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Abstract

Maier et al. (2010) introduced the relational
causal model (RCM) for representing and in-
ferring causal relationships in relational data.
A lifted representation, called abstract ground
graph (AGG), plays a central role in reasoning
with and learning of RCM. The correctness of
the algorithm proposed by Maier et al. (2013a)
for learning RCM from data relies on the sound-
ness and completeness of AGG for relational d-
separation to reduce the learning of an RCM to
learning of an AGG. We revisit the definition of
AGG and show that AGG, as defined in Maier
et al. (2013b), does not correctly abstract all
ground graphs. We revise the definition of AGG
to ensure that it correctly abstracts all ground
graphs. We further show that AGG representation
is not complete for relational d-separation, that
is, there can exist conditional independence rela-
tions in an RCM that are not entailed by AGG. A
careful examination of the relationship between
the lack of completeness of AGG for relational
d-separation and faithfulness conditions suggests
that weaker notions of completeness, namely ad-
Jacency faithfulness and orientation faithfulness
between an RCM and its AGG, can be used to
learn an RCM from data.

1 INTRODUCTION

Discovery of causal relationships from observational and
experimental data is a central problem with applications
across multiple areas of scientific endeavor. There has been
considerable progress over the past decades on algorithms
for eliciting causal relationships from data under a broad
range of assumptions (Pearl, 2000; Spirtes et al., 2000;
Shimizu et al., 2006). Most algorithms for causal discovery
assume propositional data where instances are independent
and identically distributed. However, in many real world

applications, these assumptions are violated because the
underlying data has a relational structure of the sort that is
modeled in practice by an entity-relationship model (Chen,
1976). There has been considerable work on learning pre-
dictive models from relational data (Getoor and Taskar,
2007). Furthermore, researchers from different disciplines
have studied causal relationships and resulting phenomena
on relational world, e.g., peer effects (Sacerdote, 2000; Og-
burn and VanderWeele, 2014), social contagion (Christakis
and Fowler, 2007; Shalizi and Thomas, 2011), viral mar-
keting (Leskovec et al., 2007), and information diffusion
(Gruhl et al., 2004).

Motivated by the limitations of traditional approaches to
learning causal relationships from relational data, Maier
and his colleagues introduced the relational causal model
(RCM) (Maier et al., 2010) and provided a sound and
complete causal structure learning algorithm, called the re-
lational causal discovery (RCD) algorithm (Maier et al.,
2013a), for inferring causal relationships from relational
data. The key idea behind RCM is that a cause and its ef-
fects are in a direct or indirect relationship that is reflected
in the relational data. Traditional approaches for reason-
ing on and learning of a causal model cannot be trivially
applied for relational causal model (Maier et al., 2013a).
Reasoning on an RCM to infer a relational version of con-
ditional independence (CI) makes use of a lifted representa-
tion, called abstract ground graphs (AGGs), in which tradi-
tional graphical criteria can be used to answer relational CI
queries. The lifted representation is employed as an internal
learning structure in RCD to reflect the inferred CI results
among relational version of variables. RCD makes use of a
new orientation rule designed specifically for RCM.

Motivation and Contributions RCM (Maier et al.,
2010) offer an attractive model for representing, reason-
ing about, and learning causal relationships implicit in re-
lational data. Arbour et al. (2014) proposed a relational
version of propensity score matching method to infer (re-
lational) causal effects from observational data. Mara-
zopoulou et al. (2015) extended RCM to cope with tempo-
ral relational data. They generalized both RCM and RCD to



Temporal RCM and Temporal RCD, respectively. A lifted
representation, called abstract ground graph (AGG), plays
a central role in reasoning with and learning of RCM.
The correctness of the algorithms proposed by Maier et al.
(2013a) for learning RCM and Marazopoulou et al. (2015)
for Temporal RCM, respectively, from observational data
rely on the soundness and completeness of AGG for rela-
tional d-separation to reduce the learning of an RCM to
learning of an AGG. The main contributions of this pa-
per are as follows: (i) We show that AGG, as defined in
Maier et al. (2013b) does not correctly abstract all ground
graphs; (ii) We revise the definition of AGG to ensure that
it correctly abstracts all ground graphs; (iii) We further
show that AGG representation is not complete for rela-
tional d-separation, that is, there can exist conditional in-
dependence relations in an RCM that are not entailed by
AGG; and (iv) Based on a careful examination of the re-
lationship between the lack of completeness of AGG for
relational d-separation and faithfulness conditions suggests
that weaker notions of completeness, namely adjacency
faithfulness and orientation faithfulness between an RCM
and its AGG, can be used to learn an RCM from data.

2 PRELIMINARIES

We follow notational conventions introduced in (Maier
et al, 2013a,c,b; Maier, 2014). An entity-relationship
model (Chen, 1976) abstracts the entities (e.g., employee,
product) and relationships (e.g., develops) between entities
in a domain using a relational schema. The instantiation of
the schema is called a skelefon where entities form a net-
work of relationships (e.g., Quinn-develops-Laptop, Roger-
develops-Laptop). Entities and relationships have attributes
(e.g., salary of employees, success of products). Cardinal-
ity constraints specify the cardinality of relationships that
an entity can participate in (e.g., many employees can de-
velop a product.).! The following definitions are taken from
Maier et al. (2013c¢):

Definition 1. A relational schema S is a tuple
(E,R, A, card): a set of entity classes &; a set of relation-
ship classes R where R; = (E!)7_; and n = |R| is arity
for R;; attribute classes A where A (T) is a set of attribute
classes of I € £ U R; and cardinalities card : R x & —
{one, many}.

Every relationship class R; have two or more distinct en-
tity classes.”> We denote by 7 all item classes £ U R. We
denote by Ix an item class that has an attribute class X
assuming, without loss of generality, that the attributes of
different item classes are disjoint. Participation of an entity
class E; in a relationship class R; is denoted by E; € R;

"The examples are taken from Maier et al. (2013c).

?In general, the same entity class can participate in a relation-
ship class in two or more different roles. For simplicity, we only
consider relationship classes only with distinct entity classes.

[Prod, Dev, Emp] .competence — [Prod] .success
[Emp] .competence — [Emp] .salary

- Ta
! Phd

p——-<  develops
competence

employee product

Figure 1: A toy example of RCM adopted from Maier et al.
(2013c) with two relational dependencies: (i) the success
of a product depends on the competence of employees who
develop it; (ii) employee’s salary is affected by his/her com-
petence.

it3l" gl = B,

Definition 2. A relational skeleton o is an instantiation of
relational schema S, represented by a graph of entities and
relationships. Let o (I) denote a set of items of item class
I €Tino.Letij;, i, € osuchthati; € o(I;), i € o(Ix),
and I;, I € Z, then we denote ¢; ~ i if there exists an
edge between 7; and iy, in 0.

2.1 RELATIONAL CAUSAL MODEL

Relational causal model (RCM, Maier et al., 2010) is a
causal model where causes and their effects are related
given an underlying relational schema. For example, the
success of a product depends on the competence of employ-
ees who develop the product (see Figure 1). An RCM mod-
els relational dependencies; each relational dependency
has a cause and its effect, which are represented by rela-
tional variables; a relational variable is a pair consisting of
a relational path and an attribute.

Definition 3. A relational path P = [I;, ..., ;] is an al-
ternating sequence of entity class £ € £ and relationship
class R € R. An item class I; is called base class or per-
spective and I}, is called a terminal class. A relational path
should satisfy:

1. forevery [E, R] or [R, E], E € R;
2. forevery [E,R,E'], E # E’; and

3. for every [R,E, R'], if R = R/, then card (R, E) =
many.

All valid relational paths on the given schema S are de-
noted by Ps. We denote the length of P by |P|, a subpath
by Pl = [P, or P = [B)I for 1 < i < j < |P],
and the reversed path by P = [Pp|;- -, P, P1]. Note that
all subpaths of a relational path as well as the correspond-
ing reverse paths are valid. A relational variable P.X is
a pair of a relational path P and an attribute class X for
the terminal class of P. A relational variable is said to be
canonical if its relational path has a length equal to 1. A re-
lational dependency is of the form [I;, ..., I;].Y —[[;].X



such that its cause and effect share the same base class and
its effect is canonical.

Given a relational schema S, a relational (causal) model
Me is a pair of a structure M = (S, D), where D is the
set of relational dependencies, and © is a set of parame-
ters. We assume acyclicity of the model so that the attribute
classes can be partially ordered based on D. The parame-
ters © define conditional distributions, p([/].X |Pa([{].X)),
for each pair (I, X) where I € Z, X € A(I), and
Pa([I].X) is a set of causes of [[].X, ie., {P.Y|PY —
[I].X € D}. This paper focuses on the structure of RCM.
Hence we often omit parameters © from M.

Terminal Set and Ground Graph Because a skeleton is
an instantiation of an underlying schema, a ground graph
is an instantiation of the underlying RCM given a skeleton
translating relational dependencies to every entity and re-
lationship in the skeleton. It is obtained by interpreting the
dependencies defined by the RCM on the skeleton using
the terminal sets of each of the instances in the skeleton.

Given a relational skeleton o, the terminal set of a rela-
tional path P given a base b € o(P;), denoted by P, is
the set of terminal items reachable from b when we tra-
verse the skeleton along P. Formally, a terminal set P|; is
defined recursively, P*t|, = {b} and

Py ={iea(P) | Py, i i \Urcpee P b

This implies that P**|, and P|, will be disjoint for 1 <
¢ < |P|. Restricting the traversals so as not to revisit any
previously visited items corresponds to the bridge burn-
ing semantics (hereinafter, BBS) (Maier et al., 2013c).
The instantiation of an RCM M for a skeleton o yields
a ground graph which we denote by GG r¢,. The vertices
of GG aq, are labeled by pairs of items and its attribute,
{i.X|I€Z ico(l), X € A(I)}. There exists an edge
i;.X = ix.Y in GG pqo such that 45 € o(1), i € (1),
Y € A(l), and X € A(I;) if and only if there exists a
dependency P.X — [I;].Y €D such that i), € P|;;.

In essence, RCM models dependencies on relational do-
main as follows: Causal relationships are described from
the perspective of each item class; and are interpreted for
each items to determine its causes in a skeleton yielding a
ground graph. Since an RCM is defined on a given schema,
RCM is interpreted on a skeleton so that every ground
graph is an instantiation of the RCM.

Throughout this paper, unless specified otherwise, we as-
sume a relational schema S, a set of relational dependen-
cies D, and an RCM M = (S, D).

3 REASONING WITH AN RCM

An RCM can be seen as a meta causal model or a tem-
plate whose instantiation, a ground graph, corresponds to a

traditional causal model (e.g., a causal Bayesian network).
Reasoning with causal models relies on conditional inde-
pendence (CI) relations among variables. Graphical crite-
ria such as d-separation (Pearl, 2000) are often exploited
to test CI given a model. Hence, the traditional definitions
and methods for reasoning with causal models need to be
“lifted” to the relational setting in order to be applicable to
relational causal models.

Definition 4 (Relational d-separation (Maier et al.,
2013c)). Let U, V, and W be three disjoint sets of re-
lational variables with the same perspective B € 7 defined
over relational schema S. Then, for relational model struc-
ture M, U and V are d-separated by W if and only if, for
all skeletons o € Xs, U, and V|, are d-separated by W |,
in ground graph GGy, forall b € o (B).

There are two things implicit in this definition: (i) all-
ground-graphs semantics which implies that d-separation
must be hold over all instantiations of the model; (ii) the
terminal set items of two different relational variables may
overlap (which we refer to as intersectability). In other
words, two relational variables U = P.X and V = P'. X
of the same perspective B and the same attribute, are said
to be intersectable if and only if:

EI1762531760(3)13“ n Pl|b 7é 0. (1)

In order to allow testing of conditional independence on all
ground graphs, Maier et al. (2013a) introduced an abstract
ground graph (AGG), which abstracts all ground graphs
and is able to cope with the intersectability of relational
variables. We first recapitulate the original definition of
AGGs.

3.1 ORIGINAL ABSTRACT GROUND GRAPHS

An abstract ground graph AGG rp is defined for a given
relational model M and a perspective B € Z (Maier et al.,
2013a), Since we fix the model, we omit the subscript M
and denote the abstract ground graph for perspective B by
AGGp. The resulting graph consists of two types of ver-
tices: RV g and I'V p; and two types of edges: RVE g and
IVEg.

We denote by RV p the set of all relational variables (RV)
whose paths originate in B. We denote by RVEg the
set of all edges between the relational variables in RV p.
A relational variable edge (RVE) implies direct influence
arising from one or more dependencies in D. There is an
RVE P.X — Q.Y if there exists a dependency R.X —
[Iy].Y € D that can be interpreted as a direct influence
from P.X to Q.Y from perspective B. Such an interpreta-
tion is implemented by an extend function, which takes two
relational paths and produces a set of relational paths: If
P € extend(Q, R), then there exists an RVE P.X — Q.Y
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Figure 2: A schematic example of how extend is com-
puted showing two relational paths in P x () where
card(Ry, E3) = many. If card(Ry, E3) is one, then P X
Q@ is not valid due to rule 3 of relational path. A path
P x5 @ is invalid due to the violation of rule 2, i.e.,
[...,E2, Ry, Ea,...].

where

extend(Q, R) = {Q"!91=" + R¥|i € pivots(Q, R)}NPs,

2)
pivots(S, T') = {i|S** = T*}, and ‘+ is a concatena-
tion operator. We will use a binary join operator “x’ for
extend and denote QV19I=% + R* by Q m; R for a pivot i.
A schematic overview of extend is shown in Figure 2.

We denote by I'V g the set of intersection variables (IVs),
i.e., unordered pairs of intersectable relational variables in
RV 5. Given two RVs P.X and P’.X that are intersectable
with each other, we denote the resulting intersection vari-
able by P.X N P'.X (Here, the intersection symbol ‘1’
denotes intersectability of the two relational variables). By
the definition (Maier et al., 2013c), if there exists an RVE
P.X — Q.Y, then there exist edges PXNP'.X — Q.Y
and P.X — Q.YNQ'.Y for every P’ and Q' intersectable
with P and @), respectively. The IVs and the edges that
connect them with RVs (IVEs) correspond to indirect in-
fluences (arising from intersectability) as opposed to direct
influence due to dependencies (which are covered by RVs
and RVEs). We denote by IVE g the set of all such edges
that connect RVs with IVs.

Two AGGs with different perspectives share no vertices
nor edges. Hence, we view all AGGs, {AGGg}pcr, as
a collection or a single multi-component graph AGG =
UBEZ AGGp. We similarly define RV, IV, RVE, and
IVE as the unions of their perspective-based counterparts.

For any mutually disjoint sets of relational variables U, V,
and W, one can test U L V | W, conditional inde-
pendence admitted by the underlying probability distribu-
tion, by checking U 1L V | W (traditional) d-separation
on an AGG?, where V includes V and their related IVs,
V=VU{VNT €IV | V € V}. Figure 3 illustrates rela-
tional d-separation on an AGG.

We later show that the preceding definition of AGG does

3We denote conditional independence by ‘L’ in general. We
use ‘I’ to represent (traditional) d-separation on a directed
acyclic graph., e.g., AGG r or GG a0 Furthermore, we paren-
thesize conditional independence and use a subscript to specify
the scope of the conditional independence, if necessary.

U
qup, Dev, Prod, Fund, Biz, Fund, Prod].succ)

% w \
([Emp]comp qup, Dev, Prod].succ)—QEmp, Dev, Prod, Fund, Biz].rev]

Y /
X Emp, Dev,Prod, Dev,Emp,Dev, Prod] .succ
Emp, Dev, Prod, Dev, Emp]comp)—) n
\ [Emp,Dev,Prod, Fund,Biz, Fund, Prod] .succ

zZ
QEmpA, Dev, Prod, Dev, Emp, Dev, Prod]Asucc)

Figure 3: An AGG example excerpted from Maier (2014)
with business unit (Biz) which funds (Fund) its products
from its revenue (rev). The revenue of business units that
fund the products developed by an employee (W) is af-
fected by the employee’s co-workers’ competence (X), i.e.,
W J X. Two are conditionally independent by block-
ing both V and Y. Since IV Y is in U and Z, both
W AL X|{V,U} and W 1 X|{V,Z} hold, which are
equivalent to (W LX|{V,U})  and (W LX|{V, Z}) \,
respectively.

not properly abstract all ground graphs; nor does it guar-
antee the correctness of reasoning about relational d-
separation in an RCM. We revise the definition of AGG
(Section 3.2) so as to ensure that the resulting AGG ab-
stracts all ground graphs. However, we find that even with
the revised definition of AGG, the AGG representation is
not complete for relational d-separation, that is, there can
exist conditional independence relations in an RCM that
are not entailed by AGG (Section 4.1). A careful exami-
nation of the lack of completeness of AGG for relational
d-separation with respect to causal faithfulness yields use-
ful insights that allow us to make use of weaker notions of
faithfulness to learn RCM from data (Section 4.2).

3.2 ABSTRACT GROUND GRAPHS - A REVISED
DEFINITION

Because of the importance of IV and IVE in AGG in
reasoning about relational d-separation, it is possible that
errors in abstracting all ground graphs could lead to errors
in Cl relations inferred from an AGG. We proceed to show
that 1) the criteria for determining intersectability (Maier,
2014) are not sufficient, and 2) the definition of IVE, as
it stands, does not guarantee the soundness of AGG as an
abstract representation of the all ground graphs of an RCM.
We provide the necessary and sufficient criteria for deter-
mining IVs and a sound definition for IVEs.

3.2.1 Intersectability and IV

The declarative characterization of intersectability (Eq. 1)
does not offer practical procedural criteria to determine in-
tersectability. Based on the criteria (Maier, 2014), two dif-
ferent relational paths P and () are intersectable if and only
if 1) they share the same perspective, say B € Z, and 2)
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Figure 4: Comparison of 1) the necessary condition of the
existence of an RVE P — () through R, the cause path of a
dependency (attributes are omitted), 2) intersectability be-
tween P and P’, and 3) co-intersectability of (@, R, P, P’).

they share the common terminal class, and 3) one path is
not a prefix of the other. We will prove that the preceding
criteria are not sufficient. In essence, we will show the con-
ditions under which non-emptiness of P|, N Q| for any
b € o(B) in any skeleton o always contradicts the BBS.
For the proof, we define LLRSP(P, Q)) (the length of the
longest required shared path) for two relational paths P
and @ of the common perspective as

max{¢ | P = Q", Vo Voeo(m) | P o] = 1}.

LLRSP(P, @) is computed as follows. Initially set £ = 1
since P} = (1. Repeat incrementing £ by 1if Ppy1 = Q11
and either P, € R or P; € & with card(P, Pp41) = one.

Lemma 1. Given a relational schema S, let P and Q
be two different relational paths satisfying the (necessary)
criteria of Maier (2014) and |Q| < |P|. Let m and n
be LLRSP(P, Q) and LLRSP(P, Q), respectively. Then, P
and Q) are intersectable if and only if m +n < |Q)|.

Proof. See Appendix. O

The lemma demonstrates the criteria by Maier (2014) do
not rule out the case of m+n > |Q| where P and () cannot
be intersectable.

3.2.2 Co-intersectability and IVE

Based on the definition (Maier, 2014), an IVE exists be-
tween an IV, UNV, and an RV, W, if and only if there
exists an RVE between U and W or V and W. It would
indeed be appealing to define IV, UNV/, such that it inherits
properties of the corresponding RVs, U and V. However,
the abstract ground graph resulting from such a definition
turns out to be not a sound representation of the underlying
ground graphs. We proceed to prove this result.

Definition 5 (Co-intersectability). Given a relational
schema S, let @, R, P, and P’ be valid relational paths
of the same perspective B where P € Q x R and P and P’
are intersectable. Then, a tuple (@, R, P, P’} is said to be
co-intersectable if and only if

Joess Ieo(B)Tiseql, Bliy NPl NPy # 0. (3)
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Figure 5: A schematic illustration of Example 1 superim-
posing a skeleton and relational paths. The items for P’
starting with b should follow a dashed red line, and, hence,
P’ cannot be related to a ground graph edge between i) and
i, i.e., an RVE between P and () (attributes and connec-
tions between entities and relationships are omitted).

We relate co-intersectability with the definition of IVE. Let
an RVE P.X — Q.Y is due to some dependencies R.X —
[Iy].Y € D where P € @ x R. This implies

Joess Ivea(B)3iseql, Bli; N Ply # 0, 4

and there are edges from X of R|;; NP, to Y of Q| in
GG, In order for the intersectability of P’ with P trans-
lates into an influence between P and (), it is necessary that
there exists a skeleton that admits such influence. However,
we can construct a counterexample that satisfies the neces-
sary conditions for the existence of an RVE and the con-
ditions for intersectability but does not satisfy the condi-
tions for co-intersectability (see Figure 4 for a comparison
of Eq. 4, 1, and 3).

Example 1. Let S be a relational schema where E
{I;, I, B, B, Es, Es}, R = {R;}_, such that R,
(B,FE1), Ry, = (Fy,E5), R3 = (Ey,E2), Ry =
(Es, E3,It), Rs = (Ij,I;) with the cardinality of each
relationship and each entity in the relationship being one.
Let

e Q= [B,R1,E1, Ry, E3, Ra, Iy, Rs, 1],

e R=[I;,Rs, 1, Ra, E3, Ry, E1, R3, Eo, Ry, I;],
e P =[B,Ry,E, R3, E2, Ry, It], and

e P’ =[B,Ry, E1, Ry, E5, Ry, It).

Observe that

1. P € extend (Q, R);
2. P’ and P are intersectable; and
3. P’ is asubpath of Q.

This example satisfies Eq. 1 and Eq. 4. Assume for contra-
diction that there exists a skeleton ¢ satisfying Eq. 3. Since,
in this example, the cardinality of each relationship and
each entity in the relationship is one, for each b € o (B),
there exists only one i; € (|, and only one i, € P|;. By
the assumption, P’|, = {ix}. Since P’ is a subpath of Q,
P’|, will end at i), = R*3|;, (see Figure 5). Due to BBS,
R|;;NR'Y3|; = 0, thatis, {i }N{i},} = 0. This contradicts
the assumption that 75, = i},



This counterexample clearly represents there is an inter-
dependency between intersection variables and RVEs.
Therefore, we revise the definition of IVE accompanying
co-intersectability.

Definition 6 (IVE). There exists an IVE edge, P.X N
P .X—Q.Y (or PX—Q.YNQ'Y), if and only if there
exists a relational path R such that R.X — [Iy].Y € D,
P € QxR,and (Q,R,P,P") (or (P,R,Q,Q")) is co-
intersectable.

To determine IVEs, co-intersectability of a tuple can be
computed by solving a constraint satisfaction problem in-
volving four paths in the tuple.

Implications of Co-intersectability We investigated the
necessary and sufficient criteria for intersectability and re-
vised the definition of IVE so as to guarantee that AGG
correctly abstracts all ground graphs as asserted (although
incorrectly) by Theorem 4.5.2 (Maier, 2014) . The new
criterion, called co-intersectability, is especially interest-
ing since it describes the interdependency between inter-
section variables and related relational variable edges. Sev-
eral of the key results (e.g., soundness and completeness of
AGG for relational d-separation, Theorem 4.5.2) and con-
cepts (e.g., (B,h)-reachability) of Maier (2014) are based
on independence between intersection variables and related
relational variable edges. Hence, it is useful to carefully
scrutinize the relationship between AGG and relational d-
separation.

4 NON-COMPLETENESS OF AGG FOR
RELATIONAL D-SEPARATION

We first revisit the definition of relational d-separation.
Given three disjoint sets of relational variables U, V, and
W of a common perspective B € Z, U and V are rela-
tional d-separated given W, denoted by (U LV | W), ,
if and only if

vaeEsvbeU(B) (U|b 4L V|b ‘ Wlb)GGMU .

From Theorem 4.5.4 of (Maier, 2014), the lifted repre-
sentation AGG 4 is said to be sound (or complete) for
relational d-separation of M if (traditional) d-separation
holds on the AGG x4 with a modified CI query only when
(or whenever) relational d-separation holds true. Then, the
completeness of AGG for relational d-separation can be
represented as

(ULV|W),, = (UJLV\W)AGGM.
The completeness can be proved by the construction
of a skeleton ¢ € Xs demonstrating d-connection
(Ul £ Vo | Wlb)gq,,, for some b € o(B) if (U L
V | W)aGG,,- In other words, we might disprove the

Figure 6: Co-intersectability of (@), D, S, S’) where i, €
Qly, i. € Daoli,, i. € S|y, and i, € S’|,. The thick line
highlights items for S’ from b to 4,. The red dashed line
represents the instantiation of an RVE 5.7 — Q.Y as
1,.Z — 1,.Y in a ground graph (attributes are omitted).

completeness by showing

(ULV | W)agau A
vaeElsvbea(B) (U‘blv|b ‘ W‘b)GGMU :

4.1 A COUNTEREXAMPLE

The following counterexample shows that AGG is not com-
plete for relational d-separation.

Example. Let S = (£, R, A,card) be a relational
schema such that: £ = {E;})_; R = {Rj}jzl with
Ry = (E1\,Es Es), Ry = (E E3), and Ry =
<E3,E4,E5>; .A = {EQ . {Y}7 E3 : {X}, E5 : {Z}},
and VrerVEcrcard (R, E) = one. Let M = (S,D) be
a relational model with

D ={D:.X = [Iy].Y, Dy.Z — [Iy].Y}

such that D; = [Eg, Ry, Fs3, R3, By, Ry, Es, R, E3] and
Dg = [EQ, RQ, E37 Rg, E5] Let PX, QY, SZ, and S/Z
be four relational variables of the same perspective B = E
where their relational paths are distinct where

e P=[E, Ry, Ey, Ry, B3],

e Q =[E1,Ry,Ey4,R3, Es, Ry, E5],
e S =[F1, Ry, Ey, R3, Es), and

e S'=[E1, Ry, Es, Ro, E5, R, E5].

Given the above example, we can make two claims.
Claim 1. (P.X yRCINVA Q.Y)

AGG A

Proof. See Appendix. O

Assuming that AGG is complete for relational d-
separation, we can infer (P.X £ S’.Z | Q.Y) ,, and there
must exist a pair of a skeleton o and a base b € o (B)
that satisfies (P.X|, L S".Z]y | Q.Y|o)gq,,,- However,
we claim that such a skeleton and base may not exist.



Figure 7: A subgraph of ground graphs to represent i,, —
1y < 1. Only this substructure satisfies BBS assumption
and cardinality constraints.

Claim 2. Thereisno o € X5 and b € o (B) such that
(PX|p LS ZIp | QY ) gy, -
Proof. See Appendix. O

The counterexample demonstrates that a d-connection path
captured in an AGG , might not have a corresponding
d-connection path in any ground graph.

Corollary 1. The revised (as well as the original) abstract
ground graph for an RCM is not complete for relational
d-separation.

It is possible that an additional test can be utilized to check
whether there exists such a ground graph that can repre-
sent a d-connection path captured in AGG . However,
the efficiency of such an additional test is unknown and de-
signing such a test is beyond the scope of this paper.

4.2 RELATING NON-COMPLETENESS WITH
FAITHFULNESS

In light of the preceding result that AGG is not complete
for relational d-separation, we proceed to examine the re-
lationship between an RCM and its lifted representation in
terms of the sets of conditional independence relationships
that they admit. In RCM, there are several levels of rela-
tionship regarding the sets of conditional independence:
between the underlying probability distributions and the
ground graphs, between the ground graphs of an RCM and
the RCM, and between the RCM and its AGG:

{p <~ GGM@J}UGZS <~ M@ L d AGGM

In RCM, the causal Markov condition and causal faith-
fulness condition (see below) can be applied between a
ground graph GG p4, and its underlying probability distri-
bution p. Both conditions are assumed for learning an RCM
from relational data. Relational d-separation requires a set
of conditional independence of Mg using those deduced
from every ground graph GG uq, . for every o € Xs. In
light of the lack of completeness of AGG for relational
d-separation, the set of conditional independence relations

admitted by Mg and its lifted representation AGG o are
not necessarily equivalent (see Corollary 1).

We will relate M and AGG u4 using an analogy of causal
Markov condition and faithfulness (Spirtes et al., 2000;
Ramsey and Spirtes, 2006) interpreting AGG o and M
as a DAG G and a distribution p, respectively. We first re-
capitulate the definitions for causal Markov condition and
faithfulness.

Definition 7 (Causal Markov Condition (Ramsey and
Spirtes, 2006)). Given a set of variables whose causal
structure can be represented by a DAG G, every vari-
able is probabilistically independent of its non-effects (non-
descendants in G) conditional on its direct causes (parents
in G).

The causal Markov condition (i.e., local Markov condi-
tion) is not directly translated into the relationship be-
tween AGG ¢ and M since they refer to different vari-
ables. However, the soundness of AGG 4 for relational
d-separation of M (i.e., global Markov condition) would
be sufficient to interpret causal Markov condition between
AGG and M. That is,

Vuvwerv (U LV | W) = (U LV |W),,

AGG

where U, V, and W are distinct relational variables sharing
a common perspective.

Definition 8 (Causal Faithfulness Condition (Ramsey and
Spirtes, 2006)). Given a set of variables whose causal
structure can be represented by a DAG, no conditional inde-
pendence holds unless entailed by the causal Markov con-
dition.

By the counterexample above, M is not strictly faithful to
A GG 4, because more conditional independences hold in
M than those entailed by AGG 4.

4.2.1 Weaker Faithfulness Conditions

Ramsey and Spirtes (2006) showed that the two
weaker types of faithfulness — adjacency-faithfulness
and orientation-faithfulness — are sufficient to retrieve a
maximally-oriented causal structure from a data under the
causal Markov condition. What we have showed is that
there are more conditional independence hold in M than
those entailed by its corresponding AG G . However, the
two weaker faithfulness conditions hold true (if they are
appropriately interpreted in an RCM and its lifted repre-
sentation).

Adjacency-Faithfulness

Definition 9 (Adjacency-Faithfulness (Ramsey and Spirtes,
2006)). Given a set of variables V whose causal structure
can be represented by a DAG G, if two variables X, Y are
adjacent in G, then they are dependent conditional on any
subsetof V\ {X,Y}.



Let U, V be two distinct relational variables of the same
perspective B. We limit U and V' to be non-intersectable
to each other. Otherwise, they must not be adjacent to each
other by the definition of RCM since an edge between inter-
sectable relational variables yields a feedback in a ground
graph. If there isan edge U — V in AGG 4,

Vwervp\ovy (U LV W)y,

We can construct a skeleton o € X s where its correspond-
ing ground graph GG p4, satisfies that U|, and V|, are sin-
gletons and U, U V|, are disjoint to (RVg \ {U,V}) |,
for b € o(B). Lemma 4.4.1 by Maier (2014) describes
a method to construct a minimal skeleton to represent U
and V with a single b € o (B). It guarantees that U],
and V|, are singletons and every relational variable W €
RVB\{U, V} satisfies W|me|b = ()and W|bﬂV|b = 0.

Orientation-Faithfulness

Definition 10 (Orientation-Faithfulness (Ramsey and
Spirtes, 2006)). Given a set of variables V whose causal
structure can be represented by a DAG G, let (X, Y, Z) be
any unshielded triple in G.

O1) if X — Y « Z, then X and Z are dependent given
any subset of V '\ {X, Z} that contains Y’;

(02) otherwise, X and Z are dependent conditional on any
subset of V \ {X, Z} that does not contain Y.

Let U, V, and W be three distinct relational variables of
the same perspective B forming an unshielded triple in
AGG ). Similarly, V' is not intersectable to both U and
W . The condition (O1) can be written as

Vrcrv\(uwy (U LW | TU{V})m

if edges are oriented as U — V <« W in AGG 4. Other-
wise,

Vrocrve\(u,w} (U LW [ T\{V})m

for the condition (02). Again, constructing a minimal
skeleton for U, V, and W guarantees thatno 7' € RV g \
{U,V,W} can represent any item in {Ul|y, V|p, W|s}.
Thus, the existence of V' in the conditional determines
(in)dependence in the ground graph induced from the min-
imal skeleton.

Learning RCM with Non-complete AGG RCD (Rela-
tional Causal Discovery, Maier et al. (2013a)) is an algo-
rithm for learning the structure of an RCM from relational
data. In learning RCM, AGG plays a key role: AGG is con-
structed using CI tests to obtain the relational dependencies
of an RCM. The lack of completeness of AGG for rela-
tional d-separation in RCM raises questions about the cor-
rectness of RCD. However, a careful examination of AGG

through the lens of faithfulness suggests that adjacency-
faithful and orientation-faithful conditions can be applied
to AGG , to recover a correct structure for an RCM. This
raises the possibility of an algorithm for learning the struc-
ture of an RCM from relational data that does not require
the intermediate step of constructing a lifted representation.

S CONCLUDING REMARKS

There is a growing interest in relational causal models
(Maier et al., 2010, 2013a,c; Maier, 2014; Arbour et al.,
2014; Marazopoulou et al., 2015). A lifted representation,
called abstract ground graph (AGG), plays a central role
in reasoning with and learning of RCM. The correctness of
the algorithm proposed by Maier et al. (2013a) for learning
RCM from data relies on the soundness and completeness
of AGG for relational d-separation to reduce the learning
of an RCM to learning of an AGG. We showed that AGG,
as defined in (Maier et al., 2013a), does not correctly ab-
stract all ground graphs. We revised the definition of AGG
to ensure that it correctly abstracts all ground graphs. We
further showed that AGG representation is not complete for
relational d-separation, that is, there can exist conditional
independence relations in an RCM that are not entailed by
AGG. Our examination of the relationship between the lack
of completeness of AGG for relational d-separation and
faithfulness suggests that weaker notions of completeness,
namely adjacency faithfulness and orientation faithfulness
between an RCM and its AGG can be used to learn an
RCM from data. Work in progress is aimed at: 1) identify-
ing the necessary and sufficient criteria for guaranteeing the
completeness of AGG for relational d-separation; 2) estab-
lishing whether the RCD algorithm outputs a maximally-
oriented RCM even when the completeness of AGG for re-
lational d-separation does not hold; and 3) devising a struc-
ture learning algorithm that does not rely on a lifted repre-
sentation.

APPENDIX

We first prove Lemma 1 in Section 3.2.1.

Lemma. Given a relational schema S, let P and () be
two different relational paths satisfying the (necessary) cri-
teria of Maier (2014) and |Q| < |P|. Let m and n be
LLRSP(P, Q) and LLRSP(P,Q), respectively. Then, P
and @ are intersectable if and only if m + n < |Q)|.

Proof. (If part) If m + n < |Q|, then we can construct a
skeleton o such that P|, N Ql, # 0 for some b € o(P;)
by adding unique items for @ and for P™+1:IPI=" and
complete the skeleton in the same manner as shown in
Lemma 3.4.1 (Maier, 2014). Note that if m + n = |Q)|,
then |P| > |Q| + 2 since P # () and a relational path is an
alternating sequence. This guarantees that there are at least
two items for P 1IPl=n,



(Only if part) Let ¢ be in P|,N Q)| for some arbitrary skele-
ton o € Xg and b € o(Py). Then, there should be two lists
of items corresponding to P and ) sharing the first m and
the last n. The condition m + n > |Q| implies Q| is a
singleton set. We define

p=(p1...

y Pms P|P|—n+15- - 7p|P\>

and
q= <C]1»,(I|Q|>»

where {¢;} = Q| and {p;} = P*|, for 1 < ¢ < m,
and pp|_41 € P¥|. for 1 < 1 < n. We can see that
p1 = q = band p|p| = q)o| = c. Moreover,

Pm = gm = 91Q|—(IQ|-m) = P|P|—(|Q|-m)

by the definition of LLRSP. If |Q| < |P], then m # |P| —
|Q| + m and mth item for P is repeated at |P| — (|Q] —
m)th, which violates the BBS. Otherwise, it is not the case,
since |P| = |Q] implies p = q and, hence, P = @ by the
definition of LLRSP, which contradicts the assumption that
P and @ are different relational paths. O

We provide proofs for two claims regarding the counterex-
ample in Section 4.1.

Claim. (P.X L S'.Z | Q'Y)AGGM'
Proof. By the definition of RVE, there are RVEs P.X —
Q.Y and Q.Y < S.Z in AGGp, since P = @ Xg
Dy and S € @ x4 Ds. Moreover, there is an IVE
QY « SZnS.Z in AGGy, since 1) S and S’
are intersectable, 2) there is an RVE Q.Y + S.Z,
and 3) (Q, D, S, S’) is co-intersectable (see Figure 6).*
Since PX — QY «+ SZn&8.Z and S.Z N
S§'.Z € S'.Z, we derive (PX L S.Z|Q.Y)
which implies (ﬁ VIV Q.Y) AGG o,
conditioning on Q.Y, compared to Q.Y does not block
any possible d-connection paths between P.X to S'.Z

since there are only incoming edges to (.Y. Finally,

(PX LT Z|QY) pqq,, holds. O

AGG .\’
. Furthermore,

Claim. Thereisno o € ¥s and b € o (B) such that
(PX|p S Zlp | QY ) gy, -

Proof. Suppose that there exist such a skeleton o and base
b € o(B) satisfying (P.X|p L 5" Z]y | Q.Y |o)gq,,, -
Every terminal set for P, @, and S’ given the base must
not be empty because of the definition of d-separation and
the fact that attribute classes X and Z are connected only
through Y (i.e., Y is a collider). Since every cardinality is
one, terminal sets must be singletons. Let {i,} = P.X|;,
{iy} = Q.Y|p, and {i.} = S".Y|;. Furthermore, since i,

“Note that the original definition of AGG r( does not check
co-intersectability and Q.Y <+ S.Z N S'.Z is granted.

and ¢, must be d-connected given ¢,, GG A, must have
two edges i, — i, < i, which requires i, € Di;,
and i, € Ds|;,. However, due to BBS and cardinality con-
straints (i.e., one), there exists only one possible structure
(see Figure 7) where 7, and i, are the cause of i, while sat-
isfying all previously mentioned conditions except {i,} =
S’.Y |p. In other words, the constraint {i,} = S".Y|, vi-
olates with the set of the rest of conditions. Hence, there
exists no such skeleton and base. O
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