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Abstract

The dynamics of events occurring in continu-
ous time can be modelled using marked point
processes, or multi-state processes. Here, we
review and extend the work of Røysland et
al. (2015) on causal reasoning with local inde-
pendence graphs for marked point processes
in the context of survival analysis. We relate
the results to the decision-theoretic approach
of Dawid & Didelez (2010) using influence
diagrams, and present additional identifying
conditions.

1 INTRODUCTION

Dynamic dependence structures among the occurrence
of different types of events in continuous time can
be represented by local independence graphs as de-
veloped by Didelez (2006, 2007, 2008). In related
work, Røysland (2011, 2012) showed how causal in-
ference based on inverse probability weighting (IPW),
well known for longitudinal data (Robins et al., 2000),
can be extended to the continuous-time situation us-
ing a martingale approach. Røysland et al. (2015)
combine these and give graphical rules for the iden-
tifiability of the effect of interventions, which in the
context of events in time take the form of changes to
the intensities of specific processes, e.g. a treatment
process.

As we discuss here, the approach of Røysland et al.
(2015) can be seen as the time-continuous version of
Dawid & Didelez (2010), who develop a decision the-
oretic approach for sequential decisions in longitudi-
nal settings and use a graphical representation with
influence diagrams that include decision nodes. This
provides an explicit representation of the target of in-
ference as well as allowing us to to use simple graphical
rules to check identifiability.

2 LOCAL INDEPENDENCE

GRAPHS

The notion of dynamic dependence on which we focus
here can be stated as follows. For stochastic processes
X(t), Y (t), Z(t) we say informally that X(t) is locally
independent of Y (t) given Z(t) if the present of X(t)
is independent of the past of Y (t) given the past of
both X(t), Z(t). Slightly more formally we can write
this as

X(t)⊥⊥FY
t− | FX,Z

t−

where Fk
t are filtrations generated by Xk(t), i.e. the

sets of information becoming available over time. Note
that this is an asymmetric type of independence as
discussed in detail in Didelez (2006).

Marked Point Processes

More formally we consider a marked point process
(MPP) to describe the occurrence of different types
of events E ; this can be represented by a set of count-
ing processes {Nj(t)} for each type of event j ∈ E . It
may often be too detailed to model the dependence
structure between all possible types of events; e.g. the
event ‘stop treatment’ can necessarily only happen
after the event ‘start treatment’ and the two events
are therefore trivially dependent. Instead of a MPP
one can therefore group certain events together to ob-
tain a multi-state process with several components
YV (t) = Y(t) = (Y1(t), . . . , YK(t)), V = 1, . . . ,K,
where e.g. Yk(t) describes the treatment process with
states ‘on / off treatment’. Note that the components
Yk(t) need to be such that none of them systematically
change state at the same time, i.e. Y(t) is composable

(see Didelez, 2007). Further each Yk(t) can be de-
scribed by a set of counting processes, one for each
change of state, so that the whole Y(t) is itself an
MPP. In the following we will not clearly distinguish
between a component Yk(t) of a composable multi-
state process, or a counting process Nj(t) for an indi-
vidual event.



Under mild regularity conditions, the Doob–Meyer
Theorem tells us that each counting process can be
decomposed:

Yk(t) = Λk(t)
︸ ︷︷ ︸

predictable

+ Mk(t)
︸ ︷︷ ︸

martingale

,

where Λk(t) is predictable based on the history FV
t−

of whole YV and Mk(t) is an FV
t –martingale. We

will assume that the FV
t –intensity processes λk(t) exist

and have the following interpretation:

Λk(t) =

∫ t

0

λk(s)ds, λk(t)dt = E(Nk(dt) | F
V
t−).

Local Independence

From the above we see that λk(t) fully describes the de-
pendence of a process’ infinitesimal short-term expec-
tation on the past. Any independencies must therefore
be reflected in the structure of the intensity; if we find,
for instance, that λk(t) remains unchanged regardless
of whether an event of type j 6= k has occurred in the
past, then we say there is a local independence.

Indeed, the formal definition is that Yk is locally in-

dependent of Yj given YV \{j,k} if λk(t) is F
V \{j}
t –

measurable, i.e. the intensity process remains the same
when information on the past of Yj is omitted. We

write this as Yj →/ Yk | YV \{j,k}. Note that F
V \{j}
t

always contains the past of the component Yk itself.
Meek’s (2014) approach allows for cases where λk(t) is

F
V \{k}
t –measurable.

Graphs and δ–Separation

The local independence graph G = (V,E) of a multi-
state process YV (t) = (Y1(t), . . . ,YK(t)) (or an MPP)
is given such that the absence of a directed edge indi-
cates a local independence, i.e.

(j, k) /∈ E ⇒ Yj →/ Yk|YV \{j,k}.

The resulting graphs are directed, can have two di-
rected edges between any two vertices, and can have
cycles. Note that pa(k)∩ch(k) 6= ∅ is possible, and
similar for ancestors and decendants etc.

Under regularity conditions, the definition implies that
the intensity process λk for Yk is Fcl(k)–measurable
(Didelez, 2008), where cl(k) is the closure (i.e. the set
of parents and k itself).

As for conditional independence graphs, certain sep-
arations on a local independence graph imply further
local independencies. However, a different notion of
separation is required, δ–separation: define GB as the
graph obtained after deleting all edges emanating from
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Figure 1: A local independence graph.

nodes in set B; then we say that C δ–separates A from
B in the local independence graph G if it separates A
and B in the undirected graph (GB

An(A∪B∪C)
)m ob-

tained by moralising the subgraph of GB on the an-
cestral set An(A ∪ B ∪ C). Note that δ–separation
is asymmetric, i.e. δ–separating A from B is not the
same as B from A. Meek (2014) introduces self-edges
so to be able to distinguish the case where a process
is locally independent of itself or not, and generalises
the above to δ∗–separation.

A key result of Didelez (2008) is that, under mild reg-
ularity conditions, we have for subsets A,B,C ⊂ V :

if C δ–separates A from B then YA →/ YB | YC .

The above is not obvious as the FV
t –intensity and the

FA∪B∪C
t –intensity of a process can be very different.

Example I: The graph in Figure 1 encodes for in-
stance that Y1 →/ Y4 | (Y2, Y3). Using δ–separation we
can verify that this is not preserved without Y3, i.e. it
is not the case that Y1 →/ Y4 | (Y2). This is because
of the ‘selection effect’: knowing something about the
past of Y2(t) makes the past of Y1(t) informative for
past of Y3(t) and therefore predictive of Y4(t).

3 CAUSAL VALIDITY

So far we described a notion, and graphical represen-
tation, of dynamic (in)dependence based on how the
present of a subprocess depends or not on the past of
other processes; in other words, a notion of time-lagged
(in)dependence. As it is based on the intensity process
it can be considered as characterised by infinitesimal
short-term predictions, which is very much parallel to
so-called ‘Granger–causality’ (Granger, 1969). How-
ever, much of the causal inference literature formalises
causality in terms of (sometimes hypothetical) inter-
ventions. For instance a DAG is termed causal if the
set of variables XV is sufficiently ‘rich’ so that an in-
tervention that changes how a variable Xk is generated
corresponds to replacing p(xk|xpa(k)) with a different
p̃(xk) in the factorisation

p(xV ) =
∏

i∈V

p(xi|xpa(i)).
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Figure 2: An augmented local independence graph
with intervention indicator σ1.

Røysland et al. (2015) extend this notion of interven-
tion to local independence graphs by assuming that
the intervention replaces the intensity process λk of
Yk by a different one λ̃k, which will typically be mea-
surable with respect to a smaller subset of processes,
e.g. those relevant to and observable by the decision
maker.

Remember that for a given local independence graph
G, each intensity process λk is Fcl(k)–measurable.
Røysland et al. (2015) then define this graph to be
causally valid for an intervention in Yk if this corre-
sponds to replacing λk by λ̃k while all other intensities
λj, j 6= k, remain the same under the intervention.

Intervention Indicator

In analogy to the influence diagrams of Dawid (2002,
2012), it can be helpful to indicate graphically that
an intervention modifying the intensity of Yk is being
considered, by adding an intervention node σk. For
the basic set-up chosen here, σk would itself not be a
process and simply take values in {o, e} to indicate the
original system with intensity λk when σk = o, or the
intervened system with intensity λ̃k when σk = e. The
absence of any edges involving σk other than σk −→ Yk

then represents the causal validity assumption, in anal-
ogy to extended stability of Dawid & Didelez (2010).

Example I (ctd.): The graph in Figure 2 is aug-
mented with the intervention node σ1 to indicate that
Y1 is subject to possibly different intensities in the
two different regimes. The absence of edges between
σ1 and other nodes indicates that their observational

F
cl(k)
t –intensities remain the same under intervention.

Re-Weighting

Similar to the case of longitudinal data, it turns out
that inference about the dynamics between events
under the intervened system can be obtained by
re-weighting. Specifically the weights are given as
W (t) :=

∏

s≤t

(

λ̃k(s)

λk(s)

)∆Nk(s)

exp

(∫ t

0

λk(s)− λ̃k(s)ds

)

.

For these to be well-defined, in particular for P̃ << P ,
we need W (t) to be uniformly integrable which can
be interpreted as λk(t), λ̃k(t) not being ‘too different’,
e.g.W (t) could be uniformly bounded. In fact, if Λk(t)
is assumed absolutely continuous such that λk(t) ex-
ists, then it is e.g. not possible to re-weight with an
intervention that has discrete jumps of Nk(t) at fixed
time points. Note that this can be regarded as corre-
spondent of the ‘positivity’ condition typically made
in many causal inference contexts.

Censoring and Re-Weighting

In the context of survival or duration data it is al-
most inevitable to have censoring (e.g. due to the end
of the study). Censoring in itself can be regarded as
an event and modelled with a counting process that
jumps when the observation is censored. This then al-
lows us to express assumptions about the censoring in
terms of its intensity process. A common assumption
is independent censoring which can be stated as the
relevant process (e.g. survival) being locally indepen-
dent of the censoring process, possibly conditional on
other observed processes. The most obvious violation
of this assumption occurs when there are unobserved
common causes for censoring and survival.

Moreover, censoring can be linked to the above ideas
of intervention and re-weighting in the following sense.
The target of inference is typically a population where
no censoring occurs (e.g. future patients) or where cen-
soring is entirely random and stochastically indepen-
dent of other processes. Hence we can say that the
target is to replace the censoring intensity by a differ-
ent intensity that does not depend on the past. When
this is possible given the observed processes there-
fore depends among others on whether the local in-
dependence graph on all events including censoring is
causally valid wrt. the censoring process. Røysland
et al. (2015) discuss this further and give an example
where censoring is independent, but based on a lo-
cal independence graph that is not causally valid and
hence leading to incorrect inference. For the remainder
of the paper here we do not further consider censoring.

4 IDENTIFICATION

In the following we assume that the index set of pro-
cesses is V = V0 ∪ X ∪ L ∪ U where V0 are observ-
able processes of interest (‘outcome’ processes), X (or
counting process NX) is the process in which we want
to intervene changing its intensity, L is a set of observ-
able processes in which we are not interested, and U
is a set of unobservable processes.



Definition 1:
Let G be the local independence graph for processes
V = V0 ∪ X ∪ L ∪ U ; assume causal validity wrt. X.
Consider an intervention in X that changes its obser-
vational FV –intensity λX to a FV0–intensity λ̃X . We
say that the effect of such an intervention on V0 is
identified by L if the FV0–intensities for every count-
ing process N ∈ V0 under the intervention exist and
are given by re-weighting with the above weightsW (t).

Røysland et al. (2015) show the following sufficient
condition for identification:

Proposition 2:
In the situation of Definition 1, if U →/ X | (V0 ∪ L),
then the effect on V0 of intervening in X is identified
by L.

Example I (ctd.): In Figure 2, assume we are in-
terested in the effect of an intervention in X = Y1 on
V0 = Y4 and let L = Y2 and U = Y3. Then we see that
Proposition 2 is satisfied, meaning that re-weighting
will allow us to compute aspects of the possibly modi-
fied behaviour of Y4 under an intervention that changes
the intensity process of Y1, where the weights require
no observation of Y3.

The condition of Proposition 2 is the point pro-
cess analogue of sequential randomisation in Dawid &
Didelez (2010); it is in fact satisfied iff U∩pa(X) = ∅.
In other words, it formalises the notion that given the
past of observed processes, X(t) is at any time t inde-
pendent of the past of unobserved processes. Dawid
& Didelez (2010) show that this implies ‘simple stabil-
ity’ which in turn is a sufficient identifying condition
for sequential interventions in their longitudinal (time-
discrete) setting. Here, we define the time-continuous
marked point process analogue as follows.

Definition 3:
With the preconditions of Definition 1, and the aug-
mented local independence graphGσ with intervention
node σX , we define that simple stability holds if

σX →/ (L ∪ V0) | X.

We conjecture that identification can in fact be ob-
tained under the wider assumption of simple stability.

Conjecture 4:
Assume the preconditions of Definition 1, and the aug-
mented local independence graph Gσ (i.e. causal valid-
ity wrt. X).
If simple stability holds, then the effect on V0 of inter-
vening in X is identified by L.

Corollary 5:
The condition of Proposition 2 implies simple stability.

We can now formulate a result corresponding to Dawid
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Figure 3: An augmented local independence satisfying
simple stability.

& Didelez’ (2010) notion of ‘sequential irrelevance’;
this condition allows unobserved processes in U to af-
fect the treatment process X as long as they are ‘ir-
relevant’ to the other processes of interest.

Corollary 6:
Assume the preconditions of Definition 1, and the aug-
mented local independence graph Gσ (i.e. causal valid-
ity wrt. X). Then U →/ (V0 ∪ L) | X implies simple
stability.

Both, Corollary 5 and 6 are sufficient but not necessary
for simple stability as the following example demon-
strates.

Example II: The graph in Figure 3 shows a situa-
tion where U = (U1, U2) satisfies neither Proposition
2 nor Corollary 6. However, simple stability is satis-
fied. Note that U1 alone fulfills Corollary 6 and U2

alone Proposition 2. All these would be destroyed by
an edge between U1 and U2.

5 DISCUSSION

More generality? In the time-discrete case, more gen-
eral conditions for causal effect identification can and
have been given than those analogous to simple sta-
bility. Specific to sequential decisions in longitudinal
data these are for example addressed in Pearl & Robins
(1995), Robins (1997), Dawid & Didelez (2010; section
8). It appears not straightforward to generalise these
to the time-continuous situation with local indepen-
dence graphs considered here, as it assumes stationar-
ity of the dependence structure, while such more gen-
eral criteria are typically relevant when the structure
changes over time. However, it is possible to generalise
local independence graphs to some extend in order to
take non-stationarity of (in)dependencies into account,
e.g. some independencies might hold before a certain
event has happened and others afterwards leading to
a sequence of graphs that are valid in intervals defined
by stopping times (Didelez, 2008).

Why an intervention indicator? The decision theoretic
approach to causality makes it formally and graphi-
cally explicit that an intervention in a particular node
is being considered and what assumptions are involved



(Dawid, 2012). This allows greater clarity, e.g. regard-
ing the target of inference; but in our case it also allows
to formulate conditions for identification that do not
need to refer to or characterise unobservable processes
U . The flip side is that one might miss an intuition
for what kinds of U violate the conditions, which may
impede justifying the assumption of simple stability.
Here, we have linked the results to the notions of se-
quential randomisation / irrelevance of U which pro-
vide some intuition.

Causal Search? We assumed that the local indepen-
dence graph is given and that subject matter knowl-
edge justifies causal validity wrt. certain events or pro-
cesses. Meek (2014) addresses learning the graph. Un-
der a completeness assumption this is in principle (i.e.
given an oracle test for local independence) straight-
forward as there are no issues of Markov-equivalence
due to the asymmetry of local independence in time,
i.e. all edges can easily be oriented. Meek (2014) fur-
ther gives results for cases of unobserved processes, e.g.
causal insufficiency. However, the main practical prob-
lem in any real application will be a suitable test for
local independence. In low-dimensional settings with
few events, this can be done almost non-parametrically
e.g. by testing equality of survival-curves; but in higher
dimensions this becomes prohibitive. One could make
simplifying assumptions, such as assuming a Markov
process; in this context it is important to be aware that
if YV (t) is Markov, then a subprocess YA(t), A ⊂ V
is typically not.

APPENDIX

Proof of Conjecture 4: see Røysland & Didelez (2015).

Proof of Corollary 5:

Remember that in the augmented local independence
graph Gσ, assuming causal validity wrt. X, there
is only a single edge involving σX pointing into X.
Further, the condition of Proposition 2 is satisfied
iff U∩pa(X) = ∅ in G. The graphical check of
δ–separation for simple stability involves removing all
outgoing edges from V0 ∪ L; in the resulting graph
before moralisation, there are no edges into X except
the one from σX . Hence, in the moral graph, σX only
has an edge with X and Definition 3 is satisfied.

Proof of Corollary 6:

As above, in the augmented local independence graph
Gσ there is only a single edge involving σX pointing
into X. The graphical check of δ–separation for
simple stability, furthermore, involves removing all
outgoing edges out of V0 ∪ L and with the condition
of Corollary 6 this means that there are no edges

between U and V0 ∪ L at all. Hence, even if there are
moral edges between σX and U these do not lead to
paths between V0 ∪ L and σX in the relevant moral
graph and Definition 3 is satisfied.
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