# Query-Answer Causality in Databases: Abductive Diagnosis and View-Updates

Babak Salimi & Leopoldo Bertossi Carleton University School of Computer Science Ottawa, Canada

• Causality appears at the foundations of many scientific disciplines

- Causality appears at the foundations of many scientific disciplines
- Want to represent and compute causality, to deal with the uncertainty in data and knowledge



- Causality appears at the foundations of many scientific disciplines
- Want to represent and compute causality, to deal with the uncertainty in data and knowledge
- In data management, we need to understand and compute why certain (query) results are obtained or not

- Causality appears at the foundations of many scientific disciplines
- Want to represent and compute causality, to deal with the uncertainty in data and knowledge
- In data management, we need to understand and compute why certain (query) results are obtained or not
- Why certain natural semantic conditions are not satisfied

- Causality appears at the foundations of many scientific disciplines
- Want to represent and compute causality, to deal with the uncertainty in data and knowledge
- In data management, we need to understand and compute why certain (query) results are obtained or not
- Why certain natural semantic conditions are not satisfied
- A DB system should provide explanations

- Causality appears at the foundations of many scientific disciplines
- Want to represent and compute causality, to deal with the uncertainty in data and knowledge
- In data management, we need to understand and compute why certain (query) results are obtained or not
- Why certain natural semantic conditions are not satisfied
- A DB system should provide explanations
- To understand/explore the data or reconsider the query

- Causality appears at the foundations of many scientific disciplines
- Want to represent and compute causality, to deal with the uncertainty in data and knowledge
- In data management, we need to understand and compute why certain (query) results are obtained or not
- Why certain natural semantic conditions are not satisfied
- A DB system should provide explanations
- To understand/explore the data or reconsider the query
- Enhancing the value of extracted data



- Causality appears at the foundations of many scientific disciplines
- Want to represent and compute causality, to deal with the uncertainty in data and knowledge
- In data management, we need to understand and compute why certain (query) results are obtained or not
- Why certain natural semantic conditions are not satisfied
- A DB system should provide explanations
- To understand/explore the data or reconsider the query
- Enhancing the value of extracted data
- Crucial for understanding massive volumes of data!

 Our current research is motivated by trying to understand causality in data management from different perspectives



- Our current research is motivated by trying to understand causality in data management from different perspectives
- We have already established interesting and fruitful connections among three forms of reasoning: (Salimi & Bertossi, ICDT 2015)

- Our current research is motivated by trying to understand causality in data management from different perspectives
- We have already established interesting and fruitful connections among three forms of reasoning: (Salimi & Bertossi, ICDT 2015)
  - inferring causes from databases

- Our current research is motivated by trying to understand causality in data management from different perspectives
- We have already established interesting and fruitful connections among three forms of reasoning: (Salimi & Bertossi, ICDT 2015)
  - inferring causes from databases
  - database repairs and consistent query answering (CQA)



- Our current research is motivated by trying to understand causality in data management from different perspectives
- We have already established interesting and fruitful connections among three forms of reasoning: (Salimi & Bertossi, ICDT 2015)
  - inferring causes from databases
  - database repairs and consistent query answering (CQA)
  - consistency-based diagnoses

- Our current research is motivated by trying to understand causality in data management from different perspectives
- We have already established interesting and fruitful connections among three forms of reasoning: (Salimi & Bertossi, ICDT 2015)
  - inferring causes from databases
  - database repairs and consistent query answering (CQA)
  - consistency-based diagnoses
- In this work we add:

- Our current research is motivated by trying to understand causality in data management from different perspectives
- We have already established interesting and fruitful connections among three forms of reasoning: (Salimi & Bertossi, ICDT 2015)
  - inferring causes from databases
  - database repairs and consistent query answering (CQA)
  - consistency-based diagnoses
- In this work we add:
  - view updates (database updates through views)

- Our current research is motivated by trying to understand causality in data management from different perspectives
- We have already established interesting and fruitful connections among three forms of reasoning: (Salimi & Bertossi, ICDT 2015)
  - inferring causes from databases
  - database repairs and consistent query answering (CQA)
  - consistency-based diagnoses
- In this work we add:
  - view updates (database updates through views)
  - abductive diagnosis



• Those reasoning problems share some commonalities:



- Those reasoning problems share some commonalities:
  - They reflect some sort of uncertain information



- Those reasoning problems share some commonalities:
  - They reflect some sort of uncertain information
  - They are *non-monotonic*

- Those reasoning problems share some commonalities:
  - They reflect some sort of uncertain information
  - They are *non-monotonic*
  - They are forms of reverse data transformation
     To reason "diagnostically" about an output (observation)



- Those reasoning problems share some commonalities:
  - They reflect some sort of *uncertain information*
  - They are non-monotonic
  - They are forms of reverse data transformation
     To reason "diagnostically" about an output (observation)



 These problems have been classified under reverse data management (Meliou et al., VLDB 2011)

```
• Assume D = D^n \cup D^x

D^n endogenous tuples (candidate causes)

D^x exogenous tuples
```

- Assume D = D<sup>n</sup> ∪ D<sup>x</sup>
   D<sup>n</sup> endogenous tuples (candidate causes)
   D<sup>x</sup> exogenous tuples
- $\tau \in D^n$  is counterfactual cause for answer  $\bar{a}$  to monotone query  $\mathcal{Q}(\bar{x})$  in D, if  $D \models \mathcal{Q}(\bar{a})$  and  $D \setminus \{\tau\} \not\models \mathcal{Q}(\bar{a})$

- Assume D = D<sup>n</sup> ∪ D<sup>x</sup>
   D<sup>n</sup> endogenous tuples (candidate causes)
   D<sup>x</sup> exogenous tuples
- $\tau \in D^n$  is counterfactual cause for answer  $\bar{a}$  to monotone query  $\mathcal{Q}(\bar{x})$  in D, if  $D \models \mathcal{Q}(\bar{a})$  and  $D \setminus \{\tau\} \not\models \mathcal{Q}(\bar{a})$
- $\tau \in D^n$  is an actual cause for  $\bar{a}$  if there is  $\Gamma \subseteq D^n$ , a contingency set, such that  $\tau$  is a counterfactual cause for  $\bar{a}$  in  $D \setminus \Gamma$

A notion of causality-based explanation for a query result was introduced in (Meliou et al., VLDB 2010)

- Assume D = D<sup>n</sup> ∪ D<sup>x</sup>
   D<sup>n</sup> endogenous tuples (candidate causes)
   D<sup>x</sup> exogenous tuples
- $\tau \in D^n$  is counterfactual cause for answer  $\bar{a}$  to monotone query  $\mathcal{Q}(\bar{x})$  in D, if  $D \models \mathcal{Q}(\bar{a})$  and  $D \setminus \{\tau\} \not\models \mathcal{Q}(\bar{a})$
- $\tau \in D^n$  is an actual cause for  $\bar{a}$  if there is  $\Gamma \subseteq D^n$ , a contingency set, such that  $\tau$  is a counterfactual cause for  $\bar{a}$  in  $D \setminus \Gamma$

Based on Halpern & Pearl's actual causation w/deletion as "intervention" (Halpern & Pearl, 2001, 2005)

### Causal Responsibility

Causal responsibility reflects *relative degree of causality* of a tuple for a query result (Meliou et al., VLDB 2010)

• The responsibility of an actual cause  $\tau$  for  $\bar{a}$ :

$$ho_{\!{\scriptscriptstyle D},{\scriptscriptstyle {\mathcal Q}(ar{ar{m{z}}})}}\!\!\left( au
ight)=rac{1}{|\Gamma|+1}$$

 $|\Gamma|=$  size of smallest contingency set for au

### Causal Responsibility

Causal responsibility reflects *relative degree of causality* of a tuple for a query result (Meliou et al., VLDB 2010)

• The responsibility of an actual cause  $\tau$  for  $\bar{a}$ :

$$ho_{\!{\scriptscriptstyle D},{\scriptscriptstyle {\mathcal Q}(ar{ar{m{z}}})}}\!\!\left( au
ight)=rac{1}{|\Gamma|+1}$$

 $|\Gamma|=$  size of smallest contingency set for au

Tuples with higher responsibility tend to provide more interesting explanations for query results

Based on (Chockler and Halpern, 2004)

#### Example: Database D

| Author | AuName | Journal |
|--------|--------|---------|
|        | Joe    | TKDE    |
|        | John   | TKDE    |
|        | Tom    | TKDE    |
|        | John   | TODS    |

| Journal | Journal | Topic | #Paper |
|---------|---------|-------|--------|
|         | TKDE    | XML   | 30     |
|         | TKDE    | CUBE  | 30     |
|         | TODS    | XML   | 30     |

#### Example: Database D

| Author | AuName | Journal |
|--------|--------|---------|
|        | Joe    | TKDE    |
|        | John   | TKDE    |
|        | Tom    | TKDE    |
|        | John   | TODS    |

| Journal | Journal | Topic | #Paper |
|---------|---------|-------|--------|
|         | TKDE    | XML   | 30     |
|         | TKDE    | CUBE  | 30     |
|         | TODS    | XML   | 30     |

### Conjunctive query Q(x, y):

```
Ans(AuName, Topic) \leftarrow Author(AuName, Journal),

Journal(Journal, Topic, \#Paper),
```

#### Example: Database D

| Author | AuName | Journal |
|--------|--------|---------|
|        | Joe    | TKDE    |
|        | John   | TKDE    |
|        | Tom    | TKDE    |
|        | John   | TODS    |

| Journal | Journal | Topic | #Paper |
|---------|---------|-------|--------|
|         | TKDE    | XML   | 30     |
|         | TKDE    | CUBE  | 30     |
|         | TODS    | XML   | 30     |

#### Conjunctive query Q(x, y):

| Q(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

Example: (cont.)

(John, XML): unexpected answer

What are the causes ?

| Author | AuName                     | Journal                      | Journal | Journal              | Topic              | #Paper         |
|--------|----------------------------|------------------------------|---------|----------------------|--------------------|----------------|
|        | Joe<br>John<br>Tom<br>John | TKDE<br>TKDE<br>TKDE<br>TODS | Journal | TKDE<br>TKDE<br>TODS | XML<br>CUBE<br>XML | 30<br>30<br>30 |

 $Ans_{\mathcal{Q}}(AuName, Topic) \leftarrow Author(AuName, Journal),$  Journal(Journal, Topic, #Paper),

| $\mathcal{Q}(D)$ | AuName | Topic |
|------------------|--------|-------|
|                  | Joe    | XML   |
|                  | Joe    | CUBE  |
|                  | Tom    | XML   |
|                  | Tom    | CUBE  |
|                  | John   | XML   |
|                  | John   | CUBE  |

Example: (cont.)

(John, XML): unexpected answer

What are the causes?

 $\tau = Author(John, TODS)$  is an actual cause, with contingency sets

 $\Gamma_1 = \{ Author(John, TKDE) \}$  and

Journal(Journal, Topic, #Paper),  $\Gamma_2 = \{Journal(TKDE, XML, 30)\}$ 

|         | Joe<br>John<br>Tom<br>John | TKDE<br>TKDE<br>TKDE<br>TODS | Journal | TKDE<br>TKDE<br>TODS | XML<br>CUBE<br>XML | 30<br>30<br>30<br>30 |    |
|---------|----------------------------|------------------------------|---------|----------------------|--------------------|----------------------|----|
| Anc - ( | AuNama                     | Tonic)                       | ,       | Author               | AuNama             | lour                 | I' |

| Q(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

Example: (cont.)

(John, XML): unexpected answer

What are the causes?

 $\tau = Author(John, TODS)$  is an actual cause, with contingency sets

 $\Gamma_1 {=} \{ \text{ } \textit{Author(John, TKDE)} \ \} \ \text{ and } \\$ 

 $\leftarrow$  Author(AuName, Journal), Journal(Journal, Topic, #Paper),  $\Gamma_2 = \{Journal(TKDE, XML, 30)\}$ 

 $\rho(\tau) = \frac{1}{2}$ 

| Author | AuName      | Journal |         |                 | Topic | #Paper       |
|--------|-------------|---------|---------|-----------------|-------|--------------|
|        | Joe         | TKDE    | Journal | Journal<br>TKDE | XML.  | #Paper<br>30 |
|        | John        | TKDE    |         | TKDE            | CUBE  | 30           |
|        | Tom<br>John | TKDE    |         | TODS            | XML   | 30           |

 $Ans_{\mathcal{Q}}(AuName, Topic) \leftarrow Author(AuName, Journal),$  Journal(Journal, Topic, #Paper)

| $\mathcal{Q}(D)$ | AuName | Topic |
|------------------|--------|-------|
|                  | Joe    | XML   |
|                  | Joe    | CUBE  |
|                  | Tom    | XML   |
|                  | Tom    | CUBE  |
|                  | John   | XML   |
|                  | John   | CUBE  |

Example: (cont.)

(John, XML): unexpected answer

What are the causes?

 $\tau = Author(John, TODS)$  is an actual cause, with contingency sets

 $\Gamma_1 = \{ Author(John, TKDE) \}$  and

 $\leftarrow$  Author(AuName, Journal),
Journal(Journal, Topic, #Paper),  $\Gamma_2 = \{Journal(TKDE, XML, 30)\}$ 

| John TKDE Tom TKDE John TODS |   | TKDE    | CUBE  | 30<br>30 |     |
|------------------------------|---|---------|-------|----------|-----|
| Anso(AuName, Topic)          | ← | Author( | AuNam | e. Jour  | nal |

#### Answers:

| $\mathcal{Q}(D)$ | AuName | Topic |
|------------------|--------|-------|
|                  | Joe    | XML   |
|                  | Joe    | CUBE  |
|                  | Tom    | XML   |
|                  | Tom    | CUBE  |
|                  | John   | XML   |
|                  | John   | CUBE  |
|                  | John   | CORF  |

$$\rho(\tau) = \frac{1}{2}$$

Journal(TKDE, XML, 30), Author(John, TKDE), Journal(TODS,XML, 30) are also actual causes with responsibility  $\frac{1}{2}$ 

 Intuitively, an abductive explanation of an observation is a formula that, together with the background logical theory, entails the observation

- Intuitively, an abductive explanation of an observation is a formula that, together with the background logical theory, entails the observation
- The background theory specifies the system being diagnosed

- Intuitively, an abductive explanation of an observation is a formula that, together with the background logical theory, entails the observation
- The background theory specifies the system being diagnosed
- It is possible to specify systems with *Datalog programs*



- Intuitively, an abductive explanation of an observation is a formula that, together with the background logical theory, entails the observation
- The background theory specifies the system being diagnosed
- It is possible to specify systems with Datalog programs
  - An example of (recursive) Datalog program:

```
parent(mary, john)

parent(mary, john)

ancestor(X, Y) \leftarrow parent(X, Y)

ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y)
```

- Intuitively, an abductive explanation of an observation is a formula that, together with the background logical theory, entails the observation
- The background theory specifies the system being diagnosed
- It is possible to specify systems with Datalog programs
  - An example of (recursive) Datalog program:

```
parent(mary, john)

parent(mary, john)

ancestor(X, Y) \leftarrow parent(X, Y)

ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y)
```

 Datalog programs define monotone queries and the notion of cause can be applied as above

• A Datalog abduction problem (DAP) is of the form  $\mathcal{AP} = \langle \Pi, E, Hyp, Obs \rangle$ ,

• A *Datalog abduction problem* (DAP) is of the form

$$\mathcal{AP} = \langle \Pi, E, Hyp, Obs \rangle$$
,

(a) Π: set of Datalog rules

```
\mathcal{AP} = \langle \Pi, E, Hyp, Obs \rangle,
```

- (a) Π: set of Datalog rules
- (b) E: finite set of ground atoms (extensional database)

```
\mathcal{AP} = \langle \Pi, E, Hyp, Obs \rangle,
```

- (a) Π: set of Datalog rules
- (b) E: finite set of ground atoms (extensional database)
- (c) Hyp: finite set of ground atoms, the abducible atoms

```
\mathcal{AP} = \langle \Pi, E, Hyp, Obs \rangle,
```

- (a) Π: set of Datalog rules
- (b) E: finite set of ground atoms (extensional database)
- (c) Hyp: finite set of ground atoms, the abducible atoms
- (d) *Obs*: observation, a finite conjunction of ground atoms with  $\Pi \cup E \cup Hyp \models Obs$

```
\mathcal{AP} = \langle \Pi, E, Hyp, Obs \rangle,
```

- (a) Π: set of Datalog rules
- (b) E: finite set of ground atoms (extensional database)
- (c) Hyp: finite set of ground atoms, the abducible atoms
- (d) *Obs*: observation, a finite conjunction of ground atoms with  $\Pi \cup E \cup Hyp \models Obs$
- The abduction problem is about computing a subset-minimal  $\Delta \subseteq Hyp$ , such that  $\Pi \cup E \cup \Delta \models Obs$

```
\mathcal{AP} = \langle \Pi, E, Hyp, Obs \rangle,
```

- (a) Π: set of Datalog rules
- (b) E: finite set of ground atoms (extensional database)
- (c) Hyp: finite set of ground atoms, the abducible atoms
- (d) *Obs*: observation, a finite conjunction of ground atoms with  $\Pi \cup E \cup Hyp \models Obs$
- The abduction problem is about computing a subset-minimal  $\Delta \subseteq Hyp$ , such that  $\Pi \cup E \cup \Delta \models Obs$
- Relevance Problem: Deciding if  $h \in Hyp$  belongs to some abductive diagnosis NP-complete! (in  $|\mathcal{AP}|$ )

• View: virtual table defined by a query, e.g. a conjunctive query

- View: virtual table defined by a query, e.g. a conjunctive query
- *View-update problem:* update the DB as propagation of changes on views, i.e. from views to base relations

- View: virtual table defined by a query, e.g. a conjunctive query
- View-update problem: update the DB as propagation of changes on views, i.e. from views to base relations
- When view updates are tuple deletions, this is delete-propagation problem

- View: virtual table defined by a query, e.g. a conjunctive query
- *View-update problem:* update the DB as propagation of changes on views, i.e. from views to base relations
- When view updates are tuple deletions, this is delete-propagation problem
  - How to delete tuples from the database, so that an undesired tuple disappears from the view
     Several variants:

- View: virtual table defined by a query, e.g. a conjunctive query
- *View-update problem:* update the DB as propagation of changes on views, i.e. from views to base relations
- When view updates are tuple deletions, this is <u>delete-propagation</u> problem
  - How to delete tuples from the database, so that an undesired tuple disappears from the view
     Several variants:
    - delete subset-minimal set of tuples from source (minimal source side-effect problem)

- View: virtual table defined by a query, e.g. a conjunctive query
- View-update problem: update the DB as propagation of changes on views, i.e. from views to base relations
- When view updates are tuple deletions, this is delete-propagation problem
  - How to delete tuples from the database, so that an undesired tuple disappears from the view
     Several variants:
    - delete subset-minimal set of tuples from source (minimal source side-effect problem)
    - delete minimum number of tuples from source (minimum source side-effect problem)

| Author              | AuName<br>Joe<br>John | Journal<br>TKDE<br>TKDE | Journal | Journal<br>TKDE<br>TKDE | Topic<br>XML<br>CUBE | #Paper<br>30<br>30    |     |
|---------------------|-----------------------|-------------------------|---------|-------------------------|----------------------|-----------------------|-----|
|                     | Tom<br>John           | TODS                    |         | TODS                    | XML                  | 30                    |     |
| Ans <sub>Q</sub> (. | AuName                | , Topic)                |         |                         |                      | ne, Journ<br>pic, #Pa | - " |

# For view V defined by above query:

| V(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

Don't want (John, XML) in the view extension

| Author             | Joe<br>John<br>Tom<br>John | Journal<br>TKDE<br>TKDE<br>TKDE<br>TCDS | Journal | Journal<br>TKDE<br>TKDE<br>TODS | Topic<br>XML<br>CUBE<br>XML | #Paper<br>30<br>30<br>30<br>30 |     |
|--------------------|----------------------------|-----------------------------------------|---------|---------------------------------|-----------------------------|--------------------------------|-----|
| Ans <sub>Q</sub> ( | AuName                     | , Topic)                                |         |                                 |                             | ne, Journ<br>pic, #Pap         | - " |

# For view V defined by above query:

| V(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

Don't want (John, XML) in the view extension

#### Minimal source side-effect solutions:

```
\begin{split} & \rho_1 = \{ \ \textit{Author}(\mathsf{John}, \, \mathsf{TODS}), \ \textit{Journal}(\mathsf{TODS}, \, \mathsf{XML}, 30) \} \\ & \rho_2 = \{ \ \textit{Author}(\mathsf{John}, \, \mathsf{TODS}), \ \textit{Author}(\mathsf{John}, \, \mathsf{TKDE}) \} \\ & \rho_3 = \{ \ \textit{Author}(\mathsf{John}, \, \mathsf{TDK}), \ \textit{Journal}(\mathsf{TODS}, \, \mathsf{XML}, 30) \} \\ & \rho_4 = \{ \ \textit{Journal}(\mathsf{TODS}, \, \mathsf{XML}, 30), \ \textit{Journal}(\mathsf{John}, \, \mathsf{TKDE}, 30) \} \end{split}
```

| Ans <sub>Q</sub> ( | AuName                     | , Topic)                             |         |                                 |                             | ne, Journa<br>pic, #Pa <sub>l</sub> |  |
|--------------------|----------------------------|--------------------------------------|---------|---------------------------------|-----------------------------|-------------------------------------|--|
| Author             | Joe<br>John<br>Tom<br>John | TKDE<br>TKDE<br>TKDE<br>TKDE<br>TODS | Journal | Journal<br>TKDE<br>TKDE<br>TODS | Topic<br>XML<br>CUBE<br>XML | #Paper<br>30<br>30<br>30<br>30      |  |

# For view V defined by above query:

| V(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

Don't want (John, XML) in the view extension

#### Minimal source side-effect solutions:

```
p_1=\{ Author(John, TODS), Journal(TODS, XML,30)}

p_2=\{ Author(John, TODS), Author(John, TKDE)}

p_3=\{ Author(John, TDK), Journal(TODS, XML,30)}

p_4=\{ Journal(TODS, XML,30), Journal(John, TKDE,30)}
```

Also solutions to minimum source sideeffect problem

| Ans <sub>Q</sub> ( | AuName                     | , Topic)                             |         |                                 |                             | ne, Journa<br>pic, #Pa <sub>l</sub> |  |
|--------------------|----------------------------|--------------------------------------|---------|---------------------------------|-----------------------------|-------------------------------------|--|
| Author             | Joe<br>John<br>Tom<br>John | TKDE<br>TKDE<br>TKDE<br>TKDE<br>TODS | Journal | Journal<br>TKDE<br>TKDE<br>TODS | Topic<br>XML<br>CUBE<br>XML | #Paper<br>30<br>30<br>30<br>30      |  |

# For view V defined by above query:

| V(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

Don't want (John, XML) in the view extension

#### Minimal source side-effect solutions:

```
p_1=\{ Author(John, TODS), Journal(TODS, XML,30)}

p_2=\{ Author(John, TODS), Author(John, TKDE)}

p_3=\{ Author(John, TDK), Journal(TODS, XML,30)}

p_4=\{ Journal(TODS, XML,30), Journal(John, TKDE,30)}
```

Also solutions to minimum source sideeffect problem

| Author               | AuName                     | Journal                      | Journal | Journal              | Topic              | #Paper         |      |
|----------------------|----------------------------|------------------------------|---------|----------------------|--------------------|----------------|------|
|                      | Joe<br>John<br>Tom<br>John | TKDE<br>TKDE<br>TKDE<br>TODS |         | TKDE<br>TKDE<br>TODS | XML<br>CUBE<br>XML | 30<br>30<br>30 |      |
| $Ans_{\mathcal{Q}}($ | AuName                     | , Topic)                     |         |                      |                    | ne, Journ      | - "  |
|                      |                            |                              | Journ   | ai (Jouri            | iai, roj           | JIC, #Fa       | per) |

# For view V defined by above query:

| V(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

Don't want (John, XML) in the view extension

#### Minimal source side-effect solutions:

```
p_1=\{ Author(John, TODS), Journal(TODS, XML,30)}

p_2=\{ Author(John, TODS), Author(John, TKDE)}

p_3=\{ Author(John, TDK), Journal(TODS, XML,30)}

p_4=\{ Journal(TODS, XML,30), Journal(John, TKDE,30)}
```

### Also solutions to minimum source sideeffect problem

Notice similarities with causality notions!

• In this work we established precise connections between:

- In this work we established precise connections between:
  - Causality: a recent problem in databases

- In this work we established precise connections between:
  - Causality: a recent problem in databases
  - Datalog abduction
     Abductive diagnosis is an important problem in KR
     Also of interest in databases

- In this work we established precise connections between:
  - Causality: a recent problem in databases
  - Datalog abduction
     Abductive diagnosis is an important problem in KR
     Also of interest in databases
  - Deletion-based view updates (interesting case for monotone views)
     View updates is a classical and important problem in databases

- In this work we established precise connections between:
  - Causality: a recent problem in databases
  - Datalog abduction
     Abductive diagnosis is an important problem in KR
     Also of interest in databases
  - Deletion-based view updates (interesting case for monotone views)
     View updates is a classical and important problem in databases
- Characterizations of each in terms of the others (abduction vs. view-updates has been investigated before)

- In this work we established precise connections between:
  - Causality: a recent problem in databases
  - Datalog abduction
     Abductive diagnosis is an important problem in KR
     Also of interest in databases
  - Deletion-based view updates (interesting case for monotone views)
     View updates is a classical and important problem in databases
- Characterizations of each in terms of the others (abduction vs. view-updates has been investigated before)
- Known complexity results for some of them are applied to the others, by reduction

 Query-answer causality in databases has a close connection with Datalog abduction

Causal and abductive entailments coincide

 Query-answer causality in databases has a close connection with Datalog abduction

Causal and abductive entailments coincide

 Actual causes and their responsibility for a Datalog query can obtained from abductive diagnoses of a corresponding Datalog abduction problem

 Query-answer causality in databases has a close connection with Datalog abduction

Causal and abductive entailments coincide

- Actual causes and their responsibility for a Datalog query can obtained from abductive diagnoses of a corresponding Datalog abduction problem
- Relevant hypothesis for a Datalog abduction problem can be obtained from actual causes for a corresponding causality problem

Example: Instance D (no exogenous tuples) and Boolean query

$$\Pi$$
: ans  $\leftarrow R(x, y), S(y)$ ,

| R | Х          | Υ                     |
|---|------------|-----------------------|
|   | $a_1$      | <b>a</b> 4            |
|   | <b>a</b> 2 | $a_1$                 |
|   | <b>a</b> 3 | <i>a</i> <sub>3</sub> |

| S | Χ                     |
|---|-----------------------|
|   | $a_1$                 |
|   | <b>a</b> <sub>2</sub> |
|   | <i>a</i> <sub>3</sub> |

Example: Instance D (no exogenous tuples) and Boolean query

$$\Pi$$
: ans  $\leftarrow R(x,y), S(y),$ 

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | $a_1$                 | <i>a</i> <sub>4</sub> |
|   | <b>a</b> <sub>2</sub> | <i>a</i> <sub>1</sub> |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

Tuples  $S(a_1)$ ,  $R(a_2, a_1)$ ,  $S(a_3)$  and  $R(a_3, a_3)$  are actual causes for ans, with responsibility  $\frac{1}{2}$ 

Example: (as above) D (no exogenous tuple)  $\Pi$ :  $ans \leftarrow R(x, y), S(y)$ 

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | <i>a</i> <sub>1</sub> | <b>a</b> 4            |
|   | <i>a</i> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

Example: (as above) D (no exogenous tuple)  $\Pi$ :  $ans \leftarrow R(x, y), S(y)$ 

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | <i>a</i> <sub>1</sub> | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

Consider the Datalog abduction problem:  $\mathcal{AP}^c = \langle \Pi, \emptyset, D, \{ans\} \rangle$ 

Example: (as above) D (no exogenous tuple)  $\Pi$ :  $ans \leftarrow R(x, y), S(y)$ 

| R | Х                     | Υ                     |
|---|-----------------------|-----------------------|
|   | $a_1$                 | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

Consider the Datalog abduction problem:  $\mathcal{AP}^c = \langle \Pi, \emptyset, D, \{ans\} \rangle$ 

 $\mathcal{AP}^{c}$  has two (subset-minimal) abductive diagnosis:

Example: (as above) D (no exogenous tuple)  $\Pi$ :  $ans \leftarrow R(x, y), S(y)$ 

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | <i>a</i> <sub>1</sub> | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

Consider the Datalog abduction problem:  $\mathcal{AP}^c = \langle \Pi, \emptyset, D, \{ans\} \rangle$ 

 $\mathcal{AP}^{c}$  has two (subset-minimal) abductive diagnosis:

• 
$$\Delta_1 = \{S(a_1), R(a_2, a_1)\}$$

Example: (as above) D (no exogenous tuple)  $\Pi$ :  $ans \leftarrow R(x, y), S(y)$ 

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | $a_1$                 | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

Consider the Datalog abduction problem:  $\mathcal{AP}^c = \langle \Pi, \emptyset, D, \{ans\} \rangle$ 

 $\mathcal{AP}^{c}$  has two (subset-minimal) abductive diagnosis:

- $\Delta_1 = \{ S(a_1), R(a_2, a_1) \}$
- $\bullet \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}\$

Example: (as above) D (no exogenous tuple)  $\Pi$ :  $ans \leftarrow R(x, y), S(y)$ 

| R | Χ                     | Υ          |
|---|-----------------------|------------|
|   | $a_1$                 | <b>a</b> 4 |
|   | <b>a</b> <sub>2</sub> | $a_1$      |
|   | <b>a</b> 3            | <b>a</b> 3 |

Consider the Datalog abduction problem:  $\mathcal{AP}^c = \langle \Pi, \emptyset, D, \{ans\} \rangle$ 

 $\mathcal{AP}^{c}$  has two (subset-minimal) abductive diagnosis:

- $\Delta_1 = \{ S(a_1), R(a_2, a_1) \}$

 $S(a_3)$ ,  $R(a_3, a_3)$ ,  $S(a_1)$  and  $R(a_2, a_1)$  are relevant hypothesis

Example: (as above) D (no exogenous tuple)  $\Pi$ :  $ans \leftarrow R(x, y), S(y)$ 

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | $a_1$                 | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

Consider the Datalog abduction problem:  $\mathcal{AP}^c = \langle \Pi, \emptyset, D, \{ans\} \rangle$ 

 $\mathcal{AP}^{c}$  has two (subset-minimal) abductive diagnosis:

- $\bullet \ \Delta_1 = \{S(a_1), R(a_2, a_1)\}$
- $\bullet \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}$

 $S(a_3)$ ,  $R(a_3, a_3)$ ,  $S(a_1)$  and  $R(a_2, a_1)$  are relevant hypothesis

And also the actual causes for ans!



Example: (as above)

| R | Х                     | Υ                     |
|---|-----------------------|-----------------------|
|   | $a_1$                 | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

$$\mathcal{AP}^c$$
 as before,  $\Delta_1 = \{S(a_1), R(a_2, a_1)\}, \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}$ 

$$\frac{\mathsf{Example}:}{\mathsf{R}}$$
 (as above)

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | $a_1$                 | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

$$\mathcal{AP}^c$$
 as before,  $\Delta_1 = \{S(a_1), R(a_2, a_1)\}, \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}$ 

To obtain responsibilities, we compute *necessary-hypothesis sets* of  $\mathcal{AP}^c$ 

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | <i>a</i> <sub>1</sub> | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

$$\mathcal{AP}^c$$
 as before,  $\Delta_1 = \{S(a_1), R(a_2, a_1)\}, \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}$ 

To obtain responsibilities, we compute *necessary-hypothesis sets* of  $\mathcal{AP}^c$ 

W/O them in Hyp there is no abductive diagnosis

Example: (as above) \_

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | <i>a</i> <sub>1</sub> | <b>a</b> 4            |
|   | <b>a</b> <sub>2</sub> | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

$$\mathcal{AP}^c$$
 as before,  $\Delta_1 = \{S(a_1), R(a_2, a_1)\}, \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}$ 

To obtain responsibilities, we compute *necessary-hypothesis sets* of  $\mathcal{AP}^c$ 

W/O them in Hyp there is no abductive diagnosis

- $N_1 = \{S(a_1), S(a_3)\}, \quad N_2 = \{S(a_3), R(a_2, a_1)\}$
- $N_3 = \{S(a_1), R(a_3, a_3)\}, N_4 = \{R(a_2, a_1), R(a_3, a_3)\}$

| R | Χ                     | Υ                     |
|---|-----------------------|-----------------------|
|   | <i>a</i> <sub>1</sub> | <i>a</i> <sub>4</sub> |
|   | a <sub>2</sub>        | $a_1$                 |
|   | <i>a</i> <sub>3</sub> | <i>a</i> <sub>3</sub> |

$$\mathcal{AP}^c$$
 as before,  $\Delta_1 = \{S(a_1), R(a_2, a_1)\}, \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}$ 

To obtain responsibilities, we compute *necessary-hypothesis sets* of  $\mathcal{AP}^c$ 

W/O them in Hyp there is no abductive diagnosis

- $N_1 = \{S(a_1), S(a_3)\}, N_2 = \{S(a_3), R(a_2, a_1)\}$
- $N_3 = \{S(a_1), R(a_3, a_3)\}, N_4 = \{R(a_2, a_1), R(a_3, a_3)\}$

It holds: The responsibilities of causal tuples  $\tau$  for ans are  $\frac{1}{|N|}$ , with N a minimum-cardinality necessary-hypothesis set, and  $\tau \in N$ 

Example: (as above)
$$\begin{array}{c|c}
\hline
R & X & Y \\
\hline
a_1 & a_4 \\
a_2 & a_1 \\
a_3 & a_3
\end{array}$$

$$\mathcal{AP}^c$$
 as before,  $\Delta_1 = \{S(a_1), R(a_2, a_1)\}, \ \Delta_2 = \{S(a_3), R(a_3, a_3)\}$ 

To obtain responsibilities, we compute necessary-hypothesis sets of  $\mathcal{AP}^c$ 

W/O them in Hyp there is no abductive diagnosis

- $N_1 = \{S(a_1), S(a_3)\}, N_2 = \{S(a_3), R(a_2, a_1)\}$
- $N_3 = \{S(a_1), R(a_3, a_3)\}, N_4 = \{R(a_2, a_1), R(a_3, a_3)\}$

It holds: The responsibilities of causal tuples  $\tau$  for ans are  $\frac{1}{|N|}$ , with N a minimum-cardinality necessary-hypothesis set, and  $\tau \in N$ 

Again, all causes have responsibility  $\frac{1}{2}$ 

• These connections enable mutual applications



- These connections enable mutual applications
- For example, for Datalog queries, deciding if a tuple is a cause is NP-complete (combined complexity)

- These connections enable mutual applications
- For example, for Datalog queries, deciding if a tuple is a cause is *NP*-complete (combined complexity)
  - Obtained from complexity of relevance problem for Datalog abduction

- These connections enable mutual applications
- For example, for Datalog queries, deciding if a tuple is a cause is *NP*-complete (combined complexity)
  - Obtained from complexity of relevance problem for Datalog abduction
  - Notice that for unions of Boolean conjunctive queries the problem is tractable in data (Salimi & Bertossi, ICDT 2015)

- These connections enable mutual applications
- For example, for Datalog queries, deciding if a tuple is a cause is *NP*-complete (combined complexity)
  - Obtained from complexity of relevance problem for Datalog abduction
  - Notice that for unions of Boolean conjunctive queries the problem is tractable in data (Salimi & Bertossi, ICDT 2015)
- We identify tractable classes of deciding causality for Datalog queries and instances

- These connections enable mutual applications
- For example, for Datalog queries, deciding if a tuple is a cause is *NP*-complete (combined complexity)
  - Obtained from complexity of relevance problem for Datalog abduction
  - Notice that for unions of Boolean conjunctive queries the problem is tractable in data (Salimi & Bertossi, ICDT 2015)
- We identify tractable classes of deciding causality for Datalog queries and instances
  - Obtained from tractable cases of Datalog abduction
     Guarded programs, bounded tree-width instances
     (Gottlob, Pichler & Wei, 2010)

 As suggested above, there is a close relationship between query causality and delete-propagation for view-updates

- As suggested above, there is a close relationship between query causality and delete-propagation for view-updates
- Want to propagate deletion a tuple  $\bar{v}$  from view V to underlying D?

- As suggested above, there is a close relationship between query causality and delete-propagation for view-updates
- Want to propagate deletion a tuple  $\bar{v}$  from view V to underlying D?
- If V defined by monotone query  $\mathcal{Q}(\bar{x})$ , delete from D the actual causes for answer  $\bar{v}$

- As suggested above, there is a close relationship between query causality and delete-propagation for view-updates
- Want to propagate deletion a tuple  $\bar{v}$  from view V to underlying D?
- If V defined by monotone query  $\mathcal{Q}(\bar{x})$ , delete from D the actual causes for answer  $\bar{v}$
- Actual causes with subset-minimal contingency sets give solutions to minimal source side-effect problem (and viceversa)

- As suggested above, there is a close relationship between query causality and delete-propagation for view-updates
- Want to propagate deletion a tuple  $\bar{v}$  from view V to underlying D?
- If V defined by monotone query  $\mathcal{Q}(\bar{x})$ , delete from D the actual causes for answer  $\bar{v}$
- Actual causes with subset-minimal contingency sets give solutions to minimal source side-effect problem (and viceversa)
- Most responsible actual causes with minimum-cardinality contingency sets give solutions to minimum source side-effect problem (and viceversa)

#### Example: Again

| Author | AuName                     | Journal                      | Journal | Journal              | Topic              | #Paper               |
|--------|----------------------------|------------------------------|---------|----------------------|--------------------|----------------------|
|        | Joe<br>John<br>Tom<br>John | TKDE<br>TKDE<br>TKDE<br>TODS | Journal | TKDE<br>TKDE<br>TODS | XML<br>CUBE<br>XML | 30<br>30<br>30<br>30 |

 $Ans_{\mathcal{Q}}(AuName, Topic) \leftarrow Author(AuName, Journal),$  Journal(Journal, Topic, #Paper),

#### View:

| V(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

(John, XML) not wanted in the view

#### Example: Again

| Author | Joe TKDI<br>John TKDI<br>Tom TKDI | Journal              | Journal | Journal              | Topic              | #Paper         |
|--------|-----------------------------------|----------------------|---------|----------------------|--------------------|----------------|
|        |                                   | TKDE<br>TKDE<br>TODS |         | TKDE<br>TKDE<br>TODS | XML<br>CUBE<br>XML | 30<br>30<br>30 |

 $Ans_{\mathcal{Q}}(AuName, Topic) \leftarrow Author(AuName, Journal),$  Journal(Journal, Topic, #Paper).

# Combination for (John, XML) of actual causes/contingency sets

(each element is actual cause and the complement a contingency set)

#### View:

| V(D) | AuName | Topic |
|------|--------|-------|
|      | Joe    | XML   |
|      | Joe    | CUBE  |
|      | Tom    | XML   |
|      | Tom    | CUBE  |
|      | John   | XML   |
|      | John   | CUBE  |

$$\begin{split} p_1 &= \{ \text{ Author}(\text{John, TODS}), \text{ Journal}(\text{TODS}, \text{XML}, 30) \} \\ p_2 &= \{ \text{ Author}(\text{John, TODS}), \text{ Author}(\text{John, TKDE}) \} \\ p_3 &= \{ \text{ Author}(\text{John, TDK}), \text{ Journal}(\text{TODS}, \text{XML}, 30) \} \\ p_4 &= \{ \text{ Journal}(\text{TODS}, \text{XML}, 30), \text{ Journal}(\text{John, TKDE}, 30) \} \end{split}$$

(John, XML) not wanted in the view

We can take advantage of established connections:

#### We can take advantage of established connections:

- Computing the size of a solution to a minimum source side-effect problem is FP<sup>NP(log(n))</sup>-hard in data
  - From complexity of computing most responsible causes in (Salimi and Bertossi ICDT, 2015)
- We identify class of queries for which the minimum source side-effect problem is tractable
  - From the dichotomy result for complexity of responsibility in (Meliou et al., VLDB 2010)

 Causality has been a research subject in AI, Statistics, etc. etc. for many years

- Causality has been a research subject in AI, Statistics, etc. etc. for many years
- Causality in data management (DM) is much newer subject

- Causality has been a research subject in AI, Statistics, etc. etc. for many years
- Causality in data management (DM) is much newer subject
- We have started to scratch the surface (as a DM community)

- Causality has been a research subject in AI, Statistics, etc. etc. for many years
- Causality in data management (DM) is much newer subject
- We have started to scratch the surface (as a DM community)
- Many extensions are possible and necessary, to understand data phenomena in causal terms

- Causality has been a research subject in AI, Statistics, etc. etc. for many years
- Causality in data management (DM) is much newer subject
- We have started to scratch the surface (as a DM community)
- Many extensions are possible and necessary, to understand data phenomena in causal terms
- Interesting results on causality in DM have been obtained

- Causality has been a research subject in AI, Statistics, etc. etc. for many years
- Causality in data management (DM) is much newer subject
- We have started to scratch the surface (as a DM community)
- Many extensions are possible and necessary, to understand data phenomena in causal terms
- Interesting results on causality in DM have been obtained
- Causality in DM is related to many other DM reasoning tasks

- Causality has been a research subject in AI, Statistics, etc. etc. for many years
- Causality in data management (DM) is much newer subject
- We have started to scratch the surface (as a DM community)
- Many extensions are possible and necessary, to understand data phenomena in causal terms
- Interesting results on causality in DM have been obtained
- Causality in DM is related to many other DM reasoning tasks
- Maybe it is -unsurprisingly- an important underlying principle

- Causality has been a research subject in AI, Statistics, etc. etc. for many years
- Causality in data management (DM) is much newer subject
- We have started to scratch the surface (as a DM community)
- Many extensions are possible and necessary, to understand data phenomena in causal terms
- Interesting results on causality in DM have been obtained
- Causality in DM is related to many other DM reasoning tasks
- Maybe it is -unsurprisingly- an important underlying principle
- Or one that can lead us to a unifying concept other tasks may emerge from

