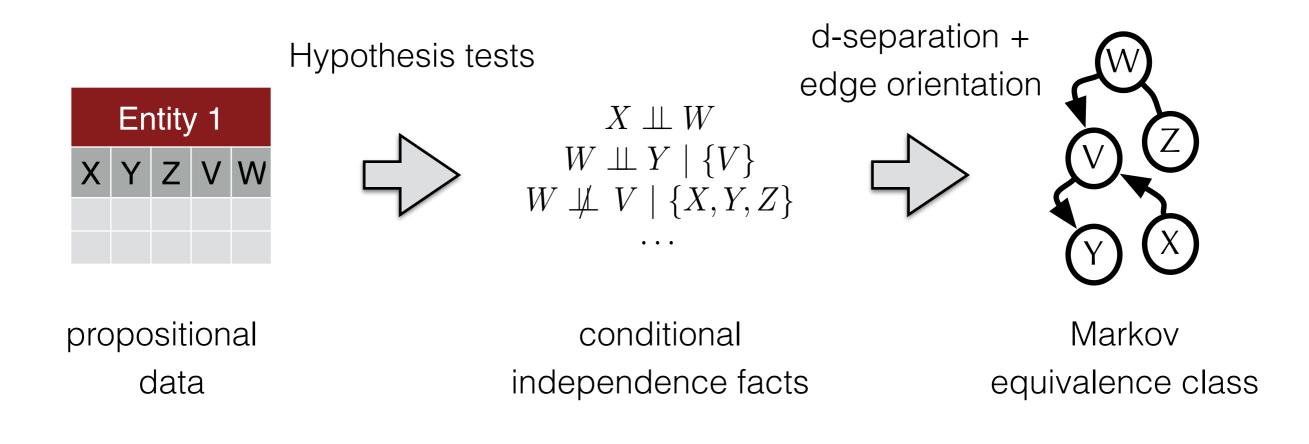
Temporal relational d-separation allows us to derive the set of conditional independence facts that are consistent with the structure of a given temporal relational model.

Outline

- 1. Relational concepts
- 2. Temporal relational models
- 3. Temporal relational d-separation
- 4. TRCD algorithm

Structure learning

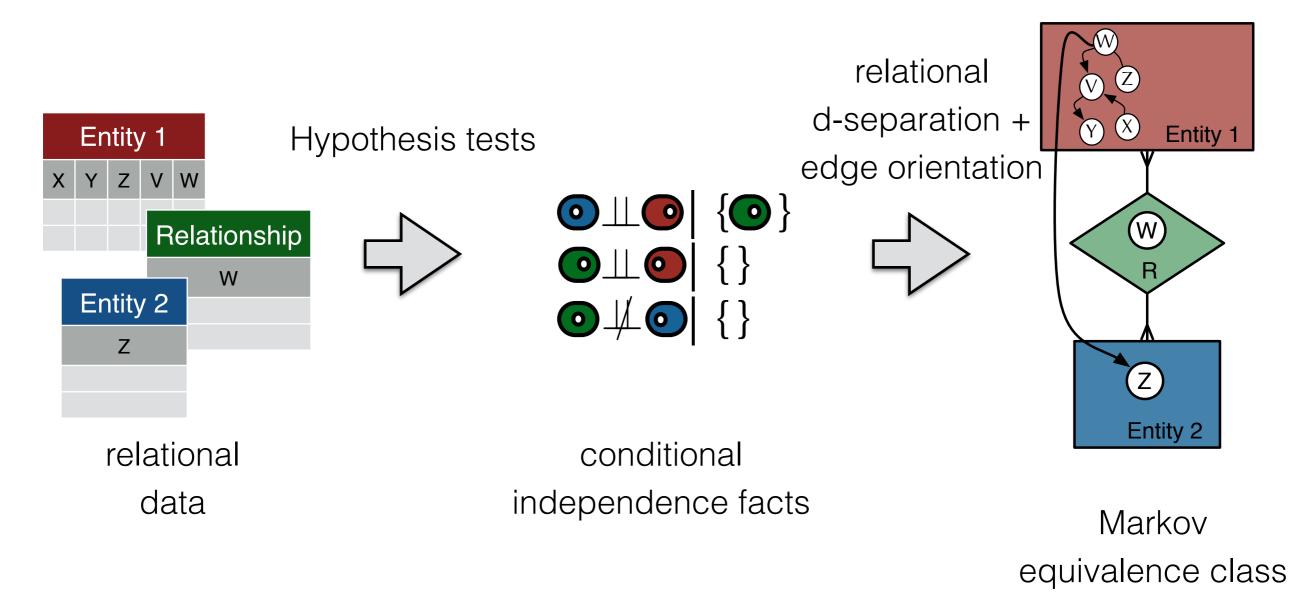
PC algorithm [3]



[3] Spirtes, P., Glymour, C., and Scheines, R. Causation, Prediction, and Search. MIT Press, 2nd edition, 2000.

Structure learning

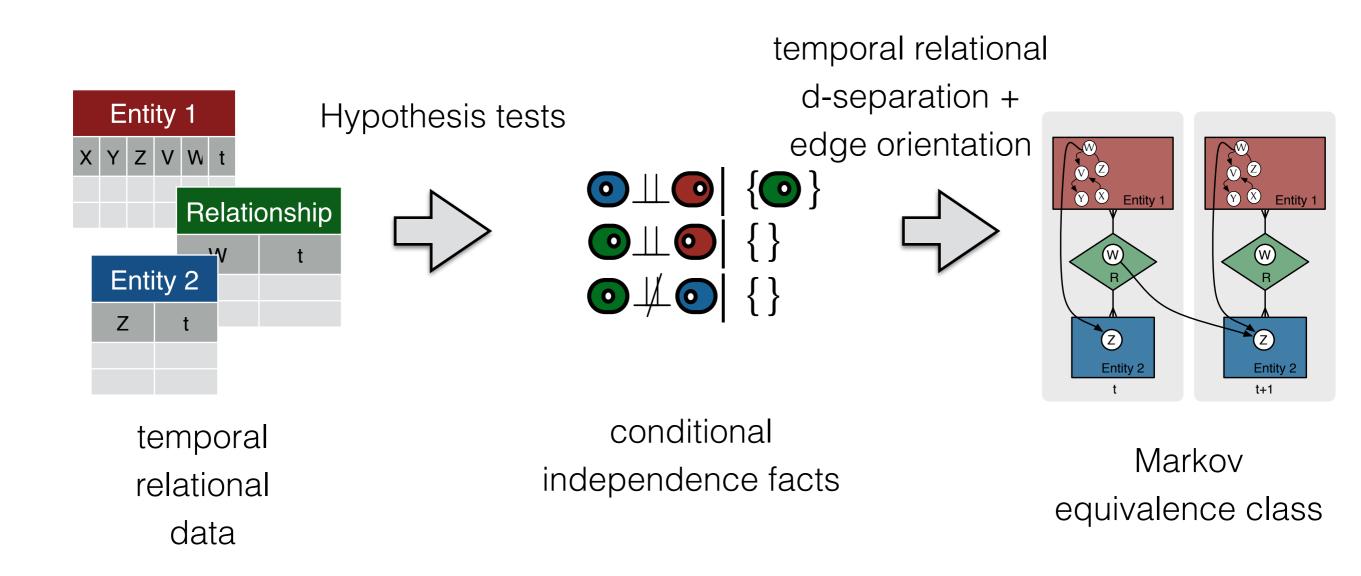
RCD algorithm [4]



[4] Maier, M., Marazopoulou, K, Arbour, D, and Jensen, D. A sound and completete algorithm for learning causal models from relational data. UAI 2013.

Structure learning

TRCD algorithm



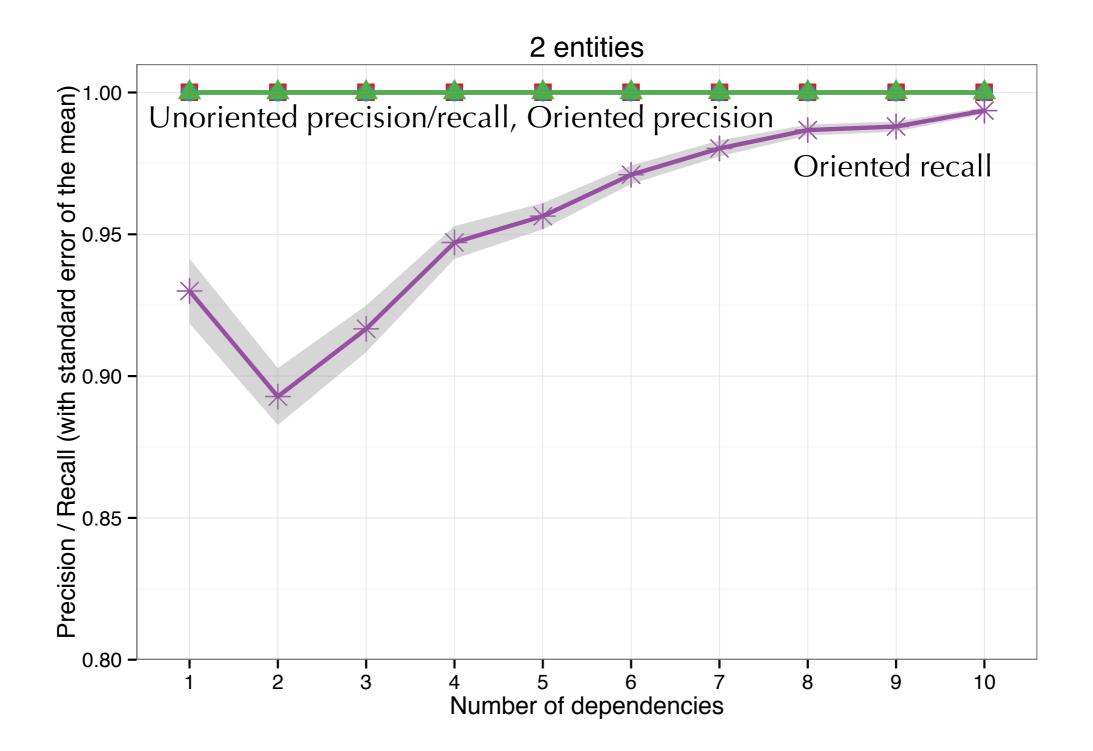
Temporal relational causal discovery (TRCD)

- Constraint-based algorithm to learn the structure of temporal relational causal models from data.
- Extends RCD to operate over a temporal relational model.
 Phase I learns a set of undirected dependencies.
 - Phase II employs a set of orientation rules to orient the dependencies.

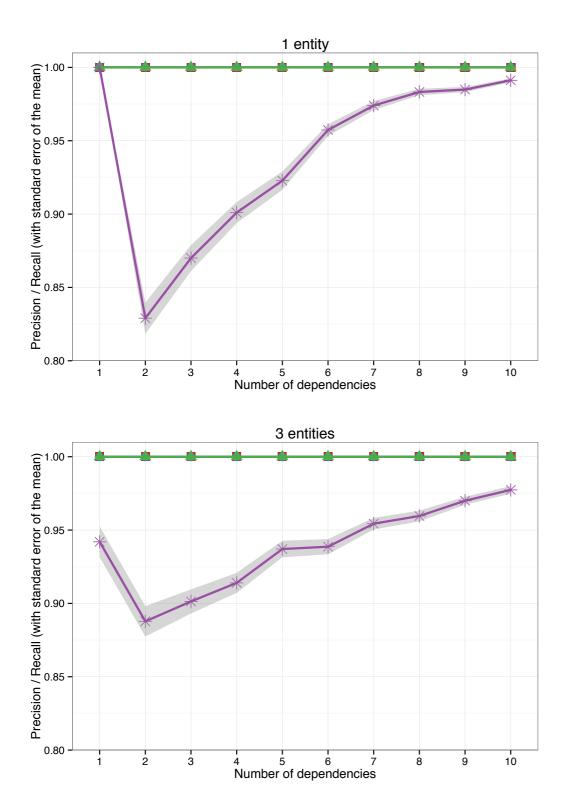
Experiments with an oracle

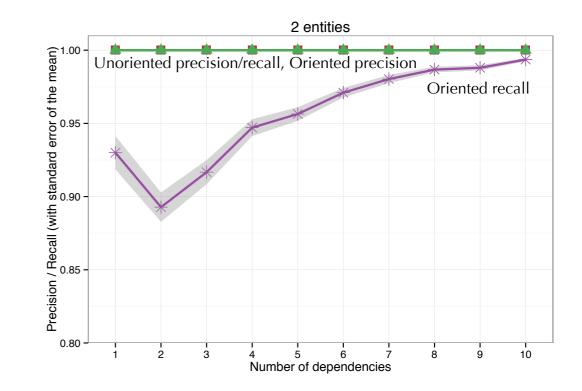
- Generated random schemas (1-3 entities)
- Generated random models (1-10 dependencies)
- 15,000 models in total
- TRCD with a d-separation oracle instead of conditional independence tests

Experiments with an oracle



Experiments with an oracle

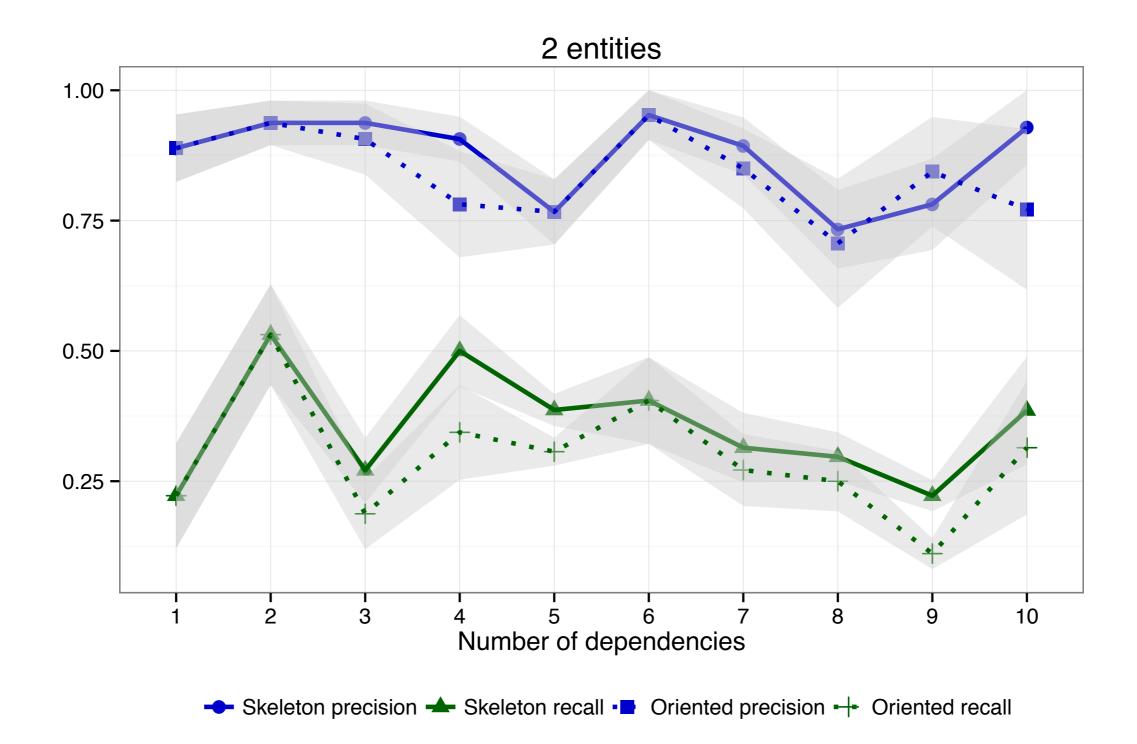




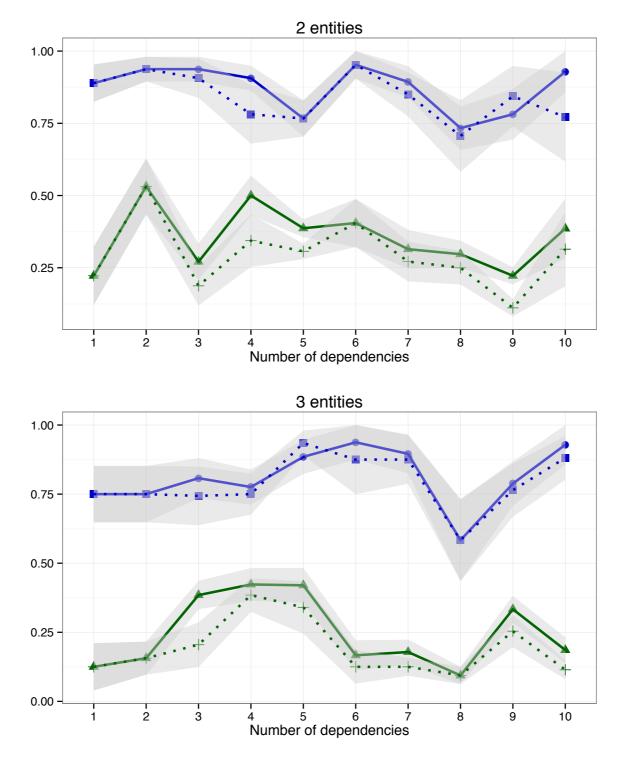
Experiments with synthetic data

- Generated random models
- Generated random temporal relational skeletons with 300 time points
- Generated synthetic data on top of the skeletons
- Ran TRCD using conditional independence tests

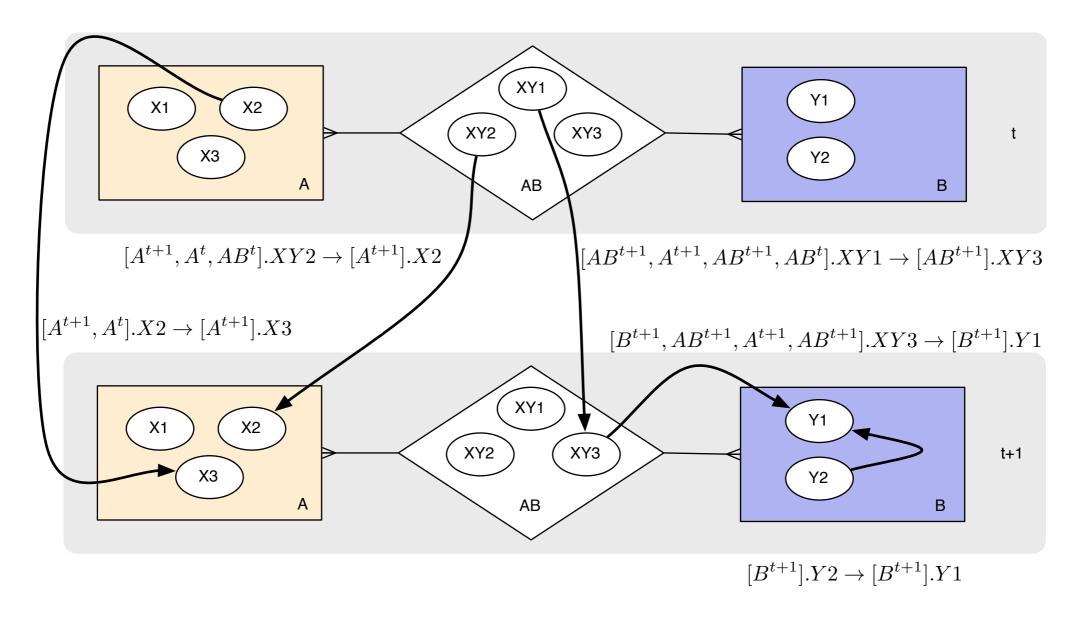
Experiments with synthetic data



Experiments with synthetic data

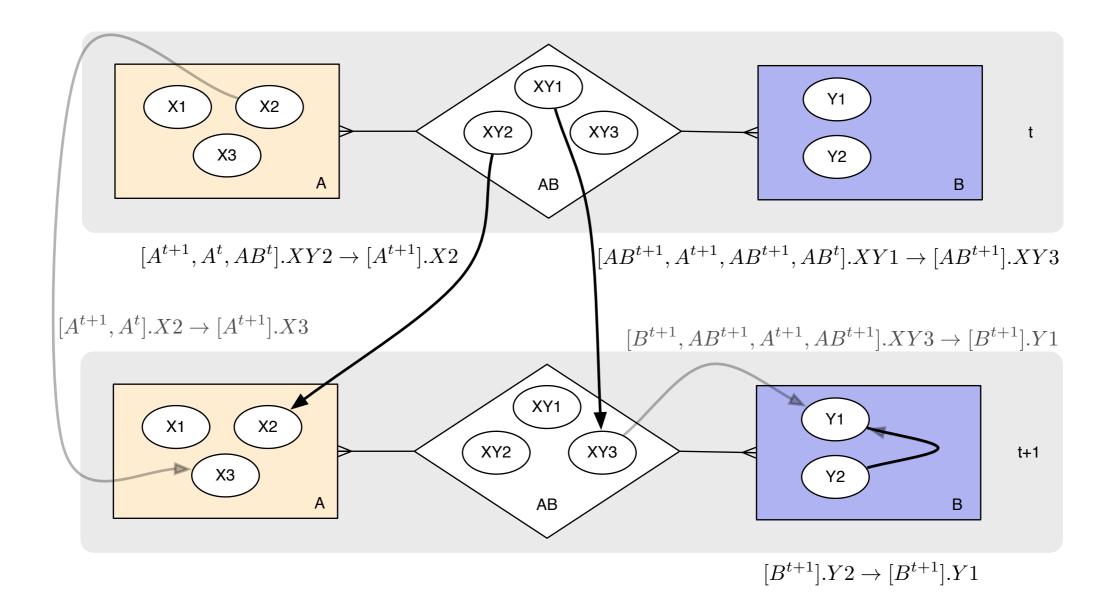


Comparison with RCD



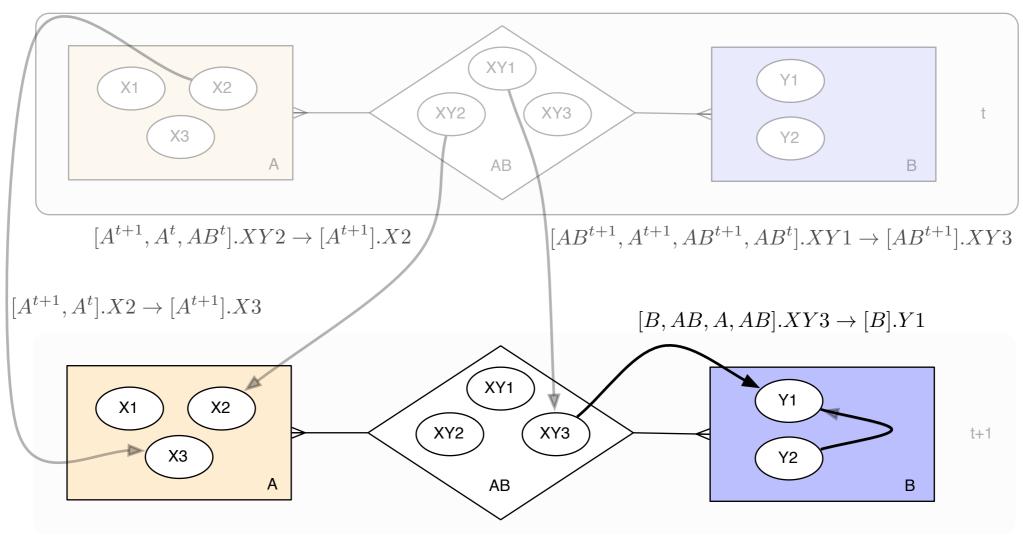
True model

Comparison with RCD



Model learned by TRCD

Comparison with RCD



 $[B].Y2 \rightarrow [B].Y1$

Model learned by RCD

Summary

- Representation: Directed graphical model that supports time and relational information
- Temporal relational d-separation
- TRCD algorithm: constraint-based algorithm to learn the structure of a directed temporal relational model

Future work

- Further experiments with more realistic/real data.
- Relax assumptions

Questions?

Thank you!