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Directed Graphical Models
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The Acyclic Directed Mixed Graph (ADMG)

____________________________________________________________________________________________________________________________

» “Mixed” as in directed + bi-directed
» “Directed” for obvious reasons
See also: chain graphs
» “Acyclic” for the usual reasons
» Independence model is
Closed under marginalization (generalize DAGs)

Different from chain graphs/undirected graphs
Analogous inference calculus as DAGs: m-separation

(Richardson and Spirtes, 2002; Richardson, 2003)



Why do we care?
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Why do we care?

» | like latent variables. Why not latent variables
everywhere, everytime, latent variables in my cereal,
no questions asked?

ADMG models open up new ways of parameterizing
distributions

New ways of computing estimators

Theoretical advantages in some important cases (Richardson
and Spirtes, 2002)



The talk in a nutshell

» The challenge:

How to specify families of distributions that respect the ADMG
independence model, requires no explicit latent variable formulation

How NOT to do it: make everybody independent!
Needed: rich families. How rich!?

» Contribution:

a new construction that is fairly general, easy to use, and
complements the state-of-the-art

» First, a review:

current parameterizations, the good and bad issues

» For fun and profit: a simple demonstration on how to do
Bayesianish parameter learning in these models



The Gaussian bi-directed model



The Gaussian bi-directed case
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Binary bi-directed case:
the constrained Moebius parameterization
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(Drton and Richardson, 2008)



Binary bi-directed case:
the constrained Moebius parameterization

» Disconnected sets are marginally independent. Hence,
define g, for connected sets only

P(X, = 0, X, = 0) = P(X, = 0)P(X, = 0)
414 = 9,94

(However, notice there is a parameter q,,3,)



Binary bi-directed case:
the constrained Moebius parameterization

» The good:

this parameterization is complete. Every single binary bi-directed
model can be represented with it

» The bad:

Moebius inverse is intractable, and number of connected sets
can grow exponentially even for trees
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The Cumulative Distribution Network (CDN)
approach

» Parameterizing cumulative distribution functions (CDFs)
by a product of functions defined over subsets

Sufficient condition: each factor is a CDF itself

Independence model: the “same” as the bi-directed graph... but
with extra constraints
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(Huang and Frey, 2008)




Relationship
» CDN: the resulting PMF (usual CDF2PMF transform)
1 1
Z R Z (—1)Z1+ZQ+"'ZdF(331 — Ry g — Zd)
z1=0 zq4=0
» Moebius: the resulting PMF is equivalent
P(Xa=0Xpa=1)= » (-1
B:ACB
» Notice: qz = P(Xz =0) = P(Xg < |, Xz <0)
» However, in a CDN, parameters further factorize over

cliques —
. Q1234 = 912913924934



Relationship

» In the binary case, CDN models are a strict subset of
Moebius models

» Moebius should still be the approach of choice for small
networks where independence constraints are the main
target

E.g., jointly testing the implication of independence
assumptions

» But...

CDN models have a reasonable number of parameters, they
are flexible, for small treewidths any fitting criterion is
tractable, and learning is trivially tractable anyway by marginal
composite likelihood estimation

Take-home message: a still flexible bi-directed graph model with no
need for latent variables to make fitting “tractable”



The Mixed CDN model (MCDN)

» How to construct a distribution Markov to this!?

» The binary ADMG parameterization by Richardson (2009) is
complete, but with the same computational shortcomings

And how to easily extend it to non-Gaussian, infinite discrete cases,
etc.?



Step 1: The high-level factorization

» A district is a maximal set of vertices connected by bi-
directed edges

» For an ADMG G with vertex set X, and districts {D},
define

P(Xy) = HR;(XDi | pag(Xp,)\XDp,)

where P(:) is a density/mass function and pa.(-) are parent
of the given set in G



Step 1: The high-level factorization

» Also, assume that each P(- | -) is Markov with respect to
subgraph G, — the graph we obtain from the
corresponding subset

» We can show the resulting distribution is Markov
with respect to the ADMG




Step 1: The high-level factorization

» Despite the seemingly “cyclic” appearance, this
factorization always gives a valid P(-) for any choice of

Pi(' | )
P(X34) = ZoP(X, X5 | X)P(X3, X4 | X))
= P(X, | X)P(X;, X4 [ X))

P(X3) = L4P(X, [ x4)P(X;, x4 | X))
= %, POX)P(Xs, x4 | X))
= P(X))P(X; [ X))



Step 2: Parameterizing P, (barren case)

» D.is a “barren” district is there is no directed edge within
it

Barren
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Step 2: Parameterizing P, (barren case)

» For a district D. with a clique set C. (with respect bi-
directed structure), start with a product of conditional

CDFs

pCLg(XD,i)) — HXS@:_C?; FS(SCS p(lg(XDE))

» Each factor F((x. | xp) is a conditional CDF function,
P(X; < x| X, = x;). (They have to be transformed back to
PMFs/PDFs when writing the full likelihood function.)

» On top of that, each F¢(x. | x;) is defined to be Markov
with respect to the corresponding G,

» We show that the corresponding product is Markov with
respect to G,

F@(JfD,g,




Step 2a: A copula formulation of P,

» Implementing the local factor restriction could be
potentially complicated, but the problem can be easily
approached by adopting a copula formulation

» A copula function is just a CDF with uniform [0, |]
marginals

» Main point: to provide a parameterization of a joint
distribution that unties the parameters from the
marginals from the remaining parameters of the joint



Step 2a: A copula formulation of P,

» Gaussian latent variable analogy:

U~ N(O, I)
a X, =MU+e,e ~N(@O,v))

X, = MU+ e, e, ~N(O,v,)

° ° Parameter sharing

Marginal of X;: N(O, A% + v))
Covariance of X, X,: A\,



Step 2a: A copula formulation of P,

» Copula idea: start from
F(X), X3) = FCF'(F, (X)), By (F; (X))
then define H(Y, Y,) accordingly, where 0 <Y, < |

H(Yg Yy) = FCF1(Yo), By (Yy))

» H(:, -) will be a CDF with uniform [0, |] marginals
» For any F(-) of choice, U. = F,(X) gives an uniform [0, |]

» We mix-and-match any marginals we want with any
copula function we want



Step 2a: A copula formulation of P,

» The idea is to use a conditional marginal F(X: | pa(X))
within a copula

» Example

Uy(x)) = Po(Xy = X3 [ X)) Us(xy) = Py(X5 < x5 | xy)
P(X; < x5 X5 = x3 | %, xg) = H(U,(x)), Us(xy))
» Check:
P(X, < x; | x; x4) = H(U,(x)), 1) = H(U,(x)))
= U,y(x)) = Py(X; = x, | x))



Step 2a: A copula formulation of P,

» Not done yet! We need this

F’i ('rDz

pag (XDa ))

pag(Xp,)) = HXSEC{, Fs(xs

» Product of copulas is not a copula

» However, results in the literature are helpful here. It can
be shown that plugging in U.!/40), instead of U. will turn the
product into a copula

where d(i) is the number of bi-directed cliques containing X.

Liebscher (2008)



Step 3: The non-barren case

» What should we do in this case?
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The non-barren case

Step 3




Step 3: The non-barren case
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Parameter learning

» For the purposes of illustration, assume a finite mixture
of experts for the conditional marginals for continuous
data

fulae | pag(X Zm N (@05 e, 07,)

Mz (paQ(Xv)) — 9-1;0 + leag (X’U)
Tow(pag(X.)) o< exp(weo + w, pag(Xy))

» For discrete data, just use the standard CPT formulation
found in Bayesian networks



Parameter learning

» Copulas: we use a bi-variate formulation only (so we take
products “over edges” instead of “over cliques™).

» In the experiments: Frank copula

1 e—O&’lLi . 1 e—CI”U,j . 1
Cr(ui, u;;) = ——1In (1 | ( ) ))

e — 1




Parameter learning

» Suggestion: two-stage quasiBayesian learning
Analogous to other approaches in the copula literature

Fit marginal parameters using the posterior expected value of
the parameter for each individual mixture of experts

Plug those in the model, then do MCMC on the copula
parameters

» Relatively efficient, decent mixing even with random walk
proposals

Nothing stopping you from using a fully Bayesian approach, but
mixing might be bad without some smarter proposals

» Notice: needs constant CDF-to-PDF/PMF
transformations!



Experiments

Data set Data type | #V | #D | E|#<] | E|#—]
SPECT Binary 23 | 267 4.1 25.6
Breast cancer wisconsin Ordinal 10 | 683 5.1 16.3
Soybean (large) Ordinal 33 | 266 9.3 39.8
Parkinsons Confinuous | 15 | 5875 8.9 18.2
[onosphere Continuous | 32 | 351 12.4 32.8
Wine quality (red) Continuous | 11 | 1599 5.7 7.5
Wine quality (white) Conftinuous | 11 | 4898 7.3 14.5




Experiments

Data set \Gaussian/probit (Copula MCDN Difference

SPECT -11.32 -11.11 021 + 0.06 %
Breast cancer wisconsin -12.60 -12.77 -0.17 = 0.11

Soybean (large) -20.17 -17.71 2.46 £ 0.20 %
Parkinsons -11.65 -3.48 817 £ 0.28
Ionosphere -41.10 -277.45 13.64 + 0.67 %
Wine quality (red) -13.72 -11.25 247 £0.10 %
Wine quality (white) -13.76 -12.11 1.65 + 0.09 %




Conclusion

» General toolbox for construction for ADMG models

» Alternative estimators would be welcome:

Bayesian inference is still “doubly-intractable” (Murray et al.,
2006), but district size might be small enough even if one has
many variables

Either way, composite likelihood still simple. Combined with
the Huang + Frey dynamic programming method, it could go a
long way

» Structure learning: how would this parameterization help!?

» Empirical applications in problems with extreme value
issues, exploring non-independence constraints, relations
to effect models in the potential outcome framework etc.
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Appendix: Limitations of the Factorization

» Consider the following network

g N N N gy,

P(X,,34) = P(Xy Xy | X, X3)P(X5 | XHP(X))
XoP(X)234) I (P(X5 | XYP(X))) = Ly P(Xy Xy | X5 X5)

2,oP(X)234) 1 (P(X3 | X)P(X))) = (X3, Xy)



