
An empirical study of the simplest causal prediction algorithm

Abstract

We study the simplest causal prediction algo-
rithm that uses only conditional independences
in purely observational data. A specific pattern
of only four conditional independence relations
amongst a quadruple of random variables already
implies that one of these variables causes another
without any confounding. As a consequence, it is
possible to predict what would happen under an
intervention on that variable without actually per-
forming the intervention. Although the method is
asymptotically consistent and works well in set-
tings with only few (latent) variables, we find
that its prediction accuracy can be worse than
simple noncausal baselines when many (latent)
variables are present. We also find that the accu-
racy can sometimes be improved by adding more
conditional independence tests, but even then the
performance need not outperform the baselines.
More generally, our findings illustrate that high
accuracy of individual conditional independence
tests is no guarantee for high accuracy of a com-
bination of such tests. Also, they illustrate the
severity of the faithfulness assumption in prac-
tice.

1 Introduction

One of the central tasks in causal inference is to predict the
changes resulting from interventions [Pearl, 2000, Spirtes
et al., 2000]. An intervention is a perturbation of a sys-
tem that forces it to behave differently than it would have
in the absence of that intervention. An example of such
a causal prediction task from biology is to predict the ex-
pression of some gene when another gene is knocked down
or knocked out (i.e., its expression is artificially reduced).
This causal prediction task is more challenging than the
“noncausal” prediction tasks mostly considered in statis-
tics and machine learning (e.g., estimating the expression

of some gene given a measurement of the expression of an-
other gene). Note that the crucial difference between the
two (i.e., causal and noncausal) prediction tasks reflects
the difference between (passive) observation and (active)
intervention. Deriving theory and designing algorithms for
causal prediction is one of the key challenges in the field
of causal inference. A challenging task in this context is to
predict the effect of interventions from purely observational
data (i.e., measurements from an unperturbed system).

An interesting attempt at predicting the effects of gene
knockouts from purely observational gene expression data
was performed by Maathuis et al. [2010]. They analyzed
micro-array data [Hughes et al., 2000] of Saccharomyces
cerevisiae, a species of yeast. After preprocessing the data,
the observational part of it consists of measurements of
5,361 gene expressions for 63 wild-type cultures, and the
interventional part contains measurements of the expres-
sions of the same 5,361 genes for 234 single-gene dele-
tion (“knockout” or “knockdown”) mutant strains that were
grown under similar conditions as the wild-type cultures.
The method of Maathuis et al. [2010] predicts gene pairs
(A,B) for which knocking out gene A has a strong effect
on the expression of gene B, using only the observational
(wild-types) data. The interventional (mutants) part of the
data was used for validation of the predictions.

The method employed by Maathuis et al. [2010] first uses
the PC algorithm [Spirtes et al., 2000] to estimate the
Markov equivalence class, i.e., the set of causal struc-
tures that are compatible with observed conditional inde-
pendences in the data. From the estimated Markov equiva-
lence class one can read off the possible parent sets of each
gene, i.e., the sets of its possible direct causes. When the
parent set of a gene is known, the strength of the causal ef-
fect on another gene can be estimated from observational
data by parent adjustment [Pearl, 2000]. The novel idea of
the method of Maathuis et al. [2010] is to calculate lower
bounds on causal effect strengths by minimizing the effect
strength over all possible parent sets according to the esti-
mated Markov equivalence class in a computationally effi-
cient way.



A bottleneck in this approach is the estimation of the
Markov equivalence class, which is a difficult task in this
high-dimensional setting. The PC algorithm performs a se-
quence of conditional independence tests, and which tests
are performed depends on the results of previous tests.
Therefore, statistical errors of conditional independence
tests may propagate when estimating the Markov equiva-
lence class, leading to wrong predictions, especially when
a large number of these tests have to be performed. In-
deed, the estimated Markov equivalence class turns out to
be unstable in this high-dimensional setting [Colombo and
Maathuis, 2014]. Another issue with the approach is that
it makes the strong assumption of causal sufficiency of the
5,361 gene expression levels. In other words, it is assumed
that there are no confounders, i.e., latent common causes of
gene expressions that may lead to spurious dependences. It
is very likely that this assumption is violated in practice.

In this work, we investigate an alternative method for pre-
dicting strong intervention effects that is sound and con-
sistent even in the presence of confounders. The method
effectively avoids estimating the (equivalence class of the)
complete causal structure of all observed variables and fo-
cusses on small subsets of four variables instead. In this
way, the method minimizes the number of conditional inde-
pendence tests necessary to reach a nontrivial causal pre-
diction, thereby hopefully improving the accuracy of the
predictions, as there is less possibility for statistical errors
to accumulate.

We first sketch a general approach to causal reasoning, and
then focus on the simplest special case with four variables
that leads to nontrivial conclusions. That special case is
closely related to an existing method to detect so-called Y-
structures [Mani et al., 2006]. Our main contributions are
(i) an alternative derivation that offers straightforward ways
to generalize and extend the method, and (ii) an empirical
study of the performance of the algorithm and its building
blocks. We conclude that the statistical behaviour of the
method is unexpected and poorly understood, and that em-
pirical violations of faithfulness can become increasingly
problematic as the number of (latent) variables increases.
Based on our simulation results, we expect that this simple
method will probably not be successful when applied in
high-dimensional settings like the challenging task of pre-
dicting strong effects of gene knockouts from the observa-
tional gene-expression data of Hughes et al. [2000].

2 Theory

Given a set of random variables1 V , we can express their
direct causal relationships by means of a causal graph,
which has a directed edge X → Y if and only if X ∈ V
is a direct cause of Y ∈ V . A directed path (sequence
of head-to-tail directed edges) corresponds with an indirect

1We denote sets of variables in boldface.

causal relationship, or ancestral relation. We denote the set
of all indirect causes (ancestors) of a variable X ∈ V ac-
cording to causal graph G by AnG(X) (we adopt here the
convention that this includes X itself). For a set of vari-
ables X ⊆ V , we define AnG(X) =

⋃
X∈X AnG(X).

Therefore, X ∈ AnG(Y ) means that X is an (indirect)
cause of some Y ∈ Y according to the causal DAG G, and
X 6∈ AnG(Y ) means that X is not an (indirect) cause of
any Y ∈ Y according to the causal DAG G. In addition to
directed edges, the causal graph G may contain bidirected
edges to denote confounders, i.e., latent common causes.

From now on, we assume that there is a causally sufficient
set of variables V = O∪̇L, of which we observe only the
variables in O, the variables in L being latent, and that the
causal graph on O∪L is a directed acyclic graph (DAG). In
particular, this means that we assume that there is no causal
feedback and that there are no confounders of the variables
O∪L. Note that when considering only the observed vari-
ables O, the latent variables in L may act as confounders
for variables in O, so we do not assume that the variables
in O are causally sufficient on their own. Furthermore, we
assume that there is no selection bias, i.e., we are not im-
plicitly conditioning on (common effects of) the variables
in O ∪L. Finally, an important assumption is faithfulness,
i.e., each conditional independence X ⊥⊥Y |Z in the joint
distribution of the random variables O ∪ L corresponds
with a d-separation X ⊥⊥G Y |Z in the DAG G. In other
words, conditional independences in the distribution reflect
properties of the causal structure rather than accidental can-
cellations due to very specific choices of the parameters of
the causal model.

The approach we study here is a straightforward combina-
tion of two ingredients: causal discovery rules by Claassen
and Heskes [2011] and a causal prediction rule by Entner
et al. [2013]. We will begin by describing these causal rea-
soning rules.

2.1 Causal discovery rules

Claassen and Heskes [2011] pointed out a correspon-
dence between what they call minimal conditional
(in)dependences and ancestral relations. We adopt the same
notation for these minimal conditional (in)dependences
here. Claassen and Heskes [2011] define a minimal con-
ditional independence by:

X ⊥⊥Y |W∪[Z] ⇐⇒

{
X ⊥⊥Y |W ∪Z, and
∀Z′ ( Z : X 6⊥⊥Y |W ∪Z′

Similarly, they define a minimal conditional depedendence
by;

X 6⊥⊥Y |W∪[Z] ⇐⇒

{
X 6⊥⊥Y |W ∪Z, and
∀Z′ ( Z : X ⊥⊥Y |W ∪Z′



The square brackets express that the variables in Z are nec-
essary to obtain the (in)dependence, in the context of W .
The minimal conditional (in)dependences relate directly to
ancestral relations in the DAG G, as shown by Claassen
and Heskes [2011]. In particular, they give the following
inference rules:

Lemma 1 For disjoint sets {X}, {Y }, {Z},W ⊆ O:

1. X ⊥⊥Y |W ∪ [Z] =⇒ Z ∈ AnG({X,Y } ∪W )

2. X 6⊥⊥Y |W ∪ [Z] =⇒ Z 6∈ AnG({X,Y } ∪W ).

In addition, the following obvious rules for ancestral rela-
tions in a DAG G hold:

Lemma 2 For X,Y, Z ∈ O:

1. X ∈ AnG(Y ) ∧ Y ∈ AnG(Z) =⇒ X ∈ AnG(Z);

2. X ∈ AnG(Y ) ∧ Y ∈ AnG(X) =⇒ X = Y .

These rules express the transitivity and acyclicity of indi-
rect causal relations.

2.2 Causal prediction rule

Under the same assumptions that we made above, Entner
et al. [2013] show that:

Lemma 3 For disjoint sets {X}, {Y }, {Z},W : if
Y 6∈ AnG({X} ∪W ∪ {Z})
X 6∈ AnG(W ∪ {Z})
Z ⊥⊥Y |W ∪ [X]

then W is sufficient for adjustment of X on Y , i.e.,

p(Y |do(X = x)) =

∫
p(Y |X = x,W )p(W ) dW .

Here, p(Y |do(X = x)) denotes the interventional distri-
bution of Y under a perfect intervention onX that setsX to
the value x [Pearl, 2000]. The proof uses the backdoor cri-
terion [Pearl, 2000]. Entner et al. [2013] also provide rules
for inferring no causal effect (i.e., p(Y | do(X = x)) =
p(Y )), but we do not reproduce those here as we are mostly
interested in predicting strong causal effects.

2.3 (Extended) Y-structures

The causal discovery rules by Claassen and Heskes [2011]
allow to derive ancestral relations from conditional inde-
pendence relations, and the causal prediction rule by Ent-
ner et al. [2013] allows to infer a sufficient adjustment set
from a particular combination of ancestral and conditional

independence relations. By combining these rules, suffi-
cient adjustment sets can be found from conditional inde-
pendence relations alone. In this way, we can easily arrive
at causal predictions from purely observational data that
even hold in the presence of confounders.

In our context, the simplest combination of conditional in-
dependences that yields nontrivial causal predictions in-
volves four variables:

Proposition 1 For a quadruple 〈X,Y, Z, U〉 ∈ O4 of dif-
ferent observed variables, if{

Z ⊥⊥Y | [X]

Z 6⊥⊥U | [X]
(1)

then X ∈ AnG(Y ) and p(Y | do(X)) = p(Y |X).

Proof. From Z 6⊥⊥U | [X] and Lemma 1.2 it follows that
X /∈ AnG({Z,U}), and therefore X /∈ AnG(Z).
From Z ⊥⊥Y | [X] and Lemma 1.1 it follows that X ∈
AnG({Z, Y }). Combining these two results, we conclude
that X ∈ AnG(Y ). By acyclicity, this implies Y /∈
AnG(X). Further, Y ∈ AnG(Z) would lead to X ∈
AnG(Z) by transitivity, which contradicts X /∈ AnG(Z).
Applying Lemma 3 with W = ∅ immediately gives that
p(Y | do(X)) = p(Y |X). �

In this simple context where W = ∅, the causal predic-
tion rule from Entner et al. [2013] reduces to a special case
that was already known for a long time under the name Lo-
cal Causal Discovery (LCD) [Cooper, 1997] and was used
by Chen et al. [2007] to infer causal relations between yeast
genes from a combination of genotype and gene expression
data. Therefore, we can also interpret Proposition 1 as a
special case of LCD where the necessary ancestral precon-
ditions are provided by employing the rules of [Claassen
and Heskes, 2011].

The Markov equivalence class of G can be represented
by a Partial Ancestral Graph (PAG) [Zhang, 2008] on the
observed variables O. Each PAG represents a collection
of Maximal Ancestral Graphs (MAGs) [Richardson and
Spirtes, 2002], and each MAG represents infinitely many
DAGs. Each DAG (on some set of variables that contains
all observed variables O, and possibly more variables) rep-
resented by a PAG on O satisfies the same conditional in-
dependence relations on the observed variables O.

Proposition 2 There are two PAGs on {X,Y, Z, U} that
satisfy the relations in (1). They are depicted in Figure 1.

Proof. Z and Y are not adjacent because Z ⊥⊥Y |X . Z
and U are not adjacent because Z ⊥⊥U . We distinguish
two cases: U and Y are nonadjacent (“Y-structure”) and
U and Y are adjacent (“Extended Y-structure”). In both
cases, three arrowheads follow from the ancestral relations
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Figure 1: All PAGs compatible with (1). Circles represent
edge marks that can be either a tail or an arrowhead. There-
fore, these two PAGs represent six MAGs.

Y /∈ AnG(X), X /∈ AnG(U), X /∈ AnG(Z), and one tail
follows from X ∈ AnG(Y ), Note that if there is an edge
between U and Y , then U must be a collider. Indeed, the
path Z · · ·X · · ·U · · ·Y must be blocked when condition-
ing on X . But then the edge between U and Y must have
an arrowhead at Y , otherwiseX would be ancestor of U . It
is easy to check that each of the six MAGs corresponding
with the two PAGs is compatible with the constraints (1).
�

We can obtain symmetry between U and Z by adding an-
other minimal conditional independence test (only satisfied
by the Y-structures):

Z ⊥⊥Y | [X]

U ⊥⊥Y | [X]

Z 6⊥⊥U | [X]

(2)

As we assume faithfulness, all other conditional indepen-
dence relations on {X,Y, Z, U} can now be read off from
the PAGs.

Corollary 1 The only conditional independences that hold
in an Extended Y-structure are the two in (1), i.e.,
Z ⊥⊥Y |X and Z ⊥⊥U . The only conditional indepen-
dences that hold in a Y-structure are the three in (2),
i.e., Z ⊥⊥Y |X , Z ⊥⊥U and U ⊥⊥Y |X , and in addition
U ⊥⊥Y | {X,Z} and Y ⊥⊥Z | {U,X}.

Y-structures have been studied before by Mani et al. [2006],
who showed that they can be identified by using a Bayesian
scoring method (even in the presence of latent variables).
[Mani and Cooper, 2004, Mani, 2006] also provide em-
pirical results about the performance of Bayesian scoring
methods for detecting Y-structures. To the best of our
knowledge, Extended Y-structures have not been studied
before.

2.4 Algorithms

The simplest algorithm that makes nontrivial causal predic-
tions from purely observational data using the ideas above
is given in Algorithm 1. It is a brute-force search over all

Algorithm 1 Extended Y-structure search
Input:
O set of observed variables
D i.i.d. sample of p(O)

Output:
L set of Extended Y-structures;

Algorithm:
L ← ∅
for all 〈X,Y, Z, U〉 ∈ O4 do

if #{X,Y, Z, U} = 4 then
if Z 6⊥⊥D Y and Z ⊥⊥D Y |X and Z ⊥⊥D U and
Z 6⊥⊥D U |X then
L ← L ∪ {〈X,Y, Z, U〉}

end if
end if

end for
Predictions:
∀〈X,Y, Z, U〉 ∈ L : p(Y | do(X)) = p(Y |X)

quadruples in O that satisfy the Extended Y-structure con-
ditional independences in (1). Any conditional indepen-
dence test can be used when testing for conditional inde-
pendences of the formX ⊥⊥D Y |Z in the dataD. For each
of the quadruples 〈X,Y, Z, U〉 output by the algorithm, the
causal prediction is that p(Y | do(X = x)) = p(Y |X =
x) for all x. In words: the interventional distribution of
Y when setting X to the value x coincides with the condi-
tional distribution of Y given X = x.

It follows directly from Proposition 1 that Algorithm 1 is
sound. When using consistent conditional independence
tests, it is also consistent: as the number of samples in
D grows, the probability for an erroneous conclusion con-
verges to 0. This directly follows from the consistency of
the independence tests. However, the algorithm is not uni-
formly consistent. In practice, we do not know a priori how
many samples we need to be confident about the correct-
ness of the result [J. M. Robins et al., 2003]. Intuitively, as
a dependence can be arbitrarily weak, we may need an arbi-
trarily high number of data points to be able to distinguish
it from an independence. Furthermore, Cornia and Mooij
[2014] showed that for LCD, it is impossible to derive a
confidence interval on the causal prediction error without
making strong assumptions. Their result also applies to Al-
gorithm 1, as it makes a similar causal prediction as LCD
does. Summarizing:

Proposition 3 Algorithm 1 is sound and consistent when
using consistent independence tests. However, it is not uni-
formly consistent and impossible to derive a confidence in-
terval on the prediction error without making additional
assumptions.

We have spelled out Algorithm 1 for clarity, even though it
is a special case of the more general Algorithm 2 that per-



Algorithm 2 Conditional Independence Pattern search
Input:
O set of observed variables
n pattern size
π pattern of conditional independences
D i.i.d. sample of p(O)

Output:
L set of n-tuples in On matching pattern π

Algorithm:
L ← ∅
for all T ∈ On do

if #T = n and π(T ) in D then
L ← L ∪ {T}

end if
end for

forms a brute-force search for certain conditional indepen-
dence patterns by testing whether all relations in the pat-
tern simultaneously hold in the data. For example, using
the following pattern for testing an Extended Y-structure in
Algorithm 2 we recover Algorithm 1:

extY(〈X,Y, Z, U〉) = Z ⊥⊥Y | [X] ∧ Z 6⊥⊥U | [X].

In the next section, we will study also the following pat-
terns on quadruples of variables:

Y(〈X,Y, Z, U〉) = extY(〈X,Y, Z, U〉) ∧ U ⊥⊥Y | [X].

Y1(〈X,Y, Z, U〉) = Y(〈X,Y, Z, U〉)
∧ Z 6⊥⊥X ∧X 6⊥⊥Y ∧X 6⊥⊥U ∧ Y 6⊥⊥U
∧X 6⊥⊥U |Y ∧X 6⊥⊥Z |Y ∧ U 6⊥⊥Z |Y
∧X 6⊥⊥Y |U ∧X 6⊥⊥Z |U ∧ Y 6⊥⊥Z |U
∧X 6⊥⊥Y |Z ∧X 6⊥⊥U |Z ∧ U 6⊥⊥Y |Z.

Y2(〈X,Y, Z, U〉) = Y1(〈X,Y, Z, U〉)
∧ U 6⊥⊥Z | {X,Y } ∧ U 6⊥⊥X | {Z, Y }
∧ Z 6⊥⊥X | {U, Y } ∧X 6⊥⊥Y | {U,Z}
∧ U ⊥⊥Y | {X,W} ∧W ⊥⊥Y | {X,U}.

The patterns Y, Y1 and Y2 all test for a Y-structure. Y uses
the minimal number of tests, Y1 also tests for all (asymp-
totically redundant) tests up to conditioning set size 1, and
Y2 adds all (asymptotically redundant) tests up to condi-
tioning set size 2.

3 Experiments

We performed simulation experiments to study the perfor-
mance of Algorithms 1 and 2.

3.1 Simulations

For the simulations, we created random causal DAGs G
with p = |V | variables.2 For i = 1, . . . , p, we chose the
parents pa(i) ⊆ {1, . . . , i − 1} for variable Xi randomly
(using 0,1,2,3 parents with probability 1/8, 1/2, 1/4, 1/8,
respectively). In this way, the random graph is guaranteed
to be a DAG. After drawing a random causal graph, we
draw random weights B̃ji ∼ N (0, 1) independently from a
standard normal distribution for linear structural equations

Xi =
∑

j∈pa(i)

B̃jiXj + ε̃i

with i.i.d. error terms ε̃i ∼ N (0, σ2) having a normal dis-
tribution with standard deviation σ = 0.01. After sampling
all weights in this way, we applied rescaling transforma-
tions to all structural equations (of the form (B̃ji, ε̃i) 7→
(Bji, εi) = (αiB̃ji, αiε̃i)) sequentially for i = 1, . . . , p
such that Var(Xi) = 1 for all i = 1, . . . , p. Without
the rescaling, variances could easily diverge and Var(Xi)
could depend strongly on i, thereby already revealing the
causal order.

We sampledN = 3000 samples from p(X) to simulate the
observational data D. We also simulated perfect interven-
tions on different targets as follows. For each intervention,
we chose its target i uniformly from {1, . . . , p}. Under the
intervention do(Xi = ξi), the structural equation for Xi is
changed into Xi = ξi, while the other structural equations
and the distribution of the noise terms remain invariant un-
der this intervention. We used a constant value ξi = −2
throughout. We then generated one sample from the inter-
vened structural causal model. In this way, we generated
1000 interventional data points, each one corresponding to
an intervention on a particular randomly chosen target vari-
able. We used this interventional data to validate the causal
predictions.

We considered two settings for the number of variables,
p = 10 and p = 50. Considering the high signal-to-noise
ratio and high number of observations, we would expect
the algorithms to perform well in this setting.

3.2 Independence tests

Because we simulated linear-Gaussian data, for the (con-
ditional) independence tests we simply calculate the (par-
tial) correlations and their p-values by using a Student’s t
distribution for a transformation of the (partial) correlation.
Small p-values indicate strong evidence against the null hy-
pothesis of independence. On the other hand, for large p-
values it is not clear whether there is a weak dependence or
an independence. Nevertheless, following common prac-
tice in the field, we will use large p-values as evidence in

2In our simulations, we use V = O, i.e., all variables are
observed.



favor of independence. We use two thresholds on the p-
value p to distinguish three possible independence test re-
sults:

p < αlo =⇒ dependence,
αlo ≤ p ≤ αhi =⇒ unknown,

p > αhi =⇒ independence.

We used fixed values αlo = 10−4 and αhi = 10−1 through-
out the experiments. When testing for combinations (con-
junctions) of (in)dependences, we use a three-valued (false,
unknown, true) logic when combining conditional indepen-
dence test results with logical operators.

3.3 Discovering conditional independence patterns

We studied the performance of Algorithm (1) and Algo-
rithm (2) with patterns Y, Y1 and Y2 on simulated data.
In addition, we studied the performance of some of their
building blocks: pairwise (in)dependence tests, conditional
(in)dependence tests when conditioning on a single vari-
able, and minimal conditional (in)dependence tests when
conditioning on a single variable. The ground truth is pro-
vided by testing the patterns directly in the causal graph
by using the Bayes Ball algorithm [Shachter, 1998] as an
independence oracle.

We report precision and recall, defined as:

precision =
TP

TP + FP
, recall =

TP

TP + FN + UP

where TP are true positives, FP are false positives, FN
are false negatives and UP are unknowns that are positives
according to ground truth. Here, we are more interested in
high precision than high recall, because being able to pre-
dict with high confidence a few strong intervention effects
would already be of great practical interest in applications.

The results are reported in Table 1 for p = 10 and p = 50
variables. First, note that the recall of the conditional and
pairwise independence test is at 1 − αhi as it should be.
Also, note that the precision of the conditional and pairwise
dependence tests are very close to 1, reflecting that it is easy
to recognize a strong (conditional) dependence as such.
The elementary tests are not perfect, but precision and re-
call are within a reasonable range. However, when com-
bining two elementary tests into a minimal test, precision
may drop significantly. The precision of the minimal condi-
tional independence test drops to 60% for p = 10 variables,
and all the way down to a meager 25% for p = 50 vari-
ables. When combining two minimal tests into an extended
Y-structure test, the precision drops even further, unfortu-
nately. On the other hand, when adding another minimal
conditional independence test to test for a Y-structure, pre-
cision increases. However, when adding more tests (pat-
terns Y1 and Y2), precision decreases again. The reasons
for this behavior of the precision are unclear. Recall has a

Table 1: Evaluation of Algorithm 2 for different patterns.
Averages over 100 random models are shown. The second
column gives the number of n-tuples of variables that are
considered in the brute-force search, with n the number of
variables that the pattern depends on. (a) p = 10 variables;
(b) p = 50 variables.

(a)

Pattern Total # Recall Precision
X ⊥⊥Y 45 0.89 0.98
X 6⊥⊥Y 45 0.98 1.00
X ⊥⊥Y |Z 360 0.90 0.82
X 6⊥⊥Y |Z 360 0.88 1.00
X ⊥⊥Y | [Z] 360 0.88 0.60
X 6⊥⊥Y | [Z] 360 0.86 0.89
extY 5040 0.71 0.45
Y 5040 0.59 0.53
Y1 5040 0.03 0.50
Y2 5040 0.01 0.33

(b)

Pattern Total # Recall Precision
X ⊥⊥Y 1225 0.90 0.96
X 6⊥⊥Y 1225 0.95 1.00
X ⊥⊥Y |Z 58800 0.90 0.80
X 6⊥⊥Y |Z 58800 0.83 1.00
X ⊥⊥Y | [Z] 58800 0.85 0.25
X 6⊥⊥Y | [Z] 58800 0.79 0.82
extY 5527200 0.72 0.24
Y 5527200 0.62 0.40
Y1 5527200 0.05 0.32
Y2 5527200 0.03 0.35

more consistent behavior: the more tests are combined, the
lower the recall.

We conclude that errors of elementary tests combine in un-
expected ways into errors of compound tests. Sometimes
the probability of an error of a compound test is much
higher than the probability of error of its constituent tests,
in other cases errors seem to cancel out and combining mul-
tiple tests results in “error correction”.

3.4 Discovery of indirect causal relations

The evaluation measure used in the previous subsection is
rather strict: the precision reflects how accurately a specific
pattern can be detected from observational data. When we
are only interested in using the (Extended) Y-structure pat-
terns as a causal discovery method, i.e., as a way to detect
whether X ∈ AnG(Y ) (X is an indirect cause of Y ), the
picture changes considerably. The results are reported in
Table 2 for p = 10 and p = 50. For p = 10 variables,
precision of Algorithm 1 for this causal discovery task is
around 50%, and increases as more tests are added up to
100% for Algorithm 2 with the Y1 and Y2 patterns. Un-
fortunately, however, precision seems to decrease quickly



Table 2: Evaluation of Algorithm 2 with different patterns
for the task of predicting whether X ∈ AnG(Y ). Averages
over 100 random models are shown. (a) p = 10 variables;
(b) p = 50 variables.

(a)

Test pattern Total # Recall Precision
extY 90 0.0195 0.47
Y 90 0.0156 0.65
Y1 90 0.0020 1.00
Y2 90 0.0010 1.00

(b)

Test pattern Total # Recall Precision
extY 2450 0.1890 0.22
Y 2450 0.0908 0.36
Y1 2450 0.0160 0.36
Y2 2450 0.0106 0.39

as the number of variables increases: for p = 50 all preci-
sions are already lower than 40%.

We conclude that according to this performance measure,
the simplest causal discovery algorithm that detects Ex-
tended Y-structures does not perform well. Detecting Y-
structures works better, especially when redundant tests
are added and when the total number of variables is rela-
tively small. However, precision decreases quickly when
the number of variables increases.

3.5 Causal predictions

The evaluation measure used in the previous subsection is a
natural one when simulating data, but when using real data,
it is often not known whether a variable is an indirect cause
of another. Instead, interventional data may be available. In
that context, we are more interested in how accurately we
predict the effects of interventions. When detecting an (Ex-
tended) Y-structure pattern for a quadruple 〈X,Y, Z, U〉,
we can conclude that p(Y | do(X = x)) = p(Y |X = x).
Using linear regression of Y on X we estimate E(Y |X =
x) and use this as our prediction for the value of Y under
the intervention X = x. We define the causal prediction
error of Y under an intervention do(X = x) as

|E(Y |X = x)− E(Y | do(X = x))| .

We report both the average error (`1) over all (X,Y ) pairs
in patterns found by the algorithm, all simulated interven-
tions and all models. In addition, we report the root-mean-
square (`2) error.

For comparison, we also report results of two simple base-
lines. The first baseline always predicts p(Y | do(X =
x)) = p(Y ) for all pairs X 6= Y (i.e., absence of causal ef-
fects). The second baseline predicts p(Y | do(X = x)) =
p(Y |X = x) (i.e., not distinguishing correlation from cau-
sation) for all pairs X 6= Y . Note that these baselines are
naı̈ve and provably inconsistent.

Table 3: Evaluation of how well certain patterns found by
Algorithm 2 predict the effect on Y of an intervention on
X . Averages over 100 random models are shown. Two
simple noncausal baselines have been used for comparison.
(a) p = 10 variables; (b) p = 50 variables.

(a)

Method `1 error `2 error
extY 0.85 1.45
Y 0.67 1.28
Y1 0.30 0.39
Y2 0.32 0.40
p(Y |do(X)) = p(Y ) 1.08 1.33
p(Y |do(X)) = p(Y |X) 1.72 4.99

(b)

Method `1 error `2 error
extY 1.23 1.77
Y 1.01 1.58
Y1 0.96 1.37
Y2 0.91 1.38
p(Y |do(X)) = p(Y ) 0.85 1.10
p(Y |do(X)) = p(Y |X) 1.63 3.72

Table 3 contains the results, for p = 10 and p = 50. The
error decreases as more tests are added to the (Extended)
Y-structure pattern, and for p = 10 variables, most meth-
ods beat the simple baselines. Unfortunately, that does not
hold for p = 50 variables, as in that case the simple base-
line that always predicts that nothing will change due to an
intervention outperforms all causal prediction methods.

4 Conclusions and Discussion

We have studied a simple causal discovery and predic-
tion method that focusses on quadruples of variables and
only makes a prediction when it detects a certain pattern of
conditional independences amongst those variables. The
method is sound and consistent, but like all constraint-
based methods that rely on conditional independences, is
not uniformly consistent. This manifests itself quite clearly
already in low-dimensional settings (50 variables, 3000
observations), where the causal prediction method cannot
even outperform simple noncausal baselines.

Even though in our simulations the distribution on all vari-
ables V = O ∪ L is faithful to the DAG, when only look-
ing at a small subset of variables Q = {X,Y, Z, U}, the
marginal distribution on Q can become close-to-unfaithful
to its MAG on Q. One explanation for this might be that
the more (latent) paths between the variables in Q there
are, the higher the probability that these paths will cancel
each other in some way when the edge weights are chosen
randomly. This may then lead to near-faithfulness viola-
tions on Q, and hence to to false-positive detections of the
(Extended) Y-structure algorithms. Note that this surpris-



ing behaviour happens even though individual tests have
relatively low probability of making an error in our simula-
tion setting, and we only combine a few of these individual
tests. Problems with the faithfulness assumption have been
pointed out before [e.g., Lemeire and Janzing, 2013, Uhler
et al., 2013]. We conclude that faithfulness violations are
very problematic for causal inference, even when individ-
ual independence tests have a low probability of error and
we only combine a few of them to draw causal conclusions.

The severity of this effect surprised us: one would probably
need enormous amounts of observations for faithfulness to
hold empirically, already for p = 50 variables. In addition,
we hypothesize that the larger p becomes, the higher the
probability for accidental cancellations of paths. In other
words, the probability for faithfulness violations seems to
increase quickly with the number of variables. Therefore,
this approach to causal discovery and prediction, simple
and elegant as it is, will probably not work on the original
task we had in mind, predicting strong intervention effects
from purely observational micro-array data on the scale of
the yeast genome (p > 5000, N ∼ 102).
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