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outline

• Brief history of causal and statistical inference using network data.
• What is network dependence, and why is it a problem?

•
Standard errors and effective sample size.

• Some solutions:
•

test for dependence,

•
harness conditional independences,

•
adapt results for spatial-temporal dependence to the network setting.

Disclaimer: this talk is about the problem more than the solutions.
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•
Two challenges for causal inference using data sampled from a single social

network:

•
nonparametric identification of causal effects with interference,

•
valid statistical inference under complex forms of dependence among

observations.

slide 3 ,



brief history network dependence solutions

brief history of inference using network data

• Computer scientists, physicists and mathematicians have been
researching networks for decades:

•
topology, diffusion properties, generation,...

•
very little statistics for outcomes on network nodes.

• Statisticians have been researching dependent data for decades:
•

time series

•
spatial data

•
interference

•
surprisingly little of this work is directly applicable to networks.
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brief history of inference using network data

•
Christakis and Fowler (2007, 2008, 2009, 2010, 2011, 2012) initiated a wave

of interest in estimating peer effects from social network data.

•
To examine peer effects, they fit models

Y t

ego

⇠ Y t�1
alter

,Y t�2
alter

,Y t�2
ego

,C
ego

•
Widely publicized results include significant peer effects for obesity,

smoking, alcohol consumption, sleep habits, etc.

•
Researchers began using similar models to assess peer effects across a

wide range of disciplines and problems (e.g. Ali and Dwyer, 2009;

Cacioppo et al., 2009; 2008; Lazer et al., 2010; Rosenquist et al., 2010,

Wasserman 2012).
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brief history of inference using network data

•
Randomization based inference facilitates hypothesis testing (e.g. Toulis &
Kao, 2013; Bowers et al., 2013; Aronow & Samii, 2013; Eckles et al., 2014).

•
Work on interference also relies on randomization but may provide a solution

to the problem of network dependence in cluster randomized trials (e.g. Sobel,
2006; Hong & Raudenbush, 2006; Rosenbaum, 2007; Hudgens & Halloran, 2008;
Tchetgen Tchetgen & VanderWeele, 2012).

•
Mathematical modeling of contagious processes avoids these problems but is

highly dependent on parametric assumptions about agent-based processes

(e.g. Steglich, Snijders & Pearson, 2007; Railsback & Grimm, 2011).
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sources of network dependence

• Latent variables cause outcomes among close social contacts to be more

correlated than among distant contacts. (E.g. homophily, geography, shared

culture, shared genetics.)

•
Similar to spatial dependence.
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sources of network dependence

• Contagion implies information barrier structures, e.g.⇥
Y t

1 ? Y t

2 | Y t�2
1 , Y t�2

2 , Y t�1
1 , and Y t�1

2
⇤

and

⇥
Y t�2

1 ? Y t�1
3

⇤
.

•
When a network is observed at a single time point, this will resemble latent

variable dependence.

•
If the network is observed frequently, so that the outcome can’t diffuse very

far between observations, we can harness conditional independence

restrictions to facilitate inference.
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why is dependence a problem?

• Statistical analysis that incorrectly assumes independence will be
invalid.

• Two problems for traditional frequentist inference:
•

CLT may not hold,

•
Standard error estimates and resulting inference will be

anticonservative.
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•
If E [Ȳ ]! µ, the rate of convergence is determined by

var(Ȳ ) =
1

n2

(
n

Â
i=1

s2+Â
i 6=j

cov(Y
i

,Y
j

)

)

•
Define

b
n

=
1

n Â
i 6=j

cov(Y
i

,Y
j

)

•
Now

var(Ȳ ) =
s2

n/
⇣
1+ b

n

s2

⌘

•
If a CLT holds, then

s
n

1+ b

n

s2

�
Ȳ �µ

 
d! N(0,s2)
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solutions

• Test for dependence.

• Estimate b
n

.

• Perform inference on conditionally independent units.

• Use conditional independences to derive new IF asymptotics.

• Extend results for spatial / temporal dependence to this new topology.
•

weakly dependent clusters

•
subsampling methods

•
k-dependence
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test for network dependence

•
Sample K non-overlapping pairs of observations from the network, where the

kth pair is (Y1k ,Y2k).

•
The test statistic

 ⌘
K

Â
k=1

�
Y1k � Ȳ

��
Y2k � Ȳ

�

will equal 0 under the null hypothesis of independence.

•
But it will also be close to 0 under the alternative hypothesis!

•
If we select K pairs of nodes who are friends with one another, then we can

derive tests that are powered for the alternative hypothesis of network

dependence.
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test for network dependence

•
But it’s difficult to calculate the power, and to be conservative in this test

we want to minimize type II rather than type I error. Use informal

diagnostics instead:

•
Define

 � ⌘ Â
k2K�

�
Y1k � Ȳ

��
Y2k � Ȳ

�

K� = {(i , j) : |i � j |=�}

•
Does  � decrease with �?

•
Let

�� =
K

Â
k2K�

I
����Y1k � Ȳ

��
Y2k � Ȳ

���> 0

 

•
Does �� decrease with �?
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estimate bn

What if tests and diagnostics lead to the conclusion that network
dependence is present?

•
If we observe M independent networks, we can estimate var(Ȳ ) directly.

•
If M is small we may be able to estimate b

n

via Cov
n

(Y
⇠
):

h
ˆCov

n

(Y
⇠
)
i

i ,j
=

1

M

M

Â
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�
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i

� Ȳ
i

��
Ym

j

� Ȳ
j

�

b̂
n

=
n

Â
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n

Â
j 6=i

h
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n

(Y
⇠
)
i

i ,j

=
1

n

1

M

M

Â
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n

Â
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n

Â
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i
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j

� 1

n
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i
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j
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conditionally independent units

• Create conditionally independent units; analyze with standard, i.i.d.
models, but conditional on “information barriers.”

• Randomly sample non-overlapping groups from the network.

• This will allow us to condition on an “information barrier.”
• Now we can estimate conditional estimands using standard statistical

machinery like GLMs.
•

The residuals will be uncorrelated across subjects despite the

dependence structure.

For details see Ogburn & VanderWeele (2014). Vaccines, contagion, and social
networks. (available on arXiv)
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conditional independences + IFs

ongoing joint work with Ivan Diaz, Mark van der Laan, Oleg Sofrygin

• Extension of semiparametric, influence-function-based inference from
the iid setting.

• We define a model M , which restricts the observed data distribution
in some way(s).

• We are interested in estimating a parameter y under model M , i.e. a
functional of the observed data.

• Under M , there is a class of influence functions for y .
•

Each (RAL) estimator ŷ is paired with an IF j, and in the iid setting

p
n (ŷ �y)

p

t 1p
n

n

Â
i=1

j(O
i

)

•
Because the IF has mean 0 at the true parameter value, we can use it

to create unbiased estimating functions for y.
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• We have a model in which each individual’s covariates, treatment, and
outcome can depend on his alters’ covariates, treatments, and
outcomes.

•
All dependence must be due to observed contagion!

• Under the usual assumptions of positivity, no unmeasured
confounding, and consistency, we can identify E

⇥
Ȳ ⇤⇤: the expected

mean counterfactual under any well-defined intervention.
• The observed data quantity that identifies E

⇥
Ȳ ⇤⇤ is y ; we have

derived the efficient influence function j(O) for y (in a particular
semiparametric model).

•
Unlike in the iid setting, j(O) 6= 1

n

Ân

i=1 j(O
i

). Instead,

j(O) = Ân

i=1 j
i

(O).

slide 17 ,



brief history network dependence solutions

• Turning the efficient IF into an estimating equation and solving it
gives us an estimate ỹ of y .

• ỹ is asymptotically efficient and doubly robust.
• If each subject interferes with  K other subjects, then (van der Laan,

2014)
p
n (ỹ �y)! N (0,var(IF ))

• If K ! • as n! • s.t. K

n

! 0, then
r

n

K
(ỹ �y)! N (0,var(IF ))
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extend results from spatial/temporal dependence

• Some definitions:

•
Stationarity: features of the distribution of observations does not

depend on location in the network.

•
M-dependence: Y

i

? Y
j

if ki , jk>m.

•
Mixing conditions: Cov

�
Y
i

,Y
j

�
! 0 as ki , jk! • .

slide 19 ,



brief history network dependence solutions

Why can’t we use spatial dependence results?

Network topology doesn’t naturally correspond to Euclidean space.
• In order to embed a network in Rd , we would have to let d grow with

sample size n.
•

Spatial results require d to be fixed or to grow slowly with n.

• Population growth is usually assumed to occur at the boundaries of
the d-dimensional space.

•
It’s not clear how to define boundaries in networks.

• Mixing assumptions and m-dependence don’t imply bounded
correlation structure.

•
In spatial data most observations are distant from one another.

•
The maximum network-based distance between two observations may

be very small.

•
The distance distribution may not be right-skewed enough.
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subsampling

• Subsampling has been used in many spatial dependence contexts (cf.
Lahiri, 2003; Politis, Romano & Wolf, 1999), but neither the implementation
nor the conditions under which it is appropriate are immediately
applicable to networks.

• Under mild stationarity and dependence conditions, we can subsample
to estimate Var(Ȳ ):

1. Select B subsamples of “consecutive” observations.

2. In each subsample, calculate the subsample variance estimator

bs2
b

.

3. Estimate Var(Ȳ ) with the average of the subsample estimators:

bs2
Ȳ

= 1
B

ÂB

b=1 bs2
b

.
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subsampling

This is reasonable if, as n
b

! • and n! •,

1. bs2
Ȳ

is asymptotically unbiased for Avar(Ȳ ).

•
This will hold if key features of the network and the mean and variance

of Y are stationary over groups smaller than the subsample sizes.

2. Var
⇣
bs2
Ȳ

⌘
! 0, where

Var
�
bs2
Ȳ

�
=

1

B2

B

Â
b=1

Var
�
bs2
b

�
(1)

+
1

B2 Â
kI
b

,I
d

km

2Cov
�
bs2
b

, bs2
d

�
(2)

+
1

B2 Â
kI
b

,I
d

k>m

2Cov
�
bs2
b

, bs2
d

�
(3)
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weakly dependent clusters

If K clusters are asymptotically mean independent from one another, there
are two approaches we might consider:

1. T�distribution based confidence intervals (Ibragimov & Muller, 2010;
Bester, Conley & Hansen, 2011).

•
Requires asymptotic normality and mean stationarity at the cluster

level.

2. Bootstrap the weakly dependent communities.
•

Stationarity is required only at the cluster level.

In the spatial dependence literature mean independence is justified with
conditions on the relative size of the boundaries and interiors of the
clusters; growth in d dimensions uniformly.

• These conditions don’t translate into the network setting...
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k-dependence

In some settings it may be expedient to estimate Cov
⇣
Y
⇠

⌘
directly.

• K-dependence: Cov(Y
i

,Y
j

) = s
k

, where k = ki , jk.
• Under k-dependence, m-dependence, and mean stationarity, we can get

an unbiased and consistent estimate of Cov
⇣
Y
⇠

⌘
by this procedure:

1. For each k <m, select pairs of nodes that are k units apart, such that

the pairs themselves are at least m units apart from on another.

2. Estimate

bs
k

with the average covariance across the selected pairs.

3. Estimate Cov
⇣
Y
⇠

⌘
with the plug-in estimator.

• This doesn’t demand as much from m-dependence as other procedures
do...
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summary and other directions

• Although it is accepted practice in many areas, it can be very
dangerous to assume that observations are independent when they
may not be!

• Different types of asymptotics:
•

combine infill and increasing domain asymptotics,

•
“fractal” asymptotics.

• Learn a new, latent distance metric. (E.g. work by Adrian Raftery &
colleagues)
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Thank you
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create conditionally independent units

• Randomly sample non-overlapping groups from the network.

• This will allow us to condition on an “information barrier.”
• Now can estimate conditional estimands using standard statistical

machinery like GLMs.
•

The residuals will be uncorrelated across subjects despite the

dependence structure.
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create conditionally independent units

• Regress Y t+1 on Y t conditional on {Y t�1}
•

This is more appropriate for causal effects than for sample means.
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more principled solution

ongoing joint work with Ivan Diaz, Mark van der Laan, Oleg Sofrygin

• Extension of semiparametric, influence-function-based inference from
the iid setting.

• We define a model M , which restricts the observed data distribution
in some way(s).

• We are interested in estimating a parameter y under model M , i.e. a
functional of the observed data.

• Under M , there is a class of influence functions for y .
•

Each (RAL) estimator ŷ is paired with an IF j, and in the iid setting

p
n (ŷ �y)

p

t 1p
n

n

Â
i=1

j(O
i

)

•
Because the IF has mean 0 at the true parameter value, we can use it

to create unbiased estimating functions for y.
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• van der Laan (2014) extended this approach to settings with
interference and/or contagion.

•
Not partial interference, but each subject can only interfere with  K
other subjects.

• We extend van der Laan (2014) to social network settings:
• K grows with n
•

highly connected “hubs” may exert undo influence

•
estimation of causal effects of interventions on features of network

topology

• This framework can handle longitudinal data, but for simplicity we
focus on the single-time-point setting.
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• The data are generated by this structural equation model:

C
i

= f
C

[e
C

i

] i = 1, . . . ,n

X
i

= f
X

"
s
X

({C
j

: T
ij

= 1})
⌘W

i

,C
i

,e
X

i

#
i = 1, . . . ,n

Y
i

= f
Y

"
s
Y

({X
j

: T
ij

= 1} ,{C
j

: T
ij

= 1})
⌘V

i

,X
i

,C
i

,e
Y

i

#
i = 1, . . . ,n,

• T
ij

= I{subject i and subject j share a tie}
• f

C

, f
X

, and f
Y

are unknown and unspecified functions

• e
i

= (e
C

i

,e
X

i

,e
Y

i

) is a vector of exogenous, unobserved errors

• We make independence assumptions for the errors so that
•

there is no unmeasured confounding.

• C
i

? C
j

if i and j have no friends in common.

• Y
i

? Y
j

|parents and X
i

? X
j

|parents.
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• A hypothetical intervention that deterministically sets X to a
user-specified value x⇤ is given by

C
i

= f
C

[e
C

i

] i = 1, . . . ,n
X
i

= x⇤
i

i = 1, . . . ,n
Y ⇤
i

= f
Y

[V ⇤
i

,e
Y

i

] i = 1, . . . ,n

• V ⇤
i

is a counterfactual random variable, but its value is determined by

the observed realization of C and by the user-specified value x⇤, and it

is therefore known.

• Y ⇤
i

is the potential outcome of individual i in a hypothetical world in
which P(X = x⇤) = 1.

•
Peer effects: X

i

could be a function of alters’ outcomes at a previous

time point.

• We are interested in E
⇥
Ȳ ⇤⇤ , where Ȳ ⇤ = 1

n

Ân

i=1Y
⇤
i

.
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• Under the usual assumptions, E
⇥
Ȳ ⇤⇤ is identified by the parameter

y =
1
n

n

Â
i=1

E

"

Â
y

y p
Y

(y |V ⇤
i

)

#
=

1
n

n

Â
i=1

Â
v

"

Â
y

y p
Y

(y |v)
#
P [V ⇤

i

= v ] .

• The efficient influence function for y (in a particular semiparametric
model) is

j(O) =
n

Â
j=1

1
n

n

Â
i=1

E

"

Â
y

y p
Y

(y |V ⇤
i

) | C
j

= c
j

#
�y

+
1
n

n

Â
i=1

1
n

Ân

j=1P(V
⇤
j

= v
i

)
1
n

Ân

j=1P(Vj
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i

)

(
y
i

�Â
y

y p
Y

(y |v
i

)

)
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• Turning the efficient IF into an estimating equation and solving it
gives us an estimate ỹ of y .

• ỹ is asymptotically efficient and doubly robust.
• If each subject interferes with  K other subjects, as in van der Laan

(2014), then
p
n (ỹ �y)! N (0,var(IF ))

• Instead, we let K ! • as n! • s.t. K

n

! 0. Then
r

n

K
(ỹ �y)! N (0,var(IF ))
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stochastic network interventions

• We can also identify the effects of interventions that replace f
X

with a
new, user-specified function:

C
i

= f
C

[e
C

i

] i = 1, . . . ,n
X ⇤
i

= r
X

[W ⇤
i

,e
X

i

] i = 1, . . . ,n
Y ⇤
i

= f
Y

[V ⇤
i

,e
Y

i

] i = 1, . . . ,n,

• This is an example of a stochastic intervention: the intervention
changes the distribution of X but does not eliminate the stochasticity
introduced by e

X

.
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stochastic network interventions

• Examples include
•

interventions on the network, i.e. an intervention that adds, removes,

or relocates ties in the network.

•
interventions that change the dependence of a subject’s treatment on

other subjects’ covariates, or of a subject’s outcome on other subjects’

covariates and treatments.

•
Interventions on summary features of the adjacency matrix

• An intervention on features of the network topology replaces T with
the members of a class T ⇤ of n⇥n adjacency matrices that share the
intervention features, stochastically according to some probability
distribution gT⇤ over T ⇤.

• Whether or not we can define, identify, and estimate interventions
involving these features of network topology hinges crucially on the
positivity assumption.

• e.g. degree / centrality
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principled approach

• Pros
•

uses all of the available data

•
estimands are unconditional

•
efficient and doubly robust estimation

• Cons
•

hard(er) to understand, hard to implement

•
may not be clear in finite samples what to do with K and with hubs
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