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Directed Graphical Models

X1 X2 U X3 X4

X2 X4

X2 X4 | X3

X2 X4 | {X3, U}
...



Marginalization

X1 X2 X3U X4

X2 X4

X2 X4 | X3

X2 X4 | {X3, U}
...



Marginalization

No: X1 X3 | X2

X1 X2 X3 X4 ?

X1 X2 X3 X4 ?

No: X2 X4 | X3

X1 X2 X3 X4 ? OK, but not ideal
X2 X4



The Acyclic Directed Mixed Graph (ADMG)

� “Mixed” as in directed + bi-directed

� “Directed” for obvious reasons 
� See also: chain graphs

� “Acyclic” for the usual reasons

� Independence model is
� Closed under marginalization (generalize DAGs)

� Different from chain graphs/undirected graphs

� Analogous inference calculus as DAGs: m-separation

X1 X2 X3 X4

(Richardson and Spirtes, 2002; Richardson, 2003)



Why do we care?

(Bollen, 1989)



Why do we care?

� I like latent variables. Why not latent variables 
everywhere, everytime, latent variables in my cereal, 
no questions asked?

� ADMG models open up new ways of parameterizing 
distributions

� New ways of computing estimators 

� Theoretical advantages in some important cases (Richardson 
and Spirtes, 2002)



The talk in a nutshell

� The challenge:

� How to specify families of distributions that respect the ADMG 
independence model, requires no explicit latent variable formulation

� How NOT to do it: make everybody independent!

� Needed:  rich families. How rich?

� Contribution: 

� a new construction that is fairly general, easy to use, and 
complements the state-of-the-art

� First, a review: 

� current parameterizations, the good and bad issues

� For fun and profit:  a simple demonstration on how to do 
Bayesianish parameter learning in these models



The Gaussian bi-directed model



The Gaussian bi-directed case

(Drton and Richardson,  2003)



Binary bi-directed case: 
the constrained Moebius parameterization

(Drton and Richardson,  2008)



Binary bi-directed case:
the constrained Moebius parameterization

� Disconnected sets are marginally independent. Hence, 
define qA for connected sets only

P(X1 = 0, X4 = 0) = P(X1 = 0)P(X4 = 0)

q14 = q1q4
(However, notice there is a parameter q1234)



Binary bi-directed case:
the constrained Moebius parameterization

� The good: 

� this parameterization is complete. Every single binary bi-directed 
model can be represented with it

� The bad: 

� Moebius inverse is intractable, and number of connected sets 
can grow exponentially even for trees

...

...

...



The Cumulative Distribution Network (CDN) 
approach

� Parameterizing cumulative distribution functions (CDFs) 
by a product of functions defined over subsets

� Sufficient condition: each factor is a CDF itself

� Independence model: the “same” as the bi-directed graph... but 
with extra constraints

(Huang and Frey,  2008)

F(X1234) = F1(X12)F2(X24)F3(X34)F4(X13)

X1 X4

X1 X4 | X2 etc



Relationship

� CDN: the resulting PMF (usual CDF2PMF transform)

� Moebius: the resulting PMF is equivalent

� Notice: qB = P(XB = 0) = P(X\B ≤ 1, X\B ≤ 0)

� However, in a CDN, parameters further factorize over 
cliques q1234 = q12q13q24q34



Relationship

� In the binary case, CDN models are a strict subset of 
Moebius models

� Moebius should still be the approach of choice for small 
networks where independence constraints are the main 
target

� E.g., jointly testing the implication of independence 
assumptions

� But...

� CDN models have a reasonable number of parameters, they 
are flexible, for small treewidths any fitting criterion is 
tractable, and learning is trivially tractable anyway by marginal 
composite likelihood estimation

� Take-home message:  a still flexible bi-directed graph model with no 
need for latent variables to make fitting “tractable”



The Mixed CDN model (MCDN)

� How to construct a distribution Markov to this?

� The binary ADMG parameterization by Richardson (2009) is 
complete, but with the same computational shortcomings
� And how to easily extend it to non-Gaussian, infinite discrete cases, 

etc.?



Step 1: The high-level factorization

� A district is a maximal set of vertices connected by bi-
directed edges

� For an ADMG G with vertex set XV and districts {Di}, 
define

where P(⋅) is a density/mass function and paG(⋅) are parent 
of the given set in G



Step 1: The high-level factorization

� Also, assume that each Pi(⋅ | ⋅) is Markov with respect to 
subgraph Gi – the graph we obtain from the 
corresponding subset

� We can show the resulting distribution is Markov
with respect to the ADMG

X4 X1 X4 X1



Step 1: The high-level factorization

� Despite the seemingly “cyclic” appearance, this 
factorization always gives a valid P(⋅) for any choice of 
Pi(⋅ | ⋅)

P(X134) = Σx2P(X1, x2 | X4)P(X3, X4 | X1)

≡ P(X1 | X4)P(X3, X4 | X1)

P(X13) = Σx4P(X1 | x4)P(X3, x4 | X1)

= Σx4P(X1)P(X3, x4 | X1)

≡ P(X1)P(X3 | X1)



Step 2: Parameterizing P
i
(barren case)

� Di is a “barren” district is there is no directed edge within 
it

Barren

NOT Barren



Step 2: Parameterizing P
i
(barren case)

� For a district Di with a clique set Ci (with respect bi-
directed structure), start with a product of conditional 
CDFs

� Each factor FS(xS | xP) is a conditional CDF function, 
P(XS ≤ xS | XP = xP). (They have to be transformed back to 
PMFs/PDFs when writing the full likelihood function.)

� On top of that, each FS(xS | xP) is defined to be Markov 
with respect to the corresponding Gi

� We show that the corresponding product is Markov with 
respect to Gi



Step 2a: A copula formulation of P
i

� Implementing the local factor restriction could be 
potentially complicated, but the problem can be easily 
approached by adopting a copula formulation

� A copula function is just a CDF with uniform [0, 1] 
marginals

� Main point: to provide a parameterization of a joint 
distribution that unties the parameters from the 
marginals from the remaining parameters of the joint



Step 2a: A copula formulation of P
i

� Gaussian latent variable analogy:

X1 X2

U X1 = λ1U + e1, e1 ~ N(0, v1)

X2 = λ2U + e2, e2 ~ N(0, v2)

U ~ N(0, 1)

Marginal of X1:  N(0, λ1
2 + v1)

Covariance of X1, X2:  λ1λ2

Parameter sharing



Step 2a: A copula formulation of P
i

� Copula idea: start from

then define H(Ya, Yb) accordingly, where  0 ≤ Y* ≤ 1

� H(⋅, ⋅) will be a CDF with uniform [0, 1] marginals

� For any Fi(⋅) of choice, Ui ≡ Fi(Xi) gives an uniform [0, 1]

� We mix-and-match any marginals we want with any 
copula function we want

F(X1, X2) = F( F1
-1(F1 (X1)), F2

-1(F2 (X2)))

H(Ya, Yb) ≡ F( F1
-1(Ya), F2

-1(Yb))



Step 2a: A copula formulation of P
i

� The idea is to use a conditional marginal Fi(Xi | pa(Xi)) 
within a copula

� Example

� Check:

X1 X2 X3 X4

U2(x1) ≡ P2(X2 ≤ x2 | x1) U3(x4) ≡ P2(X3 ≤ x3 | x4)

P(X2 ≤ x2, X3 ≤ x3 | x1, x4) = H(U2(x1), U3(x4))

P(X2 ≤ x2 | x1, x4) = H(U2(x1), 1) = H(U2(x1))

= U2(x1) = P2(X2 ≤ x2 | x1) 



Step 2a: A copula formulation of P
i

� Not done yet!  We need this

� Product of copulas is not a copula

� However, results in the literature are helpful here. It can 
be shown that plugging in Ui

1/d(i), instead of Ui will turn the 
product into a copula

� where d(i) is the number of bi-directed cliques containing Xi

Liebscher (2008)



Step 3: The non-barren case

� What should we do in this case?

Barren

NOT Barren



Step 3: The non-barren case



Step 3: The non-barren case



Parameter learning

� For the purposes of illustration, assume a finite mixture 
of experts for the conditional marginals for continuous 
data

� For discrete data, just use the standard CPT formulation 
found in Bayesian networks



Parameter learning

� Copulas: we use a bi-variate formulation only (so we take 
products “over edges” instead of “over cliques”).

� In the experiments: Frank copula



Parameter learning

� Suggestion: two-stage quasiBayesian learning

� Analogous to other approaches in the copula literature

� Fit marginal parameters using the posterior expected value of 
the parameter for each individual mixture of experts

� Plug those in the model, then do MCMC on the copula 
parameters

� Relatively efficient, decent mixing even with random walk 
proposals

� Nothing stopping you from using a fully Bayesian approach, but 
mixing might be bad without some smarter proposals

� Notice: needs constant CDF-to-PDF/PMF 
transformations!



Experiments



Experiments



Conclusion

� General toolbox for construction for ADMG models

� Alternative estimators would be welcome: 

� Bayesian inference is still “doubly-intractable” (Murray et al., 
2006), but district size might be small enough even if one has 
many variables

� Either way, composite likelihood still simple. Combined with 
the Huang + Frey dynamic programming method, it could go a 
long way

� Structure learning: how would this parameterization help?

� Empirical applications in problems with extreme value 
issues, exploring non-independence constraints, relations 
to effect models in the potential outcome framework etc.
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Thank you



Appendix: Limitations of the Factorization

� Consider the following network 

X1 X2 X3 X4

P(X1234) = P(X2, X4 | X1, X3)P(X3 | X2)P(X1)

Σx2P(X1234) / (P(X3 | X2)P(X1)) = Σx2 P(X2, X4 | X1, X3)

Σx2P(X1234) / (P(X3 | X2)P(X1)) = f(X3, X4)


