Causal discovery with Unsupervised inverse REgression (CURE)

Eleni Sgouritsa, Dominik Janzing, Philipp Hennig, Bernhard Schölkopf

Max-Planck-Institute for Intelligent Systems, Tübingen, Germany

Advances in Causal Inference Workshop, UAI 2015

16th July 2015
Problem

- Causal discovery in the two-variable case, assuming no confounders: given a sample from $P(X, Y)$, infer whether

$$X \rightarrow Y \quad \text{or} \quad Y \rightarrow X$$
Related work

- Conditional-independence based methods, e.g., PC or IC.
 - $X \rightarrow Y$ and $Y \rightarrow X$ Markov equivalent

- Methods restricting the function class, e.g., ANM, LINGAM.
 - Peters, Mooij, Janzing, Schölkopf. Causal discovery with continuous ANMs. JMLR 2014.

- Methods based on the postulate of independence of causal mechanisms, e.g., IGCI.
 - Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schölkopf. Inferring deterministic causal relations. UAI 2010.

Upon this talk: causal discovery in the non-deterministic case based on the postulate of independence.
Related work

- **Conditional-independence based methods, e.g., PC or IC.**
 - $X \rightarrow Y$ and $Y \rightarrow X$ Markov equivalent

- **Methods restricting the function class, e.g., ANM, LINGAM.**
 Peters, Mooij, Janzing, Schölkopf. Causal discovery with continuous ANMs. JMLR 2014.
 - ANM: $Y = f(X) + N$, $X \perp N$
Related work

- **Conditional-independence based methods, e.g., PC or IC.**

 - $X \rightarrow Y$ and $Y \rightarrow X$ Markov equivalent

- **Methods restricting the function class, e.g., ANM, LINGAM.**

 Peters, Mooij, Janzing, Schölkopf. Causal discovery with continuous ANMs. JMLR 2014.

 - ANM: $Y = f(X) + N$, $X \perp \perp N$

- **Methods based on the postulate of independence of causal mechanisms, e.g., IGCI.**

 Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schölkopf. Inferring deterministic causal relations. UAI 2010.

 - IGCI proposed for deterministic relations: $Y = f(X)$
Related work

- Conditional-independence based methods, e.g., PC or IC.

 - $X \rightarrow Y$ and $Y \rightarrow X$ Markov equivalent

- Methods restricting the function class, e.g., ANM, LINGAM.

 - Peters, Mooij, Janzing, Schölkopf. Causal discovery with continuous ANMs. JMLR 2014.

 - ANM: $Y = f(X) + N, \; X \perp \perp N$

- Methods based on the postulate of independence of causal mechanisms, e.g., IGCI.

 - Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schölkopf. Inferring deterministic causal relations. UAI 2010.

 - IGCI proposed for deterministic relations: $Y = f(X)$

This talk: causal discovery in the non-deterministic case based on the postulate of independence.
Postulate: if $X \rightarrow Y$, then $P(X)$ and $P(Y|X)$ are “independent”, in the sense that $P(X)$ contains no information about $P(Y|X)$ and vice versa.
Independence between causal mechanism and distribution of cause

- Postulate: if $X \rightarrow Y$, then $P(X)$ and $P(Y|X)$ are “independent”, in the sense that $P(X)$ contains no information about $P(Y|X)$ and vice versa.

- This “independence” can be violated in the backward direction: $P(Y)$ and $P(X|Y)$ may contain information about each other, because they both inherit properties from $P(X)$ and $P(Y|X)$.

Lemeire and Dirkx. Causal models as minimal descriptions of multivariate systems. 2006.
Independence between causal mechanism and distribution of cause

Postulate: if $X \rightarrow Y$, then $P(X)$ and $P(Y|X)$ are “independent”, in the sense that $P(X)$ contains no information about $P(Y|X)$ and vice versa.

This “independence” can be violated in the backward direction: $P(Y)$ and $P(X|Y)$ may contain information about each other, because they both inherit properties from $P(X)$ and $P(Y|X)$.

Lemeire and Dirkx. Causal models as minimal descriptions of multivariate systems. 2006.
Postulate of independence (abstract)

▶ if $X \rightarrow Y$:

$$P(Y|X) \perp \perp P(X)$$

This asymmetry between cause and effect can be useful for causal discovery, but needs to be precisely defined.

Postulate of independence (abstract)

- if $X \rightarrow Y$:

 $P(Y|X) \perp \perp P(X)$ implying $P(X|Y) \not\perp \not\perp P(Y)$

This asymmetry between cause and effect can be useful for causal discovery, but needs to be precisely defined.

Postulate of independence (abstract)

► if $X \rightarrow Y$:

$$P(Y | X) \perp \!\!\!\!\!\! \perp P(X)$$ implying $$P(X | Y) \perp \!\!\!\!\!\! \perp P(Y)$$

► if $X \rightarrow Y$ deterministically ($Y = f(X)$ as opposed to $Y = f(X, E)$):

This asymmetry between cause and effect can be useful for causal discovery, but needs to be precisely defined.

Postulate of independence (abstract)

- if $X \rightarrow Y$:
 \[P(Y|X) \perp \perp P(X) \]
 implying
 \[P(X|Y) \not\perp \not\perp P(Y) \]

- if $X \rightarrow Y$ deterministically ($Y = f(X)$ as opposed to $Y = f(X, E)$):
 \[f \perp \perp P(X) \]
Postulate of independence (abstract)

- if $X \rightarrow Y$:

 $P(Y|X) \perp \perp P(X)$ implying $P(X|Y) \not\perp \not\perp P(Y)$

- if $X \rightarrow Y$ deterministically ($Y = f(X)$ as opposed to $Y = f(X, E)$):

 $f \perp \perp P(X)$ implying $f^{-1} \not\perp \not\perp P(Y)$

This asymmetry between cause and effect can be useful for causal discovery, but needs to be precisely defined.

Eleni Sgouritsa

CURE 5
Postulate of independence (abstract)

- if $X \rightarrow Y$:

 $P(Y|X) \perp \! \! \! \! \perp P(X)$ implying $P(X|Y) \not\perp \! \! \! \! \perp P(Y)$

- if $X \rightarrow Y$ deterministically ($Y = f(X)$ as opposed to $Y = f(X, E)$):

 $f \perp \! \! \! \! \perp P(X)$ implying $f^{-1} \not\perp \! \! \! \! \perp P(Y)$

This asymmetry between cause and effect can be useful for causal discovery.
Postulate of independence (abstract)

- if $X \rightarrow Y$:

 $P(Y|X) \perp \perp P(X)$ \hspace{1cm} implying \hspace{1cm} $P(X|Y) \not\perp \not\perp P(Y)$

- if $X \rightarrow Y$ deterministically ($Y = f(X)$ as opposed to $Y = f(X, E)$):

 $f \perp \perp P(X)$ \hspace{1cm} implying \hspace{1cm} $f^{-1} \not\perp \not\perp P(Y)$

This asymmetry between cause and effect can be useful for causal discovery, but needs to be precisely defined.

Asymmetry

If $X \rightarrow Y$:

<table>
<thead>
<tr>
<th>Abstract asymmetry</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \perp \perp P(X)$ whereas $f^{-1} \not\perp \not\perp P(Y)$</td>
<td>$P(Y</td>
<td>X) \perp \perp P(X)$ whereas $P(X</td>
</tr>
</tbody>
</table>

Asymmetry

If $X \rightarrow Y$:

![Graph showing the relationship between X and Y](image)

<table>
<thead>
<tr>
<th></th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>f “⊥” $P(X)$ whereas f^{-1} “⊥” $P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>Formal asymmetry</td>
<td>IGCI: $\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$</td>
<td></td>
</tr>
</tbody>
</table>
Asymmetry

If $X \rightarrow Y$:

![Diagram showing the relationship between X and Y](image)

<table>
<thead>
<tr>
<th>Abstract asymmetry</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \perp P(X)$</td>
<td>$f^{-1} \not\perp P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>$f^{-1} \not\perp P(Y)$</td>
<td></td>
<td>$P(X</td>
</tr>
</tbody>
</table>

IGCI:
- $\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$
- $? \quad ?$
Asymmetry

If $X \rightarrow Y$:

![Graph showing function $f(x)$ and distributions $p(x)$ and $p(y)$]

<table>
<thead>
<tr>
<th></th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>f "⊥" $P(X)$ whereas f^{-1} "∥" $P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>Formal asymmetry</td>
<td>IGCI: $\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$</td>
<td>? It is difficult to explicitly formalize independence between $P(Y</td>
</tr>
</tbody>
</table>
Asymmetry

If $X \rightarrow Y$:

<table>
<thead>
<tr>
<th>Abstract asymmetry</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f “⊥” $P(X)$ whereas f^{-1} “∥” $P(Y)$</td>
<td>f “⊥” $P(X)$ whereas f^{-1} “∥” $P(Y)$</td>
<td></td>
</tr>
<tr>
<td>IGCI: $\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$</td>
<td>$\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$</td>
<td></td>
</tr>
</tbody>
</table>

? It is difficult to explicitly formalize independence between $P(Y|X)$ and $P(X)$

Eleni Sgouritsa

CURE
Asymmetry

If $X \to Y$:

<table>
<thead>
<tr>
<th>Abstract asymmetry</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \ "\perp\perp" \ P(X)$ whereas $f^{-1} \ "\not\perp\not\perp" \ P(Y)$</td>
<td>$P(Y</td>
<td>X) \ "\perp\perp" \ P(X)$ whereas $P(X</td>
</tr>
</tbody>
</table>

| Formal asymmetry | IGCI: $\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$ | ? It is difficult to explicitly formalize independence between $P(Y|X)$ and $P(X)$ |

| Alternative asymmetry? | f can’t be estimated from p_X |
Asymmetry

If $X \rightarrow Y$:

![Graph showing the relationship between X, $f(X)$, Y, and $p(x)$ and $p(y)$]

<table>
<thead>
<tr>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td></td>
</tr>
<tr>
<td>f “⊥” $P(X)$ whereas</td>
<td>$P(Y</td>
</tr>
<tr>
<td>f^{-1} “⊥” $P(Y)$</td>
<td>$P(X</td>
</tr>
<tr>
<td>Formal asymmetry</td>
<td></td>
</tr>
<tr>
<td>IGCI:</td>
<td></td>
</tr>
<tr>
<td>Cov($\log f'$, p_X) = 0</td>
<td></td>
</tr>
<tr>
<td>Cov($\log f^{-1}'$, p_Y) \geq 0</td>
<td></td>
</tr>
<tr>
<td>Alternative asymmetry?</td>
<td></td>
</tr>
<tr>
<td>f can’t be estimated from p_X whereas</td>
<td></td>
</tr>
<tr>
<td>f^{-1} may be estimated from p_Y</td>
<td></td>
</tr>
</tbody>
</table>

Formal asymmetry

\[\text{Cov}(\log f', p_X) = 0 \] whereas \[\text{Cov}(\log f^{-1}', p_Y) \geq 0 \]

\[P(Y|X) \text{ “⊥” } P(X) \] whereas \[P(X|Y) \text{ “⊥” } P(Y) \]

It is difficult to explicitly formalize independence between $P(Y|X)$ and $P(X)$.

The inspiration for the last asymmetry came from:

Asymmetry

If $X \rightarrow Y$:

$$f(x)$$

Deterministic $Y = f(X)$ whereas f^{-1} “$\perp \perp$” $P(Y)$

| Abstract asymmetry | f “\perp” $P(X)$ whereas f^{-1} “$\perp \perp$” $P(Y)$ | $P(Y|X)$ “\perp” $P(X)$ whereas $P(X|Y)$ “$\perp \perp$” $P(Y)$ |
|-------------------------------------|---|---|
| **Formal asymmetry** | **IGCI**: $\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$ | ? It is difficult to explicitly formalize independence between $P(Y|X)$ and $P(X)$ |
| **Alternative asymmetry?** | f can’t be estimated from p_X whereas f^{-1} may be estimated from p_Y | **CURE**: $p_Y|X$ can’t be estim. from p_X whereas $p_X|Y$ may be estimated from p_Y |
Asymmetry

If $X \rightarrow Y$:

![Diagram showing the relationship between X and Y with $f(x)$ and $p(x)$.]

| Abstract asymmetry | Deterministic $Y = f(X)$: f “⊥” $P(X)$ whereas f^{-1} “⊥” $P(Y)$ | Non-deterministic $Y = f(X, E)$: $P(Y | X)$ “⊥” $P(X)$ whereas $P(X | Y)$ “⊥” $P(Y)$ |
|---------------------|--|---|
| IGCI: | $\text{Cov}(\log f', p_X) = 0$ whereas $\text{Cov}(\log f^{-1}', p_Y) \geq 0$ | $? \text{ It is difficult to explicitly formalize independence between } P(Y | X) \text{ and } P(X)$ |
| Alternative asymmetry? | f can’t be estimated from p_X whereas f^{-1} may be estimated from p_Y | **CURE:** $p_Y | X$ can’t be estim. from p_X whereas $p_X | Y$ may be estimated from p_Y |

The inspiration for the last asymmetry came from:

Idea of CURE for the simpler deterministic case

How can \(f^{-1} \) be estimated based only on \(p_Y \)?

\[
Y = f(X) = f \circ F^{-1}(X(u)) = h(X(u)) = F_Y(y)
\]

Use \(h^{-1} \) as an estimate for \(f^{-1} \).
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F^{-1}(X = h(Y)) = h^{-1}(y) = F_Y(y)$

Use h^{-1} as an estimate for f^{-1}

f cannot be estimated based only on p_X.

$X = f^{-1}(Y) = f^{-1} \circ F^{-1}(Y = g(Y)) = g(Y)$

Eleni Sgouritsa

CURE 7
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$$Y = f(X) = f \circ F_X^{-1}(X_u) = h(X_u)$$
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F^{-1}_X(X_u) = h(X_u)$

$h^{-1}(y) = F_Y(y)$
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F_X^{-1}(X_u) = h(X_u)$

$h^{-1}(y) = F_Y(y)$

Use h^{-1} as an estimate for f^{-1}
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F_X^{-1}(X_u) = h(X_u)$

$h^{-1}(y) = F_Y(y)$

Use h^{-1} as an estimate for f^{-1}

f cannot be estimated based only on p_X
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F_X^{-1}(X_u) = h(X_u)$

Use h^{-1} as an estimate for f^{-1}

f cannot be estimated based only on p_X

$X = f^{-1}(Y) = f^{-1} \circ F_Y^{-1}(Y_u) = g(Y_u)$
Estimate $p_{X|Y}$ based on p_{Y}

$X \rightarrow Y$
Goal: estimate $p_{X|Y}$ based on p_{Y}

observed: $y \in \mathbb{R}^{N}$, unobserved: $x \in \mathbb{R}^{N}$
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$

Goal: estimate $p_{X|Y}$ based on p_Y

observed: $y \in \mathbb{R}^N$, unobserved: $x \in \mathbb{R}^N$

▶ Model:
 ▶ GP (marg.) likelihood: $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$ $\theta = (\ell, \sigma_f, \sigma_n)$
Estimate $p_X|Y$ based on p_Y

$X \rightarrow Y$
Goal: estimate $p_X|Y$ based on p_Y

observed: $y \in \mathbb{R}^N$, unobserved: $x \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$ $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x) = \prod_{i=1}^N \mathcal{U}(0, 1)$ and hyperparameters’ prior
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$

Goal: estimate $p_{X|Y}$ based on p_Y

observed: $y \in \mathbb{R}^N$, unobserved: $x \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$ \hspace{1cm} $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x) = \prod_{i=1}^{N} \mathcal{U}(0, 1)$ and hyperparameters’ prior

- Estimate $p_{X|Y}$:
Estimate $p_{X|Y}$ based on p_{Y}

Goal: estimate $p_{X|Y}$ based on p_{Y}

observed: $y \in \mathbb{R}^N$, unobserved: $x \in \mathbb{R}^N$

- **Model:**
 - GP (marg.) *likelihood*: $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$ \hspace{1cm} $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s *prior*: $p(x) = \prod_{i=1}^{N} \mathcal{U}(0, 1)$ and hyperparameters’ prior

- **Estimate $p_{X|Y}$:**

\[
\hat{p}_{X|Y}^y : (x, y) \mapsto p(x|y, y) = \int p(x|y, y, x, \theta) p(x, \theta|y) dx d\theta
\]
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$

Goal: estimate $p_{X|Y}$ based on p_Y

observed: $y \in \mathbb{R}^N$, unobserved: $x \in \mathbb{R}^N$

- **Model:**
 - GP (marg.) **likelihood:** $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$
 - latent’s **prior:** $p(x) = \prod_{i=1}^N U(0, 1)$ and hyperparameters’ prior
- **Estimate $p_{X|Y}$:**
 \[
 \hat{p}_{X|Y}^y : (x, y) \mapsto p(x|y, y) = \int p(x|y, y, x, \theta) p(x, \theta|y) \, dx \, d\theta
 \]
 GP posterior
Goal: estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$

observed: $y \in \mathbb{R}^N$, unobserved: $x \in \mathbb{R}^N$

Model:

- GP (marg.) likelihood: $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$ \hspace{1cm} $\theta = (\ell, \sigma_f, \sigma_n)$

- latent’s prior: $p(x) = \prod_{i=1}^N U(0, 1)$ and hyperparameters’ prior

Estimate $p_{X|Y}$:

$\hat{p}_{X|Y}^y : (x, y) \mapsto p(x|y, y) = \int p(x|y, y, x, \theta) \ p(x, \theta|y) \ dx d\theta$

GP posterior

$(N+3)$-dimens.
Estimate $p_{X|Y}$ based on p_Y

Goal: estimate $p_{X|Y}$ based on p_Y

observed: $y \in \mathbb{R}^N$, unobserved: $x \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$ \hspace{1cm} $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x) = \prod_{i=1}^{N} U(0, 1)$ and hyperparameters’ prior

- Estimate $p_{X|Y}$:

 \[
 \hat{p}_{X|Y}^y : (x, y) \mapsto p(x|y, y) = \int p(x|y, y, x, \theta) \underbrace{p(x, \theta|y)}_{\text{GP posterior}} \, dx d\theta
 \]

 \[
 \approx \frac{1}{M} \sum_{i=1}^{M} p(x|y, y, x^i, \theta^i)
 \]
Estimate $p_{X|Y}$ based on p_{Y}

$X \to Y$

Goal: estimate $p_{X|Y}$ based on p_{Y}

observed: $y \in \mathbb{R}^{N}$, unobserved: $x \in \mathbb{R}^{N}$

- Model:
 - GP (marg.) likelihood: $p(y|x, \theta) = \mathcal{N}(y; 0, K_{x,x} + \sigma_n^2 I_N)$ $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x) = \prod_{i=1}^{N} \mathcal{U}(0, 1)$ and hyperparameters' prior

- Estimate $p_{X|Y}$:

 $\hat{p}_{X|Y}^y : (x, y) \mapsto p(x|y, y) = \int p(x|y, y, x, \theta) \underbrace{p(x, \theta|y)}_{\text{GP posterior}} \, dx \, d\theta$

 $\approx \frac{1}{M} \sum_{i=1}^{M} p(x|y, y, x^i, \theta^i)$

Grey: (x, y)
Red: (x^i, y)
Blue: $p(x|y = 0.559, y, x^i, \theta^i)$
Empirical data: $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$

1. Estimate $p_{X|Y}$ by $\hat{p}_{y|X|Y}(y)$ (using only y)

2. Estimate $p_{Y|X}$ by $\hat{p}_{x|Y|X}(x)$ (using only x)

3. Check which estimation is better

4. Infer $X \rightarrow Y$ if $D_{X|Y} < D_{Y|X}$, otherwise infer $Y \rightarrow X$

$D_{X|Y} = -\log \prod_{j=1}^{N} \hat{p}_{y|X|Y}(x_j, y_j)$

$D_{Y|X} = -\log \prod_{j=1}^{N} \hat{p}_{x|Y|X}(y_j, x_j)$
Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}^y_{X|Y} \) (using only \(y \))
Empirical data: $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$

1. Estimate $p_{X|Y}$ by $\hat{p}^y_{X|Y}$ (using only y)
2. Estimate $p_{Y|X}$ by $\hat{p}^x_{Y|X}$ (using only x)

$D_{X|Y} = -\log \prod_{j=1}^{N} \hat{p}^y_{X|Y}(x_j, y_j) \prod_{j=1}^{N} \hat{p}^x_{Y|X}(x_j, y_j)$

Sgouritsa, Janzing, Hennig, Schölkopf. Inference of cause and effect with unsupervised inverse regression. AISTATS 2015
Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X|Y}^y \) (using only \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y|X}^x \) (using only \(x \))
3. Check which estimation is better

\[D_{X|Y} = -\log \prod_{j=1}^N \hat{p}_{X|Y}^y \]

\[D_{Y|X} = -\log \prod_{j=1}^N \hat{p}_{Y|X}^x \]
Empirical data: \(\mathbf{y} \in \mathbb{R}^N, \mathbf{x} \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X|Y}^y \) (using **only** \(\mathbf{y} \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y|X}^x \) (using **only** \(\mathbf{x} \))
3. Check which estimation is better
4. Infer \(X \rightarrow Y \) if 1. better \((D_{X|Y} < D_{Y|X}) \), otherwise infer \(Y \rightarrow X \)
Empirical data: \(y \in \mathbb{R}^N, \, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X|Y}^y \) (using only \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y|X}^x \) (using only \(x \))
3. Check which estimation is better
4. Infer \(X \rightarrow Y \) if 1. better \((D_{X|Y} < D_{Y|X}) \), otherwise infer \(Y \rightarrow X \)

\[
D_{X|Y} = -\log \frac{\prod_{j=1}^{N} \hat{p}_{X|Y}^y (x_j, y_j)}{\prod_{j=1}^{N} \hat{p}_{X|Y}^x (x_j, y_j)}
\]
Empirical data: $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$

1. Estimate $p_{X|Y}$ by $\hat{p}_{X|Y}^y$ (using only y)
2. Estimate $p_{Y|X}$ by $\hat{p}_{Y|X}^x$ (using only x)
3. Check which estimation is better
4. Infer $X \rightarrow Y$ if 1. better ($D_{X|Y} < D_{Y|X}$), otherwise infer $Y \rightarrow X$

$$D_{X|Y} = -\log \frac{\prod_{j=1}^N \hat{p}_{X|Y}^y(x_j, y_j)}{\prod_{j=1}^N \hat{p}_{X|Y}^x(x_j, y_j)}$$

$$D_{Y|X} = -\log \frac{\prod_{j=1}^N \hat{p}_{Y|X}^x(y_j, x_j)}{\prod_{j=1}^N \hat{p}_{Y|X}^y(x_j, y_j)}$$
Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X|Y}^y \) (using only \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y|X}^x \) (using only \(x \))
3. Check which estimation is better
4. Infer \(X \rightarrow Y \) if 1. better \((D_{X|Y} < D_{Y|X}) \), otherwise infer \(Y \rightarrow X \)

\[
D_{X|Y} = -\log \frac{\prod_{j=1}^N \hat{p}_{X|Y}^y(x_j, y_j)}{\prod_{j=1}^N \hat{p}_{X|Y}^x(y_j, x_j)}
\]

\[
D_{Y|X} = -\log \frac{\prod_{j=1}^N \hat{p}_{Y|X}^x(y_j, x_j)}{\prod_{j=1}^N \hat{p}_{Y|X}^y(y_j, x_j)}
\]

with

\[
\hat{p}_{X|Y}^y : (x, y) \mapsto p(x|y, y) = \frac{1}{M} \sum_{i=1}^M p(x|y, y, x', \theta^i)
\]

\[
\hat{p}_{X|Y}^x : (x, y) \mapsto p(x|y, y, x, \theta)
\]
Examples

True DAG: $X \rightarrow Y$

- Often get “good” MCMC samples even when the data are generated by non-Gaussian noise or non-additive noise or non-uniform input.
Examples

True DAG: $X \rightarrow Y$

- Often get “good” MCMC samples even when the data are generated by non-Gaussian noise or non-additive noise or non-uniform input.

- Often get “bad” MCMC samples when trying to predict based on the distribution of the cause.
Results: simulated data
Results: real data (81 cause-effect pairs)

Sample size: 200

Cause-effect pairs dataset: Mooij, Peters, Janzing, Zscheischler, Schölkopf. Distinguishing cause from effect using observational data: methods and benchmarks. 2014.
Assumption: independence of causal mechanisms $P(cause)$ and $P(effect|cause)$.

CURE: Estimate $p_{X|Y}$ based on p_Y
Estimate $p_{Y|X}$ based on p_X
Infer $X \rightarrow Y$ if the first estimation is better. Otherwise, infer $Y \rightarrow X$.

Results seem promising, sampling computationally expensive.
Assumption: independence of causal mechanisms $P(\text{cause})$ and $P(\text{effect}|\text{cause})$.

This independence introduces an asymmetry between cause and effect used for causal discovery.
Assumption: independence of causal mechanisms $P(\text{cause})$ and $P(\text{effect}|\text{cause})$.

This independence introduces an asymmetry between cause and effect used for causal discovery.

CURE:
- Estimate $p_{X|Y}$ based on p_Y
Conclusion

- Assumption: independence of causal mechanisms $P(cause)$ and $P(effect|cause)$.
- This independence introduces an asymmetry between cause and effect used for causal discovery.
- CURE:
 - Estimate $p_{X|Y}$ based on p_Y
 - Estimate $p_{Y|X}$ based on p_X
Assumption: independence of causal mechanisms $P(\text{cause})$ and $P(\text{effect}|\text{cause})$.

This independence introduces an asymmetry between cause and effect used for causal discovery.

CURE:
- Estimate $p_{X|Y}$ based on p_Y
- Estimate $p_{Y|X}$ based on p_X
- Infer $X \rightarrow Y$ if the first estimation is better. Otherwise, infer $Y \rightarrow X$.

Results seem promising, sampling computationally expensive.
Assumption: independence of causal mechanisms $P(\text{cause})$ and $P(\text{effect}|\text{cause})$.

This independence introduces an asymmetry between cause and effect used for causal discovery.

CURE:
- Estimate $p_{X|Y}$ based on p_Y
- Estimate $p_{Y|X}$ based on p_X
- Infer $X \rightarrow Y$ if the first estimation is better. Otherwise, infer $Y \rightarrow X$.

Results seem promising, sampling computationally expensive.
Supervised inverse regression

Unlike standard supervised GP regression, the predictive distribution of supervised inverse regression

\[p(x|y, y, x, \theta) \propto p(y, y|x, x, \theta)p(x|x, \theta) = \mathcal{N}(y, y; 0, K_{(x,x),(x,x)} + \sigma_n^2 I_N) \]

is not Gaussian.

Green: \(p(y|x, x, y, \theta) \), Blue: \(p(x|y, y, x, \theta) \)
Supervised inverse regression

Unlike standard supervised GP regression, the predictive distribution of supervised inverse regression

\[
p(x|y, y, x, \theta) \propto p(y, y|x, x, \theta)p(x|x, \theta) = \mathcal{N}(y, y; 0, K_{(x,x),(x,x)} + \sigma_n^2 I_N)
\]

is not Gaussian.

Green: \(p(y|x, x, y, \theta) \), Blue: \(p(x|y, y, x, \theta) \)
What about the non-deterministic (noisy) case?

<table>
<thead>
<tr>
<th>If $X \rightarrow Y$:</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>f “⊥” $P(X)$ whereas</td>
<td>$P(Y</td>
</tr>
<tr>
<td></td>
<td>f^{-1} “⊣” $P(Y)$</td>
<td>$P(X</td>
</tr>
</tbody>
</table>

Eleni Sgouritsa
What about the non-deterministic (noisy) case?

<table>
<thead>
<tr>
<th>If $X \rightarrow Y$:</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>$f \perp \perp P(X)$ whereas $f^{-1} \perp \perp P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>Alternative asymmetry?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What about the non-deterministic (noisy) case?

If $X \rightarrow Y$:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>f “⊥” $P(X)$ whereas f^{-1} “∥” $P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>asymmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative</td>
<td>f can’t be estimated from p_X whereas f^{-1} may be estimated from p_Y</td>
<td>CURE: $p_{Y</td>
</tr>
<tr>
<td>asymmetry?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What about the non-deterministic (noisy) case?

<table>
<thead>
<tr>
<th>If $X \rightarrow Y$:</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>$f \leftarrow\rightarrow P(X)$ whereas $f^{-1} \leftarrow\rightarrow P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>Alternative asymmetry?</td>
<td>f can’t be estimated from p_X whereas f^{-1} may be estimated from p_Y</td>
<td>CURE: $p_Y</td>
</tr>
<tr>
<td>Estimate from p_Y</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
What about the non-deterministic (noisy) case?

<table>
<thead>
<tr>
<th>If $X \rightarrow Y$:</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>f “⊥” $P(X)$ whereas f^{-1} “⊥” $P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>Alternative asymmetry?</td>
<td>f can’t be estimated from p_X whereas f^{-1} may be estimated from p_Y</td>
<td>CURE: $p_Y</td>
</tr>
<tr>
<td>Estimate from p_Y</td>
<td>$Y = f(X) = h(X_u)$ estimate h^{-1} from p_Y</td>
<td></td>
</tr>
</tbody>
</table>
What about the non-deterministic (noisy) case?

<table>
<thead>
<tr>
<th>If $X \rightarrow Y$:</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>$f \ "\perp\perp" \ P(X)$ whereas $f^{-1} \ "!!!\perp\perp!!!\perp" \ P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>Alternative asymmetry?</td>
<td>f can’t be estimated from p_X whereas f^{-1} may be estimated from p_Y</td>
<td>CURE: $p_{Y</td>
</tr>
<tr>
<td>Estimate from p_Y</td>
<td>$Y = f(X) = h(X_u)$ estimate h^{-1} from p_Y</td>
<td>$Y = f(X) + E = h(X_u) + E$</td>
</tr>
</tbody>
</table>
What about the non-deterministic (noisy) case?

<table>
<thead>
<tr>
<th>If $X \rightarrow Y$:</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>$f \ “\perp” \ P(X)$ whereas</td>
<td>$P(Y</td>
</tr>
<tr>
<td></td>
<td>$f^{-1} \ “\not\perp” \ P(Y)$</td>
<td>$P(X</td>
</tr>
<tr>
<td>Alternative asymmetry?</td>
<td>f can’t be estimated from p_X whereas</td>
<td>CURE:</td>
</tr>
<tr>
<td></td>
<td>f^{-1} may be estimated from p_Y</td>
<td>$p_{Y</td>
</tr>
<tr>
<td>Estimate from p_Y</td>
<td>$Y = f(X) = h(X_u)$</td>
<td>$p_{X</td>
</tr>
<tr>
<td></td>
<td>estimate h^{-1} from p_Y</td>
<td></td>
</tr>
</tbody>
</table>

Eleni Sgouritsa
What about the non-deterministic (noisy) case?

<table>
<thead>
<tr>
<th>If $X \rightarrow Y$:</th>
<th>Deterministic $Y = f(X)$</th>
<th>Non-deterministic $Y = f(X, E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract asymmetry</td>
<td>$f \perp \perp P(X)$ whereas $f^{-1} \perp \perp P(Y)$</td>
<td>$P(Y</td>
</tr>
<tr>
<td>Alternative asymmetry?</td>
<td>f can’t be estimated from p_X whereas f^{-1} may be estimated from p_Y</td>
<td>CURE: $p_{Y</td>
</tr>
<tr>
<td>Estimate from p_Y</td>
<td>$Y = f(X) = h(X_u)$ estimate h^{-1} from p_Y</td>
<td>$Y = f(X) + E = h(X_u) + E$ estimate $p_{X_u</td>
</tr>
</tbody>
</table>
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X_u|Y}$ based on p_Y
(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X|Y}$ based on p_Y
(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{x_u,x_u} + \sigma_n^2 I_N)$
 \[\theta = (\ell, \sigma_f, \sigma_n) \]
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X_u|Y}$ based on p_Y

(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- **Model:**
 - GP (marg.) *likelihood*: $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{x_u,x_u} + \sigma_n^2 I_N)$ \hspace{1cm} $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s *prior*: $p(x_u) = \prod_{i=1}^N U(0, 1)$ and hyperparameters’ prior
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{Xu|Y}$ based on p_Y

(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{xu}.x_u + \sigma_n^2 I_N)$ \quad $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x_u) = \prod_{i=1}^N \mathcal{U}(0, 1)$ and hyperparameters’ prior

- Estimate $p_{Xu|Y}$:
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X_u|Y}$ based on p_Y
(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{x_u,x_u} + \sigma_n^2 I_N)$ \hspace{1em} $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x_u) = \prod_{i=1}^{N} \mathcal{U}(0, 1)$ and hyperparameters’ prior

- Estimate $p_{X_u|Y}$:
 \[
 \hat{p}_{X_u|Y}^y : (x_u, y) \mapsto p(x_u|y, y) = \int p(x_u|y, y, x_u, \theta) p(x_u, \theta|y) dx_u d\theta
 \]
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X_u|Y}$ based on p_Y

(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{x_u,x_u} + \sigma_n^2 I_N)$ \hspace{1cm} $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x_u) = \prod_{i=1}^N \mathcal{U}(0, 1)$ and hyperparameters’ prior

- Estimate $p_{X_u|Y}$:
 \[
 \hat{p}_{X_u|Y}^y : (x_u, y) \mapsto p(x_u|y, y) = \int p(x_u|y, y, x_u, \theta) p(x_u, \theta|y) dx_u d\theta
 \]
 \hspace{1cm} GP posterior
Estimate $p_X|Y$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X|Y}$ based on p_Y

(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- **Model:**
 - GP (marg.) **likelihood:** $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{x_u,x_u} + \sigma_n^2 I_N)$ \hspace{1cm} $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s **prior:** $p(x_u) = \prod_{i=1}^N \mathcal{U}(0, 1)$ and hyperparameters’ prior
 - Estimate $p_{X_u|Y}$:
 \[
 \hat{p}_{X_u|Y}^y : (x_u, y) \mapsto p(x_u|y, y) = \int p(x_u|y, y, x_u, \theta) \ p(x_u, \theta|y) \ dx_u d\theta
 \]

 GP posterior \hspace{1cm} $(N+3)$-dimens.
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X_u|Y}$ based on p_Y

(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- **Model:**
 - GP (marg.) likelihood: $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{x_u,x_u} + \sigma_n^2 I_N)$, $\theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x_u) = \prod_{i=1}^N \mathcal{U}(0, 1)$ and hyperparameters’ prior

- **Estimate $p_{X_u|Y}$:**

 \[
 \hat{p}_{X_u|Y}^y : (x_u, y) \mapsto p(x_u|y, y) = \int p(x_u|y, y, x_u, \theta) \, p(x_u, \theta|y) \, dx_u d\theta \\
 \approx \frac{1}{M} \sum_{i=1}^M p(x_u|y, y, x_u^i, \theta^i)
 \]

 GP posterior (N+3)-dimens.
Estimate $p_{X|Y}$ based on p_Y

$X \rightarrow Y$ with $Y = f(X) + E = h(X_u) + E$

Goal: estimate $p_{X_u|Y}$ based on p_Y
(then use this as an estimate of $p_{X|Y}$)

observed: $y \in \mathbb{R}^N$, unobserved: $x_u \in \mathbb{R}^N$

- Model:
 - GP (marg.) likelihood: $p(y|x_u, \theta) = \mathcal{N}(y; 0, K_{x_u}x_u + \sigma_n^2 I_N)$ $\quad \theta = (\ell, \sigma_f, \sigma_n)$
 - latent’s prior: $p(x_u) = \prod_{i=1}^{N} \mathcal{U}(0, 1)$ and hyperparameters’ prior
- Estimate $p_{X_u|Y}$:
 \[\hat{p}^y_{X_u|Y} : (x_u, y) \mapsto p(x_u|y, y) = \int p(x_u|y, y, x_u, \theta) \frac{p(x_u, \theta|y)}{\int \frac{p(x_u, \theta|y)}{p(x_u|y, y, x_u, \theta)} \, dx_u \, d\theta} \]

 \[\approx \frac{1}{M} \sum_{i=1}^{M} p(x_u|y, y, x_u^i, \theta^i) \]

 Grey: (x, y)
 Red: (x_u^i, y)
 Blue: $p(x_u|y = 0.559, y, x_u^i, \theta^i)$
Empirical data: $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$
Empirical data: $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$

1. Estimate $p_{X|Y}$ by $\hat{p}_{X|Y}^y$ (using only y)

2. Estimate $p_{Y|X}$ by $\hat{p}_{Y|X}^x$ (using only x)

3. Check which estimation is better

4. Infer $X \rightarrow Y$ if $1.$ better ($D_{X|Y} < D_{Y|X}$), otherwise infer $Y \rightarrow X$

$D_{X|Y} = -\log \prod_{j=1}^{N} \hat{p}_{X,Y|Y}(x_j, y_j) \prod_{j=1}^{N} \hat{p}_{X,Y|Y}(x_j, y_j)$

$D_{Y|X} = -\log \prod_{j=1}^{N} \hat{p}_{X,Y|X}(y_j, x_j) \prod_{j=1}^{N} \hat{p}_{X,Y|X}(y_j, x_j)$
Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}^y_{X_u|Y} \) (using **only** \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}^x_{Y_u|X} \) (using **only** \(x \))
Empirical data: \(y \in \mathbb{R}^N, \ x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X|Y}^y \) (using \textbf{only } \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y|X}^x \) (using \textbf{only } \(x \))
3. Check which estimation is better

\[
D_{X|Y} = -\log \prod_{j=1}^N \hat{p}_{X|Y}(x_j, y_j) \\
D_{Y|X} = -\log \prod_{j=1}^N \hat{p}_{Y|X}(y_j, x_j)
\]

with \(\hat{p}_{X|Y}^y : (x_u, y) \mapsto p(x_u|y, y) = 1 \)

\(\hat{p}_{Y|X}^x : (x_u, y) \mapsto p(x_u|y, y, x_u, \theta) \)
Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X_u|Y}^y \) (using only \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y_u|X}^x \) (using only \(x \))
3. Check which estimation is better
4. Infer \(X \rightarrow Y \) if 1. better \((D_{X|Y} < D_{Y|X})\), otherwise infer \(Y \rightarrow X \)
Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X_u|Y}^y \) (using only \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y_u|X}^x \) (using only \(x \))
3. Check which estimation is better
4. Infer \(X \rightarrow Y \) if 1. better (\(D_{X|Y} < D_{Y|X} \)), otherwise infer \(Y \rightarrow X \)

\[
D_{X|Y} = -\log \frac{\prod_{j=1}^N \hat{p}_{X_u|Y}^y(x_j, y_j)}{\prod_{j=1}^N \hat{p}_{X_u|Y}^x(x_j, y_j)}
\]
Empirical data: $\mathbf{y} \in \mathbb{R}^N$, $\mathbf{x} \in \mathbb{R}^N$

1. Estimate $p_{X|Y}$ by $\hat{p}^y_{X_u|Y}$ (using only \mathbf{y})
2. Estimate $p_{Y|X}$ by $\hat{p}^x_{Y_u|X}$ (using only \mathbf{x})
3. Check which estimation is better
4. Infer $X \rightarrow Y$ if 1. better ($D_{X|Y} < D_{Y|X}$), otherwise infer $Y \rightarrow X$

$$D_{X|Y} = -\log \frac{\prod_{j=1}^N \hat{p}^y_{X_u|Y}(x_j, y_j)}{\prod_{j=1}^N \hat{p}^{x,y}_{X_u|Y}(x_j, y_j)}$$

$$D_{Y|X} = -\log \frac{\prod_{j=1}^N \hat{p}^x_{Y_u|X}(y_j, x_j)}{\prod_{j=1}^N \hat{p}^{y,x}_{Y_u|X}(y_j, x_j)}$$
Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(p_{X|Y} \) by \(\hat{p}_{X_u|Y}^y \) (using only \(y \))
2. Estimate \(p_{Y|X} \) by \(\hat{p}_{Y_u|X}^x \) (using only \(x \))
3. Check which estimation is better
4. Infer \(X \rightarrow Y \) if 1. better (\(D_X|Y < D_Y|X \)), otherwise infer \(Y \rightarrow X \)

\[
D_{X|Y} = - \log \frac{\prod_{j=1}^{N} \hat{p}_{X_u|Y}^y(x_j, y_j)}{\prod_{j=1}^{N} \hat{p}_{X_u|Y}^x(x_j, y_j)}
\]

\[
D_{Y|X} = - \log \frac{\prod_{j=1}^{N} \hat{p}_{Y_u|X}^x(y_j, x_j)}{\prod_{j=1}^{N} \hat{p}_{Y_u|X}^y(y_j, x_j)}
\]

with

\[
\hat{p}_{X_u|Y}^y : (x_u, y) \mapsto p(x_u|y, y) = \frac{1}{M} \sum_{i=1}^{M} p(x_u|y, y, x_{u_i}^i, \theta^i)
\]

\[
\hat{p}_{X_u|Y}^x : (x_u, y) \mapsto p(x_u|y, y, x, \theta)
\]
Formalization of independence in the deterministic case

If $X \rightarrow Y$ with $Y = f(X):$ \[
\begin{array}{c}
\text{f "⊥" } P(X) \\
\end{array}
\]
Formalization of independence in the deterministic case

If $X \rightarrow Y$ with $Y = f(X)$: $f \perp \perp P(X)$ implying $f^{-1} \not\perp \not\perp P(Y)$
Formalization of independence in the deterministic case

If $X \rightarrow Y$ with $Y = f(X)$: $f \perp P(X)$ implying $f^{-1} \not\perp P(Y)$
Formalization of independence in the deterministic case

If \(X \rightarrow Y \) with \(Y = f(X) \):

\[
f \perp \! \! \! \perp P(X) \quad \text{implying} \quad f^{-1} \not\perp \! \! \! \perp P(Y)
\]

Asymmetry

- **Postulate:**

\[
\text{Cov}(\log f', p_X) = 0
\]

Peaks of \(p_X \) do **not correlate** with the slope of \(f \).
Formalization of independence in the deterministic case

If $X \rightarrow Y$ with $Y = f(X)$: $f \perp \perp P(X)$ implying $f^{-1} \not\perp \not\perp P(Y)$

Asymmetry

- **Postulate:**
 \[
 \text{Cov}(\log f', p_X) = 0
 \]
 Peaks of p_X do **not correlate** with the slope of f.

- **Implication:**
 \[
 \text{Cov}(\log f^{-1}', p_Y) \geq 0
 \]
 Peaks of p_Y **correlate** with the slope of f^{-1}.
Formalization of independence in the deterministic case

If $X \rightarrow Y$ with $Y = f(X)$: $f \perp \perp P(X)$ implying $f^{-1} \nRightarrow P(Y)$

Asymmetry

- **Postulate:**
 $$\text{Cov}(\log f', p_X) = 0$$
 Peaks of p_X do **not correlate** with the slope of f.

- **Implication:**
 $$\text{Cov}(\log f^{-1}', p_Y) \geq 0$$
 Peaks of p_Y **correlate** with the slope of f^{-1}.

- Interpret $\log f'$ and p_X as random variables on $[0, 1]$.
- f a nonlinear monotonously increasing bijection of $[0, 1]$.

Daniusis et al. Inferring deterministic causal relations. UAI 2010.
Semi-supervised learning (SSL)

- Given: $D_l = \{(x_i, y_i) | i = 1, \ldots, l\}$ drawn i.i.d from $P(X, Y)$
 $D_u = \{x_{l+j} | j = 1, \ldots, u\}$ drawn i.i.d from $P(X)$

- Goal: learn a mapping from X to Y, i.e. estimate $P(Y|X)$

Semi-supervised learning (SSL)

- Given: \(D_l = \{(x_i, y_i) | i = 1, \ldots, l\} \) drawn i.i.d from \(P(X, Y) \)
 \(D_u = \{x_{l+j} | j = 1, \ldots, u\} \) drawn i.i.d from \(P(X) \)

- Goal: learn a mapping from \(X \) to \(Y \), i.e. estimate \(P(Y|X) \)

- For SSL to work, the distribution of the unlabeled data \(P(X) \) has to carry information relevant to the estimation of \(P(Y|X) \)
Semi-supervised learning (SSL)

- Given: \(D_l = \{(x_i, y_i) | i = 1, \ldots, l\} \) drawn i.i.d from \(P(X, Y) \)
 \(D_u = \{x_{l+j} | j = 1, \ldots, u\} \) drawn i.i.d from \(P(X) \)

- Goal: learn a mapping from \(X \) to \(Y \), i.e. estimate \(P(Y|X) \)

- For SSL to work, the distribution of the unlabeled data \(P(X) \) has to carry information relevant to the estimation of \(P(Y|X) \) ⇒
 - **SSL pointless** if \(X \to Y \), because \(P(X) \) contains no information about \(P(Y|X) \)
 - **SSL can help** if \(Y \to X \), because \(P(X) \) contains information about \(P(Y|X) \)

Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

Use h^{-1} as an estimate for f^{-1}

Use g^{-1} as an estimate for f^{-1}
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F_X^{-1}(X_u) = h(X_u)$

$h^{-1}(y) = F_Y(y)$

Use h^{-1} as an estimate for f^{-1}
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F_X^{-1}(X_u) = h(X_u)$

$h^{-1}(y) = F_Y(y)$

Use h^{-1} as an estimate for f^{-1}

f cannot be estimated based only on p_X
Idea of CURE for the simpler deterministic case

How can f^{-1} be estimated based only on p_Y?

$Y = f(X) = f \circ F_X^{-1}(X_u) = h(X_u)$

$h^{-1}(y) = F_Y(y)$

Use h^{-1} as an estimate for f^{-1}

f cannot be estimated based only on p_X

$X = f^{-1}(Y) = f^{-1} \circ F_Y^{-1}(Y_u) = g(Y_u)$

$g^{-1}(x) = F_X(x)$

Use g^{-1} as an estimate for f
Gaussian process

- Generalization of the Gaussian probability distribution
- Describes a distribution over functions
- \(f(x) \sim \mathcal{GP}(m(x), k(x, x')) \)
Gaussian process

- Generalization of the Gaussian probability distribution
- Describes a distribution over functions
- \[f(x) \sim GP(m(x), k(x, x')) \]
- The specification of the covariance function implies a specific distribution over functions:
 \[\text{cov}(f(x_p), f(x_q)) = k(x_p, x_q) = \exp\left(-\frac{1}{2\ell}(x_p - x_q)^2\right) \]
- Finite number of points: \[\mathbf{y} \sim \mathcal{N}(\mathbf{0}, K_{x,x} + \sigma_n^2 I_N) \]
- GP regression
Causal discovery: CURE method

Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)
Causal discovery: CURE method

Empirical data: $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$

1. Estimate $\hat{p}_{X|Y}^y$

2. Estimate $\hat{p}_{Y|X}^x$

Evaluate conditional estimation:

$D_{X|Y} = L_{unsup} X|Y - L_{sup} X|Y = -\frac{1}{N} \sum_{i=1}^{N} \log \hat{p}_{Y|X|u} (x_i, y_i) + \frac{1}{N} \sum_{i=1}^{N} \log \hat{p}_{X|Y|u} (x_i, y_i)$

with $\hat{p}_{X|Y|u}: (x, y) \mapsto p(x|y, y, x, \theta)$

3. Causal discovery: CURE

If $D_{X|Y} < D_{Y|X}$, infer $X \rightarrow Y$, otherwise infer $Y \rightarrow X$
Causal discovery: CURE method

Empirical data: $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$

1. Estimate $\hat{p}_{X|Y}^y$
 - Evaluate conditional estimation:
 $$D_{X|Y} = L_{X|Y}^{\text{unsup}} - L_{X|Y}^{\text{sup}} = -\frac{1}{N} \sum_{i=1}^N \log \hat{p}_{X|Y}^y(x_i, y_i) + \frac{1}{N} \sum_{i=1}^N \log \hat{p}_{X|Y}^{x,y}(x_i, y_i)$$
 with
 $$\hat{p}_{X|Y}^{x,y} : (x, y) \mapsto p(x|y, y, x, \theta)$$
Causal discovery: CURE method

Empirical data: \(y \in \mathbb{R}^N, x \in \mathbb{R}^N \)

1. Estimate \(\hat{p}^y_{X_u|Y} \)

 Evaluate conditional estimation:

 \[
 D_{X|Y} = L_{X|Y}^{\text{unsup}} - L_{X|Y}^{\text{sup}} = -\frac{1}{N} \sum_{i=1}^{N} \log \hat{p}^y_{X_u|Y}(x_i, y_i) + \frac{1}{N} \sum_{i=1}^{N} \log \hat{p}^{x,y}_{X_u|Y}(x_i, y_i)
 \]

 with

 \(\hat{p}^{x,y}_{X_u|Y} : (x, y) \mapsto p(x|y, y, x, \theta) \)

2. Estimate \(\hat{p}^x_{Y_u|X} \)

 Evaluate conditional estimation: compute \(D_{Y|X} \)
Causal discovery: CURE method

Empirical data: $\mathbf{y} \in \mathbb{R}^N$, $\mathbf{x} \in \mathbb{R}^N$

1. Estimate $\hat{p}_{\mathbf{x} \mid \mathbf{y}}^{\mathbf{y}}$
 - Evaluate conditional estimation:
 \[
 D_{X \mid Y} = L_{X \mid Y}^{\text{unsup}} - L_{X \mid Y}^{\text{sup}} = -\frac{1}{N} \sum_{i=1}^{N} \log \hat{p}_{X \mid Y}^{\mathbf{y}}(x_i, y_i) + \frac{1}{N} \sum_{i=1}^{N} \log \hat{p}_{X \mid Y}^{\mathbf{x}, \mathbf{y}}(x_i, y_i)
 \]
 with
 \[
 \hat{p}_{X \mid Y}^{\mathbf{x}, \mathbf{y}} : (x, y) \mapsto p(x \mid y, \mathbf{y}, \mathbf{x}, \theta)
 \]

2. Estimate $\hat{p}_{\mathbf{y} \mid \mathbf{x}}^{\mathbf{x}}$
 - Evaluate conditional estimation: compute $D_{Y \mid X}$

Causal discovery: CURE

If $D_{X \mid Y} < D_{Y \mid X}$, infer $X \rightarrow Y$, otherwise infer $Y \rightarrow X$

Sgouritsa, Janzing, Hennig, Schölkopf. Inference of cause and effect with unsupervised inverse regression. AISTATS 2015