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Learning the Structure of Causal Models 
with Relational and Temporal Dependence

1. Representation 

Relational (multiple types of interacting entities) 

Temporal (values of variables change over time) 

2. d-separation for temporal relational models 

3. Structure learning algorithm
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Why?
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• Many real-world systems consist of heterogeneous entities 
that interact with each other (relational) over time (temporal) 

Authors and citations 

Social networks 

Epidemiology 

Education 

• More expressive models can represent such domains more 
accurately. 

• Expressiveness is particularly important for causality.
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• Directed acyclic graphs 
• Nodes are random variables 
• Model dependencies between variables of a single entity 

type

Bayesian networks
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Background on Relational Models

Relational paths:   [Course, Takes, Student] 
Relational variables:  [Course, Takes, Student].gpa  
Relational dependencies:   

[Course, Takes, Student].gpa → [Course].difficulty

gpa difficulty

Student

Takes

Course

“The difficulty of a course depends on the GPA of the students 
that take that course.”
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Background on Relational Models

Relational model:  

relational schema + set of relational dependencies

gpa difficulty

Student

Takes

[Course,Takes ,Student ].gpa ! [Course].di�culty

Course

16



Background on Relational Models

gpa difficulty

Student

Takes

Course

17



Background on Relational Models

Relational skeleton: Set of entity and relationship instances
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Background on Relational Models

Model + relational skeleton → ground graph
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1. Relational concepts 
2. Temporal relational models 
3. Temporal relational d-separation 
4. TRCD algorithm

Outline
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1. Discrete time 
2. Model is stationary 
3. Temporal skeleton is known a priori 
4. Dependencies follow first-order Markov assumption

Temporal relational models

Represent only two consecutive time points  
(2-slice models)

Assumptions for the representation
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Temporal relational models

gpa difficulty

Student Course

Takes t

gpa difficulty

Student Course

Takes t+1

Temporal relational schema
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gpa difficulty

Student Course

Takes t

gpa difficulty

Student Course

Takes t+1

Temporal relational paths

[Courset+1, Takest+1, Studentt+1]
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“Students that take a course in the current semester”
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Temporal relational paths

[Courset+1, Courset,Takest, Studentt]
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“Students that took the course in the previous semester”
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Temporal relational paths

[Courset+1, Takest+1,Takest, Studentt]
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“Students that took the course both in the current and in the 
previous semester”
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“The previous state of the students that took the course in the 
current semester”



Temporal relational paths

[Courset+1, Takest+1, Studentt+1]
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Temporal relational variables

[Courset+1, Takest+1, Studentt+1].gpa
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Temporal relational dependencies

[Courset+1, Takest+1, Studentt+1].gpa → [Courset+1].difficulty

“The difficulty of a course in the current semester depends on 
the GPA of the students that take this course in the current 

semester.”
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Temporal relational dependencies

[Studentt+1, Studentt, Takest, Courset].difficulty → [Studentt+1].gpa

[Courset+1, Takest+1, Studentt+1].gpa → [Courset+1].difficulty

“The difficulty of a course in the current semester depends on 
the GPA of the students that take this course in the current 

semester.”

“The GPA of a student in the current semester depends on the 
difficulty of the courses that student took in the previous 

semester.”
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Constraints on temporal relational dependencies

[Studentt+1, Studentt, Takest, Courset].difficulty → [Studentt+1].gpa

[Courset+1, Takest+1, Studentt+1].gpa → [Courset+1].difficulty

• Never from the future to the past
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[Studentt+1, Studentt, Takest, Courset].difficulty → [Studentt+1].gpa

[Courset+1, Takest+1, Studentt+1].gpa → [Courset+1].difficulty

34

• First order Markov assumption 

Cause and effect at most one time step apart

Constraints on temporal relational dependencies



[Studentt+1, Studentt, Takest, Courset].gpa → [Studentt+1].gpa

[Courset+1, Takest+1, Studentt+1].gpa → [Studentt+1].gpa

• First order Markov assumption 

Cause and effect at most one time step apart 

The temporal path of the cause contains only two time 
points.
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Constraints on temporal relational dependencies
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What is the value  
of this added expressivity?
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Expressivity

• Consider different paths starting at the same item class and 
ending at the same item class. 

• How different are the sets of items reached through these 
paths?

38

Tower Cellphone

Connects

Reality mining domain [1]

[1] Eagle, N., Pentland, A., Reality mining: sensing complex social systems. Journal of Personal and 
Ubiquitous Computing, Vol. 10 Issue 4, 2006



Real-data example: Value of expressivity

Tower Cellphone

Connects

Path 1: [Towert+1, Towert, Connectst, Cellphonet]

Path 2: [Towert+1, Connectst+1,Connectst, Cellphonet]
“Cellphones that connected to a tower both today and 

yesterday”

“The previous state of the phones that are connected to 
a tower today”

Path 3: [Towert+1, Connectst+1, Cellphonet+1, Cellphonet]

“Cellphones that were connected to a tower yesterday”
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Tower Cellphone

Connects

Path 1: [Towert+1, Towert, Connectst, Cellphonet]
Path 2: [Towert+1, Connectst+1,Connectst, Cellphonet]
Path 3: [Towert+1, Connectst+1, Cellphonet+1, Cellphonet]

Jaccard 
distance

Path 1 vs.!
Path 3

Path 1 vs.!
Path 2

Path 2 vs.!
Path 3

mean 0.47 0.31 0.31

median 0.5 0 0
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Real-data example: Value of expressivity



1. Relational concepts 
2. Representation for temporal and relational directed 

graphical models 
3. Temporal relational d-separation 
4. TRCD algorithm

Outline
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• d-separation: a graphical criterion that ties the structure 
of a Bayesian network to a set of conditional 
independence facts that hold in the underlying 
distribution 

• d-separation cannot be applied directly to the structure of 
relational models [2] 

• It can be applied to the ground graph, but the size of the 
ground graph scales with the number of instances 

• Solution: Abstract Ground Graphs

d-separation for relational models

[2] Maier, M., Marazopoulou, K., and Jensen, D. Reasoning about Independence in Probabilistic Models of 
Relational Data, arXiv preprint arXiv:1302.4381, 2013.
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Temporal abstract ground graphs

Abstract ground graph: lifted representation that abstracts 
paths of dependence over all possible ground graphs for a 
given relational model. 
!
Temporal abstract ground graph: generalizes abstract 
ground graphs for 2-slice temporal relational models. 
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Temporal abstract ground graphs
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Temporal relational d-separation

The rules of relational d-separation can be applied to 
abstract ground graphs in order to infer conditional 
independencies [Maier et al. 2013].

Temporal relational d-separation allows us to derive the set 
of conditional independence facts that are consistent with 
the structure of a given temporal relational model.

45

The rules of relational d-separation can be applied to 
temporal abstract ground graphs in order to infer conditional 
independencies.



1. Relational concepts 
2. Temporal relational models 
3. Temporal relational d-separation 
4. TRCD algorithm

Outline
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Structure learning

Entity 1
Χ Υ Ζ V W

XY

ZV

W

X �� W
W �� Y | {V }

W ��/ V | {X,Y, Z}
· · ·

PC algorithm [3]

[3] Spirtes, P., Glymour, C., and Scheines, R. Causation, Prediction, and Search. MIT Press, 2nd edition, 2000.

propositional  
data

conditional 
independence facts

Markov 
equivalence class

Hypothesis tests d-separation + 
edge orientation
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Structure learning

Entity 1
Χ Υ Ζ V W

RCD algorithm [4]

[4] Maier, M., Marazopoulou, K, Arbour, D, and Jensen, D. A sound and completete algorithm for learning 
causal models from relational data. UAI 2013.
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conditional 
independence facts

Structure learning
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TRCD algorithm
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Temporal relational causal discovery 
(TRCD)

• Constraint-based algorithm to learn the structure of 
temporal relational causal models from data. 
!

• Extends RCD to operate over a temporal relational model. 
Phase I learns a set of undirected dependencies. 
Phase II employs a set of orientation rules to orient the 
dependencies.
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Experiments with an oracle

• Generated random schemas (1-3 entities)  

• Generated random models (1-10 dependencies) 

• 15,000 models in total 

• TRCD with a d-separation oracle instead of conditional 
independence tests

51



Experiments with an oracle
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Experiments with synthetic data

• Generated random models 

• Generated random temporal relational skeletons with 300 time 
points 

• Generated synthetic data on top of the skeletons 

• Ran TRCD using conditional independence tests
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Experiments with synthetic data
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Experiments with synthetic data

●
●● ●

●

●

●

●

●

●

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Number of dependencies

● Skeleton precision Skeleton recall Oriented precision Oriented recall

2 entities

●

●

●

●
●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Number of dependencies

● Skeleton precision Skeleton recall Oriented precision Oriented recall

3 entities

56



Comparison with RCD
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Model learned by TRCD



X1 Y1

A BAB

t
X2

X3 Y2

XY1

XY2 XY3

X1 Y1

A BAB

t+1
X2

X3 Y2

XY1

XY2 XY3

[At+1, At, ABt].XY 2 ! [At+1].X2

[At+1, At].X2 ! [At+1].X3

[ABt+1, At+1, ABt+1, ABt].XY 1 ! [ABt+1].XY 3

[B].Y 2 ! [B].Y 1

[B,AB,A,AB].XY 3 ! [B].Y 1

Comparison with RCD

59

Model learned by RCD



• Representation: Directed graphical model that supports time 
and relational information 

• Temporal relational d-separation  

• TRCD algorithm: constraint-based algorithm to learn the 
structure of a directed temporal relational model

Summary

60

• Further experiments with more realistic/real data. 

• Relax assumptions

Future work



Questions?

Thank you!

61


