ADVANCES IN INTEGRATIVE CAUSAL ANALYSIS

<u>Ioannis Tsamardinos</u> Associate Professor, CSD, University of Crete UAI 2015 Causality Workshop

CREDIT AND ACKNOWLEDGEMENTS

Theory and Algorithms

Sofia Triantafillou

Vincenzo Lagani

Giorgos Borboudakis

Mass-Cytometry Application

Karolinska Insitutet

Angelika Schmidt

Jesper Tegner

David Gomez-Cabrero

Funding and Hosting

Institute of Computer Science, FORTH

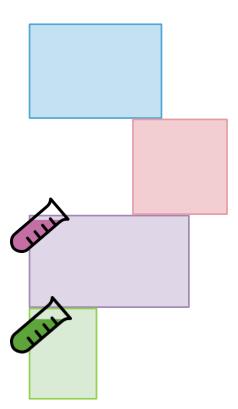
Computer Science Department, University of Crete

EU STATegra, EU ERC Causalpath, GSRT ARISTEIA II Epilogeas

HETEROGENEOUS DATA SETS MEASURING THE SAME SYSTEM UNDER STUDY

Variables	Thrombosis	Contraceptives	Protein C	Breast Cancer	Protein Y	Protein Z
Study	Auto and					
	Yes	No	10.5	Yes	-	-
1	No	Yes	5.3	No	-	-
observational data					-	-
	No	Yes	0.01	No	-	-
2	-	-	-	Yes	0.03	9.3
	-	-	-			
observational data	-	-	-	No	3.4	22.2
	No	No	0 (Control)	No	3.4	-
3	Yes	No	0 (Control)	Yes	2.2	-
					-	-
experimental data	Yes	Yes	5.0 (Treat.)	Yes	7.1	-
	No	Yes	5.0 (Treat.)	No	8.9	-
	No	No (Ctrl)	-	-	-	-
4	No	No (Ctrl)	-	-	-	-
experimental data			-	-	-	-
	Yes	Yes(Treat)	-	-	-	-

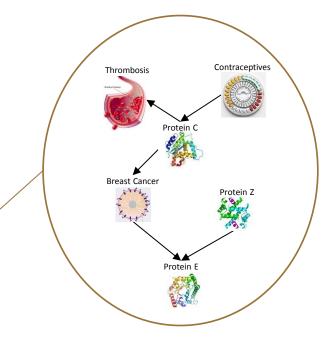
INTEGRATIVE CAUSAL ANALYSIS



Data can not be pulled together:

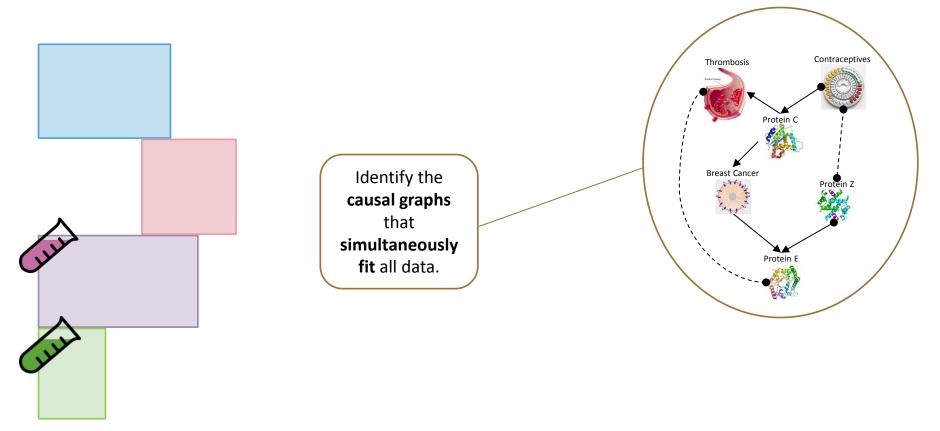
Missing variables cannot be treated as missing values.

They come from different experimental conditions (different distributions).



Data come from the same causal mechanism.

INTEGRATIVE CAUSAL ANALYSIS



CAUSAL MODELS

Semi Markov Causal Graph G

X and Y share a latent common cause X directly causes Z X Y Z X What connects the two?

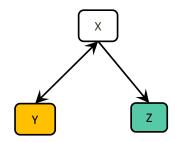
- Edges represent direct causal relations.
- Both edges allowed for a single pair of variables.
- No directed cycles (no causal feedback).

JPD ${\mathcal P}$

		Z		
Х	Y	Yes	No	
Yes	Yes	0,01	0,04	
Yes	No	0,01	0,04	
No	Yes	0,000045	0,044955	
No	No	0,000855	0,854145	

- P(Y|V,Z) = P(Y|V) or Y is **independent** of Z given V : Ind(Y,Z | V)
- Otherwise : Dep(Y, Z | V)
- The set of conditional independencies entailed by the JPD is called the independence model J

CAUSAL ASSUMPTIONS



Causal Markov Assumption:

Every variable is independent of its **non-effects** (non-descendants in the graph) given its **direct causes** (parents).

Causal Faithfulness Assumption: Independences stem **only** from the causal structure, **not the parameterization** of the distribution.

All independencies in J can be identified in G using the graphical criterion of **m-separation**.

Ind(Y, Z | X)

$Dep(Y,Z \mid$	Ø)
$Dep(X,Z \mid$	Ø)
$Dep(X,Z \mid$	<i>Y</i>)
$Dep(Y, X \mid$	Ø)
$Dep(Y, X \mid$	Z)

*m***-SEPARATION**

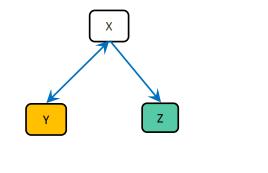
A path $X_1, ..., X_n$ between X_1 and X_n is *m*-connecting given *V* if for every triple (X_{i-1}, X_i, X_{i+1}) on the path:

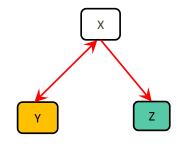
- If $X_{i-1} * \rightarrow X_i \leftarrow * X_{i+1}$, X_i or one of its descendants $\in V$
- Otherwise, $X_i \notin V$

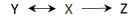
m-connecting path => information flow => dependence

No *m*-connecting path => no information flow => independence (*m*-separation)

*m***-SEPARATION**







is *m*-connecting given \emptyset

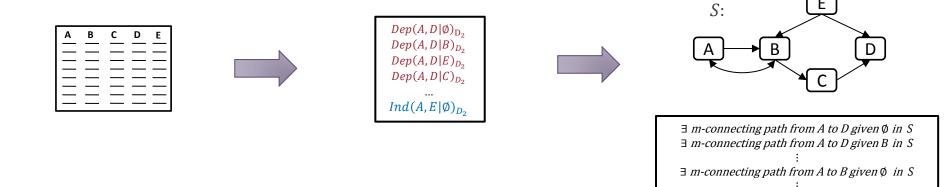
 $\Leftrightarrow Dep(Y, Z | \emptyset)$

 $Y \leftrightarrow X \longrightarrow Z$

is NOT *m*-connecting given *X*

 $\Leftrightarrow Ind(Y, Z|X)$

REVERSE ENGINEERING CAUSAL MODELS



Dataset *D_i* measuring a set of variables

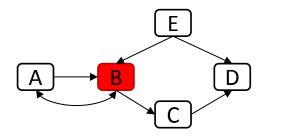
Independence model J_i

Path constraints on the underlying causal graph

 \nexists *m*-connecting path from A to E given \emptyset in S

INTERVENTIONS / MANIPULATIONS IN CAUSAL MODELS

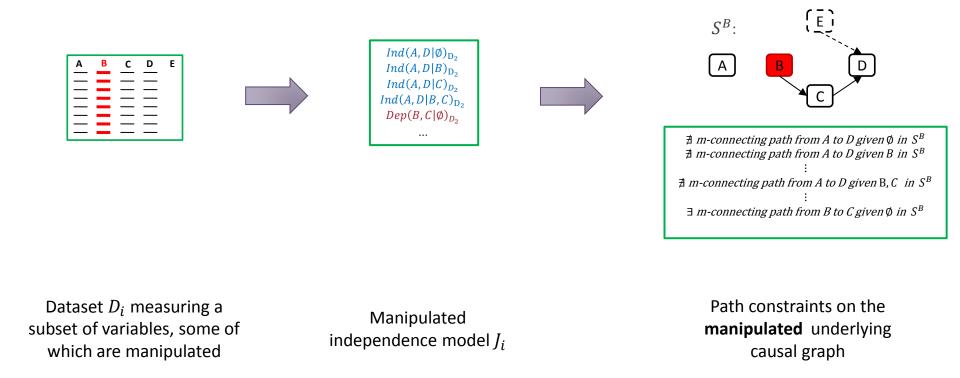
Graph (SMCG) S



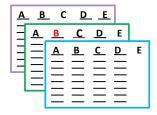
Values of B are set solely by the manipulation procedure.

If you know direct causal relations, **remove all edges into the manipulated variable.**

INCA: OVERLAPPING VARIABLES, INTERVENTIONS

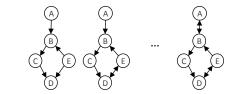


PROBLEM DEFINITION



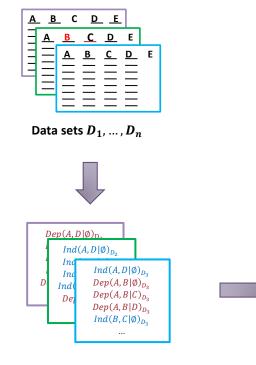
Data sets D_1, \ldots, D_n measuring overlapping variables under different manipulations

Causal Markov Assumption Causal Faithfulness Assumption



Graphs S that simultaneously fit all data

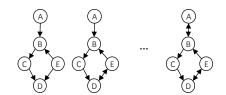
PROPOSED APPROACH



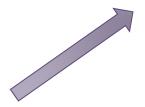
 $\exists m\text{-connecting path from } A \text{ to } D \text{ given } \emptyset \text{ in } S^{I_1} \\ \exists m\text{-connecting path from } A \text{ to } D \text{ given } B \text{ in } S^{I_1} \\ \vdots \\ \exists m\text{-connecting path from } A \text{ to } B \text{ given } \emptyset \text{ in } S^{I_2} \\ \vdots \\ \nexists m\text{-connecting path from } B \text{ to } C \text{ given } \emptyset \text{ in } S^{I_n} \\ \end{cases}$

Independence models J_1, \ldots, J_n

path constraints in S_1, \ldots, S_n



Graphs S that simultaneously fit all data



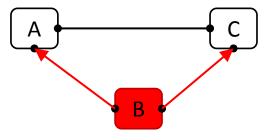
CONSTRAINTS AS BOOLEAN FORMULAE

• Suppose you know nothing about the structure S of the three variables.

• In a data set where B is manipulated, $Ind(A, C|\emptyset)$

• In path terms:

 \nexists m-connecting path between A and C given Ø in S^B



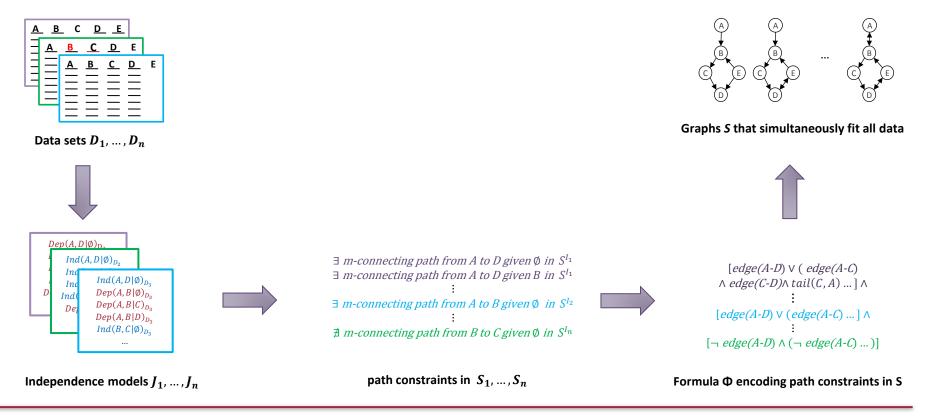
A-C does not exist

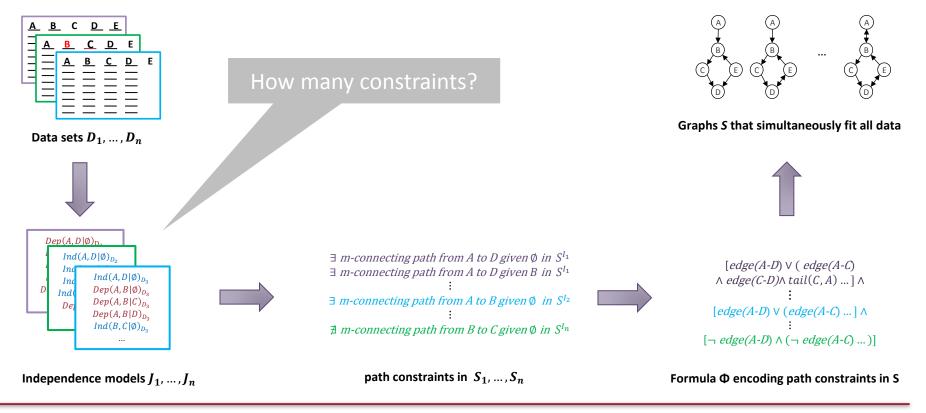
 $\neg edge(A, C)$

In SATisfiability terms: $\neg edge(A, C) \land$ $[\neg edge(A, B) \lor \neg tail(A, B) \lor \neg edge(B, C) \lor \neg tail(C, B)]$ AND $A \leftarrow B \rightarrow C \text{ does not exist}$

 $[\neg edge(A, B)$ V $\neg tail(A, B)$ V $\neg edge(B, C)$ V $\neg tail(C, B)]$

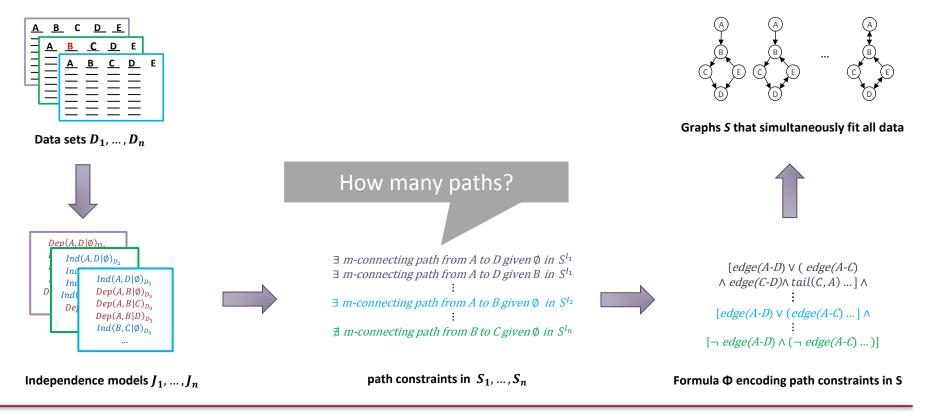
PROPOSED APPROACH





How many constraints?

- Independence model: 2^n conditional (in)dependencies.
 - You only need a subset that entail all others $\binom{n}{2}$.
 - FCI (Spirtes, Glymour, Scheines 2000, Zhang 2008) finds this subset of conditional (in)dependencies
 - also outputs a graph that summarizes the characteristics of every possible causal structure that entails them.
 - Use FCI and only convert
 - (non) adjacencies to (∄)∃ inducing path.
 - Colliders with order to $(\nexists) \exists$ inducing and directed paths.

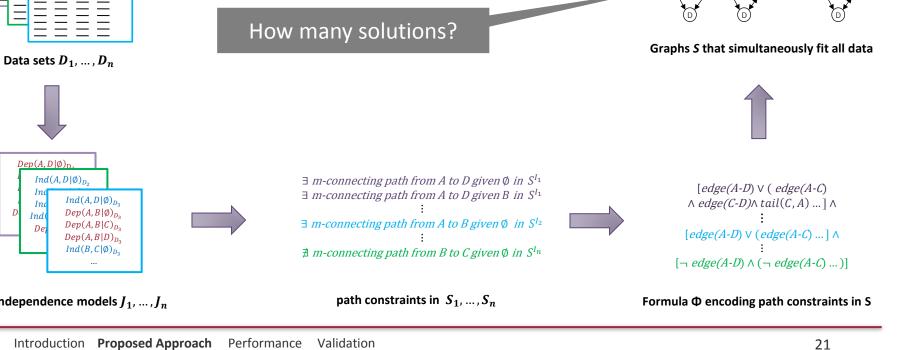


How many paths?

Reduce the number of paths.

- Remove edges based on preprocessing.
- Restrict the path length.

$Ind(B,C|\emptyset)_{D_2}$ \nexists *m*-connecting path from *B* to *C* given \emptyset in *S*^{*I*}^{*n*} path constraints in S_1, \ldots, S_n Independence models J_1, \ldots, J_n Introduction Proposed Approach



•••

SCALING UP

<u>A B C D E</u>

 $Dep(A, D|\emptyset)_{D}$

Ind

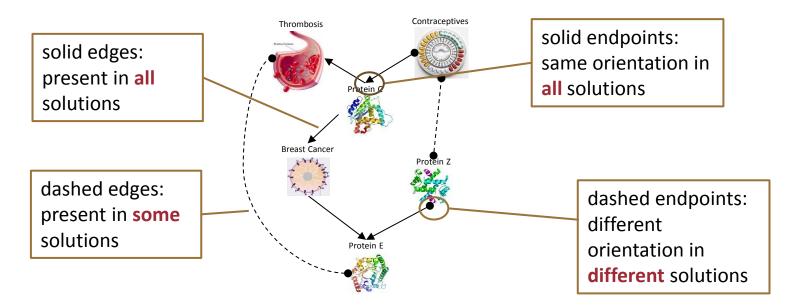
De

D Ind СD

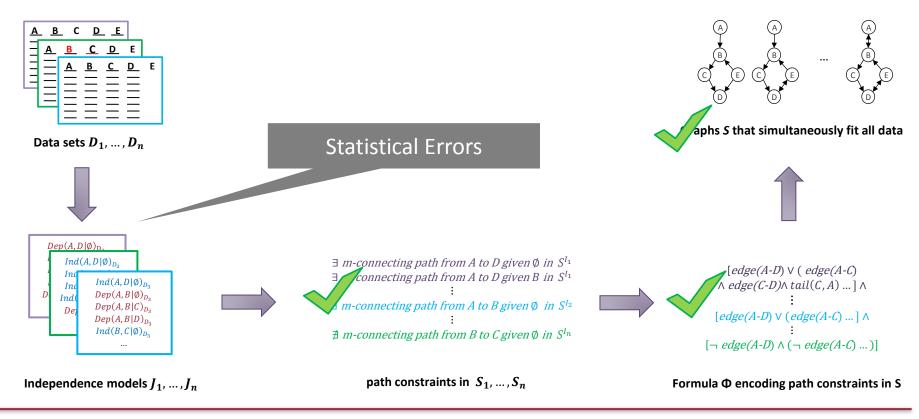
Ε

SCALING UP – QUERY-BASED LEARNING

How many solutions?



STATISTICAL ERRORS



STATISTICAL ERRORS



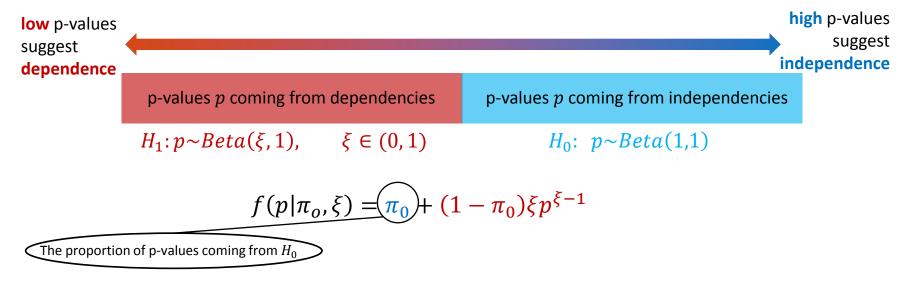
Select non conflicting constraints!

- How?
- Assign confidence to every constraint.

Conflicts make SAT instance unsatisfiable!

What happens with statistical errors?

p-VALUES TO PROBABILITIES



If you know $\widehat{\pi_0}$, $\widehat{\xi}$ you can find posterior probabilities

$$P(H_0|p) = \frac{\frac{\widehat{\pi_0}}{(1-\widehat{\pi_0})\widehat{\xi}p^{(1-\widehat{\xi})}}}{1+\frac{\widehat{\pi_0}}{(1-\widehat{\pi_0})\widehat{\xi}p^{(1-\widehat{\xi})}}}$$
$$P(H_1|p) = 1 - P(H_0|p)$$

ALGORITHM PROPeR

PROPeR

identify $\widehat{\pi_o}$: (Storey and Tibshirani, 2003)


```
Identify \hat{\xi}:

Minimize negative log

likelihood of

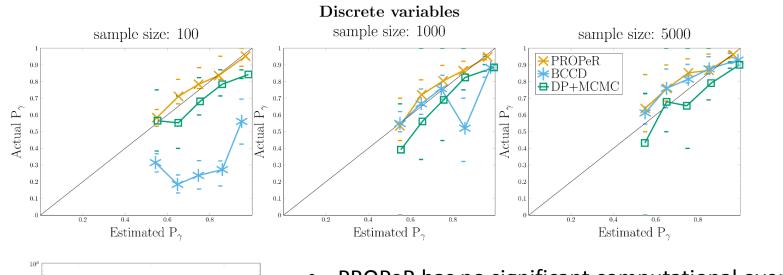
f(p|\widehat{\pi_0},\xi) = \widehat{\pi_0} + (1 - \widehat{\pi_0})\xi p^{\xi-1}
```

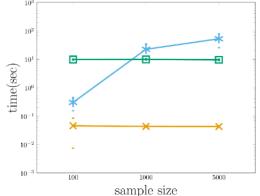

Estimate $P(H_0|p), P(H_1|p)$

- Constraints correspond to adjacencies (or absence thereof), not (in) dependencies
 - adjacent(X, Y): The maximum p-value for X, Y was $< \alpha$
 - \neg adjacent(X, Y): The maximum p-value for X, Y was > α
- Maximum p-values may not follow a uniform distribution Samples (p-values) are not i.i.d.
- Did we cut too many corners?

Calibration of probability estimates compared to

- BCCD: Posterior probability of a feature is obtained by the weighted sum of the likelihoods of all networks with < 6 variables [Claassen and Heskes, 2012]
- DP+MCMC: Exact method, scales up to ~20 variables, MCMC priors [Eaton and Murphy, 2007]





- PROPeR has no significant computational overhead
- PROPeR performs on par with more expensive Bayesian methods

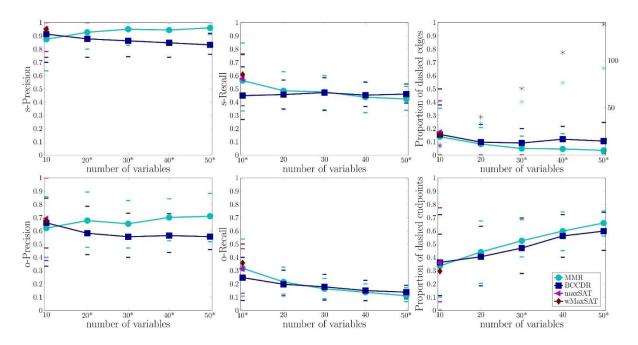
CONFLICT RESOLUTION STRATEGIES

P(constraint)	constraint
0.999	\exists m-connecting path from A to D given Ø in S^{I_n}
0.998	∄ m-connecting path from A to D given Ø in <i>S^I</i> 1
:	÷
0.510	\exists m-connecting path from A to B given \emptyset in S^{I_1}

- MMR: Estimate confidence using PROPeR, satisfy constraints in decreasing order of confidence.
- BCCDR: Estimate confidence using BCCD, satisfy constraints in decreasing order of confidence.
- maxSAT: satisfy maximum number of constraints.
- wMaxSAT: satisfy constraints with maximum sum of weights, where weights are PROPeR estimates.

CONFLICT RESOLUTION STRATEGIES

20 variables, 5 overlapping data sets, 100 samples each



- Greedy strategies perform similarly
- Max/ weighted max strategies do not scale up.
- All strategies are equally conservative.

PERFORMANCE EVALUATION

~2000 runs in simulated networks

 vs maximum path length, number of variables, sparseness of the ground truth networks, sample size, number of input data sets, proportion of non-overlapping variables.

- Performance improves with more data sets.
- Performance improves with more samples.
- Performance is better for sparser networks.
- COmbINE scales up to 100 variables.
- Maximum path length and number of non-overlapping variables do not influence COmbINE's performance.

APPLICATION ON MASS CYTOMETRY DATA

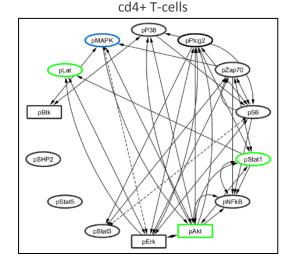
) observed in some data set

manipulated in some data set

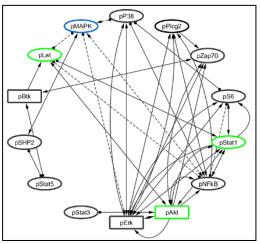
not measured in D_1 , D_2 , D_3

not measured in D_4

- 4 data sets.
- 3 different manipulations.
- 14 variables (phosphorylated proteins).
- 2 different cell populations.

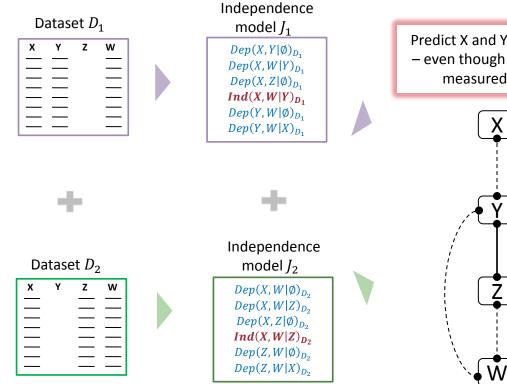


cd8+ T-cells

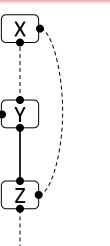


Data set	Source	latent $(\mathbf{L_i})$:	$\operatorname{manipulated}(\mathbf{I}_i)$
D_1	Bodenmiller et al. (2012)	pMAPK	pAkt
D_2	Bodenmiller et al. (2012)	pMAPK	pBtk
D_3	Bodenmiller et al. (2012)	pMAPK	pErk
D_4	Bendall et al. (2011)	pAkt, pLat, pStat1	pErk

INCA RULE



Predict X and Y are associated – even though they are never measured together!

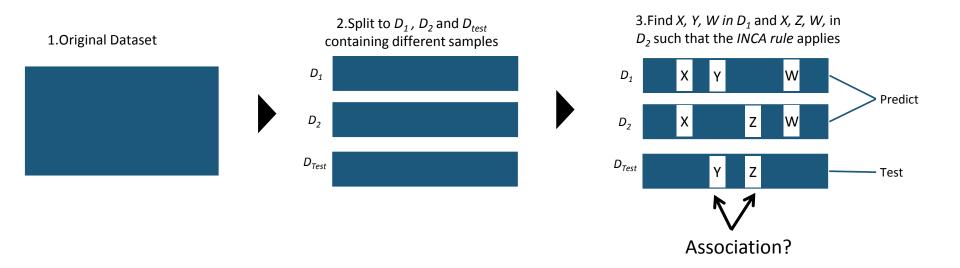


Massively test the assumptions

- Find data sets D₁, D₂
 where the rule holds.
- Predict Y, Z are
 dependent. (given Ø)
- Check in an independent data set D_{Test} where Y, Z are measured.

FURTHER INFERENCE: PREDICT CORRELATION STRENGTH -(z) -(Y)-(x)+ (w)(x) w w (Y) Z (\mathbf{x}) Y (Y)́≁ Z (w)(x) w (x) х Y (z) Y Z W \mathbf{x} (z) (z)→(w) (Y)← (w) (\mathbf{x}) (w)x Y (Y) z w z Z $z \rightarrow w x$ (Y) (\mathbf{x}) (Y)~ (w)(w)(x) (x) Y z w Y -(z) →(z) (z)-→(w) (\mathbf{x}) (Y) ↔ (z) (w) (w)(x) W (x) Y) (x) (y)**⇒**(z) Y $z \rightarrow (w)$ (\mathbf{x}) (x) (Y) z (w) (w) w Y x Y z Z w (x Y ↔(z) (x) Y Z

MAKING IT WORK ON REAL DATA

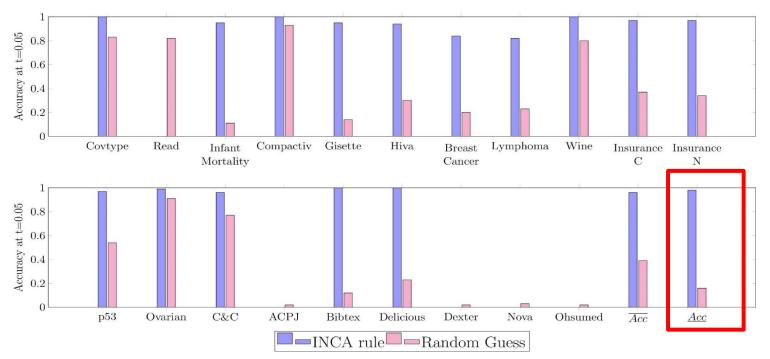


 Restrict inferences only to cases where the probability of errors is small, i.e. *p*-values are extreme

DATASETS

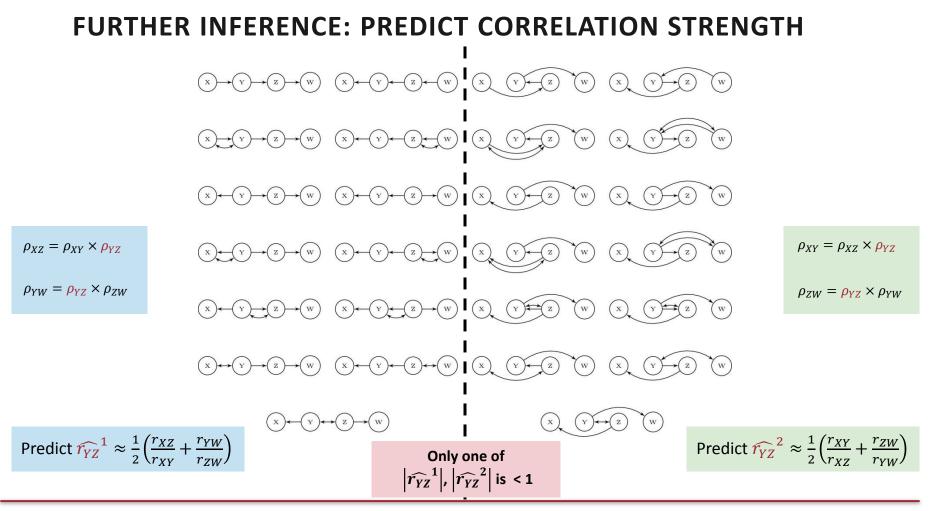
Name	# instances	# variables	Group Size	Variables type	Scientific domain	# prediction
Covtype	581012	55	55	Nominal/Ordinal	Agricultural	222
Read	681	26	26	Nominal/Continuous/Ordi	Business	0
				nal		22
Infant-mortality	5337	83	83	Nominal	Clinical study	135
Compactiv	8192	22	22	Continuous	Computer science	423
Gisette	7000	5000	50	Continuous	Digit recognition	
Hiva	4229	1617	50	Nominal	Drug discovering	554
Breast-Cancer	286	17816	50	Continuous	Gene expression	1833
Lymphoma	237	7399	50	Continuous	Gene expression	7712
Wine	4898	12	12	Continuous	Industrial	4
Insurance-C	9000	84	84	Nominal/Ordinal	Insurance	1839
Insurance-N	9000	86	86	Nominal/Ordinal	Insurance	226
p53	16772	5408	50	Continuous	Protein activity	46647
Ovarian	216	2190	50	Continuous	Proteomics	539165
C&C	1994	128	128	Continuous	Social science	99241
ACPJ	15779	28228	50	Continuous	Text mining	0
Bibtex	7395	1995	50	Nominal	Text mining	1
Delicious	16105	1483	50	Nominal	Text mining	856
Dexter	600	11035	50	Nominal	Text mining	0
Nova	1929	12709	50	Nominal	Text mining	0
Ohsumed	5000	14373	50	Nominal	Text mining	0

HOW DID WE DO?



- About 700000 predictions in 20 datasets.
- Accuracy: The percentage of p-values < 0.05.
 - May include false positives and exclude false negatives.

98% accuracy vs. 16% of random guessing



Introduction Proposed Approach Performance Validation

VS STATISTICAL MATCHING

Conditional Independence Assumption (CIA) Non common variables are independent given the common variables

+ Multivariate Normality

Data Sets	SMR	INCA rule	
АСРЈ	0.00 [0.00;0.01]	-	
Breast-Cancer	0.25 [0.24;0.25]	0.88 [0.87;0.90]	
C&C	0.68 [0.65;0.71]	0.91 [0.91;0.91]	
Compactiv	0.49 [0.44;0.54]	0.88 [0.83;0.92]	
Insurance-C	0.47 [0.42;0.51]	0.90 [0.89;0.91]	
Lymphoma	0.32 [0.31;0.32]	0.50 [0.47;0.52]	
Ohsumed	0.01 [0.00;0.01]	-	
Ovarian	0.50 [0.50;0.51]	0.14 [0.14;0.14]	
Wine	0.58 [0.52;0.64]	0.99 [0.47;1.00]	
p53	0.45 [0.44;0.45]	0.87 [0.87;0.87]	
Mean over data	0.38 [0.35;0.40]	0.76 [0.68;0.77]	
sets			
On all predictions	0.58 [0.57;0.58]	0.89 [0.89;0.89]	

vs.

- (Causal) Markov
- 2. (Causal) Faithfulness
- 3. Acyclicity
 - Multivariate normality

 When predictions are based on only 2 common variables, statistical matching is unreliable.

1.

• INCA rule's predictions are highly correlated with sample estimates (0.89 correlation.

CONTRIBUTIONS

- Comparison of causal models under causal insufficiency.
- Introduction of SAT-based causal analysis: exploit 40 years of SAT-solving technology.
- Query-based approach to avoid explosion of possible solutions.
- Method for estimating posterior probabilities from p-values.
- Scalable INCA algorithm.
- A proof of concept that causal assumptions can make testable qualitative and quantitative predictions.
- Being local and conservative improves applicability of causal methods.

CONCLUSIONS AND FUTURE WORK

- Beyond one dataset at a time
- Vision of automatically analyzing a large portion of available datasets in a domain
- Inclusion of Prior Causal Knowledge [ICML 2012, UAI 2013]
- Handling Case-Control Data [UAI 2015]
- Handling batch effects [upcoming]
- Handling temporal data and temporal information
- Improve reliability
- Ability to work with semantically similar data
- Quantitative Algorithms?

PUBLICATIONS

- S. Triantafillou and I. Tsamardinos, Causal Discovery from Multiple Interventions, JMLR, to appear.
- Giorgos Borboudakis, Ioannis Tsamardinos (2015). Bayesian Network Learning with Discrete Case-Control Data. Uncertainty in Artificial Intelligence (UAI), 2015.
- S. Triantafillou, I. Tsamardinos and A. Roumpelaki, Finding Neighborhoods of High Confidence in Constraint-based Causal Discovery, PGM 2014.
- Borboudakis G., & Tsamardinos, I. (2013). Scoring and Searching over Bayesian Networks with Informative, Causal and Associative Priors. Uncertainty in Artificial Intelligence (UAI) 2013
- Borboudakis, G., & Tsamardinos, I. (2012). Incorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs. Proceedings of the 29th International Conference on Machine Learning, ICML 2012
- I. Tsamardinos, S. Triantafillou and V. Lagani , Towards Integrative Causal Analysis of Heterogeneous Datasets and Studies. JMLR., 13:1097-1157, 2012.
- S. Triantafillou, I. Tsamardinos, and I. G. Tollis. Learning causal structure from overlapping variable sets. In Artificial Intelligence and Statistics, pages 860-867, 2010.
- S. Triantafillou and I. Tsamardinos, Predicting associations from multiple "omics" data sets, HSCBB12, Best Poster Award Recipient.
- V. Lagani, S. Triantafillou, G. Ball, I. Tsamardinos and J. Tegner, Probabilistic Computational Causal Discovery for Systems Biology, In Uncertainty in Biology: a computational modeling approach, Amit Gefen (Editor), to appear.
- G. Borboudakis, S. Triantafillou and I. Tsamardinos Tools and Algorithms for Causally Interpreting Directed Edges in Maximal Ancestral Graphs, PGM 2012.
- V. Lagani, I. Tsamardinos and S. Triantafillou Learning from mixture of experimental data: a constraint-based approach In Hellenic Conference on Artificial Intelligence (SETN 2012).
- G. Borboudakis, S. Triantafillou, V. Lagani, I. Tsamardinos, A constraint-based approach to incorporate prior knowledge in causal model, ESANN 2011.

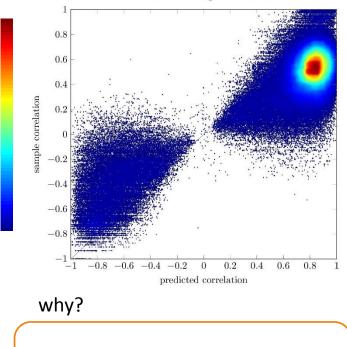
BIAS OF PREDICTIONS

high

density

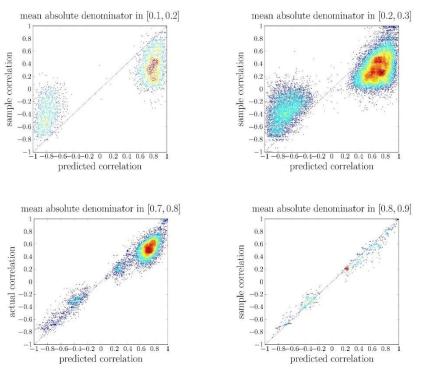
low

Predicted vs Sample Correlation



When actual correlation is low, only overestimated sample correlations pass the independence test

Predicted vs sample correlations over all data sets, grouped by mean absolute value of the denominators used in their computations



- Correlation of predicted vs sample correlations is 0.89
- Predictions based on large correlations have reduced bias

VS STATISTICAL MATCHING

Conditional Independence Assumption (CIA) Non common variables are independent given the common variables

+ Multivariate Normality

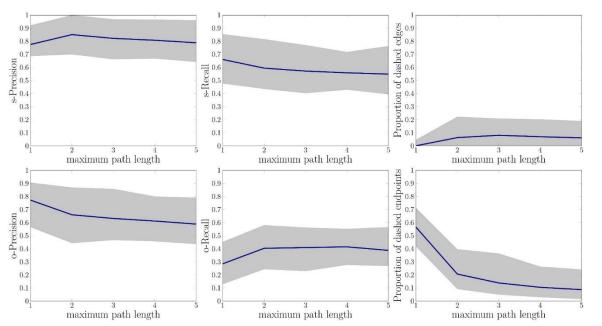
Data Sets	SMR _{all}	SMR _{XW}	INCA rule	
ACPJ	0.05 [0.04;0.05]	0.00 [0.00;0.01]	-	
Breast-Cancer	0.55 [0.55;0.55]	0.25 [0.24;0.25]	0.88 [0.87;0.90]	
C&C	0.99 [0.99;0.99]	0.68 [0.65;0.71]	0.91 [0.91;0.91]	
Compactiv	0.97 [0.96;0.98]	0.49 [0.44;0.54]	0.88 [0.83;0.92]	
Insurance-C	0.83 [0.82;0.84]	0.47 [0.42;0.51]	0.90 [0.89;0.91]	
Lymphoma	0.60 [0.60;0.60]	0.32 [0.31;0.32]	0.50 [0.47;0.52]	
Ohsumed	0.02 [0.01;0.03]	0.01 [0.00;0.01]	-	
Ovarian	0.62 [0.62;0.63]	0.50 [0.50;0.51]	0.14 [0.14;0.14]	
Wine	0.83 [0.74;0.90]	0.58 [0.52;0.64]	0.99 [0.47;1.00]	
p53	0.91 [0.91;0.91]	0.45 [0.44;0.45]	0.87 [0.87;0.87]	
Mean over data	0.64 [0.62;0.65]	0.38 [0.35;0.40]	0.76 [0.68;0.77]	
sets				
On all predictions	0.73 [0.73;0.73]	0.58 [0.57;0.58]	0.89 [0.89;0.89]	

- (Causal) Markov
- 2. (Causal) Faithfulness
- 3. Acyclicity
- . Multivariate normality
- When predictions are based on only 2 common variables, statistical matching is unreliable

1.

- SM is more successful when the predictions are based on larger sets of common variables.
- INCA rules's predictions are highly correlated with sample estimates (0.89 correlation)

MAXIMUM PATH LENGTH



20 variables, 5 overlapping data sets, 100 samples each

- MPL controls path length.
- Unconstrained MPL corresponds to soundness and completeness.
- MPL>1 does not affect performance, allows more orientations.