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Abstract

We present four pieces of supplementary ma-
terial: first, an approach for the CDN infer-
ence problem of computing likelihood functions,
which for our purposes we believe it is sim-
pler to implement than other approaches pre-
sented in the literature; second, a discussion of
the convergence of LEARNSTRUCTUREDCCA-
II; third, brief comments on identification and
initialization; fourth, details on the preprocessing
of the NHS data.

1 SIMPLER CDN INFERENCE

An efficient procedure for transforming CDFs into PMFs
is given in detail by Huang et al. (2010), which is par-
ticularly sophisticated and seemingly hard to implement.
However, one can reduce the problem of computing PMFs
from CDFs following the structure of Equation (5) – itself
just a rearrangement of the general formulation (Joe, 1997)
for binary variables: just introduce “pseudo” random vari-
ables corresponding to the difference indicatorsZ and con-
struct the corresponding factor graph. Notice that the term
(−1)

∑p

i=1
zi is itself a product of univariate factors over the

pseudo setZ. Equation (5) is the “marginal” of a pseudo
distributionP(Z,Y) and can be found by any standard ex-
act method of inference. We used junction trees. Figure 1
shows an example of reducing the problem of computing
the PMF of graphY1 ↔ Y2 ↔ Y3. The result is analo-
gous in the continuous case: one just have to create indica-
tor variables that pick which factors are being derived and
which are not.

This simple link is not mentioned in previous papers, to the
best of our knowledge. In any case, the customized method
described by Huang et al. (2010) readily includes details
on how to generate parameter gradients, and it is useful as
a framework for developing approximate algorithms (as al-
ready hinted by Huang and Frey, 2008): in our case, the
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Figure 1: A factor graph representation for the “pseudo-
distribution” ofY1 ↔ Y2 ↔ Y3 induced by Equation (5).

pseudo “distribution”P(Z,Y) can take negative values,
therefore some standard variational methods cannot be di-
rectly applied to this representation (e.g., mean-field EM
requires the logarithm of the joint).

2 CONVERGENCE

It is not obvious that LEARNSTRUCTUREDCCA-II con-
verges, since it alternates between the optimization of two
objective functions with respect to two parameter sets (i.e.,
we optimizeQ(β,Σ,{qmn(·)})

Gm
with respect to{β,Σ}, and we

optimizeF (β,Σ)
Gm

with respect toGm).

Consider the two functions in Table 1. It is clear that

B
(β,Σ,{qmn(·)})
Gm

≤ χ
(β,Σ,{qmn(·)})
Gm

sincelogP(A,B) ≤ logP(A) for any pair of eventsA and
B. It is also the case that

χ
(β,Σ,{qmn(·)})
Gm

≤ F
(β,Σ)
Gm

by Jensen’s inequality.

It is clear that optimizingχ(β,Σ,{qmn(·)})
Gm

with respect to

{β,Σ} is equivalent to optimizingQ(β,Σ,{qmn(·)})
Gm

. How-

ever, this does not guarantee thatB
(β,Σ,{qmn(·)})
Gm

will also
increase, or at least not decrease1. Similarly, the same ap-
plies for the relationship between optimizingF (β,Σ)

Gm
with

1Consider the following simpler case: for a trivariate dis-



respect toGm, and again whetherB(β,Σ,{qmn(·)})
Gm

will not
decrease.

Hence, although a clean proof of convergence seems elu-
sive at this point, all the simulations showed not only con-
vergence, but we observed monotone convergence with re-
spect toF (β,Σ)

Gm
. Since it is true that updatingqmn(·) to

P(Θmn | Y1:N
mn , β,Σ,Gm), for a fixed set of parameters

and structure, will not decreaseB(β,Σ,{qmn(·)})
Gm

(Neal and
Hinton, 1998), a sufficient condition for convergence is
that the lowest boundB(β,Σ,{qmn(·)})

Gm
does not decrease as

parameters and structure are updated (assuming “conver-
gence” here means find a local optimal ofB

(β,Σ,{qmn(·)})
Gm

).

3 IDENTIFIABILITY AND
INITIALIZATION

Identifiability is relevant not only to validate the use of
composite likelihood, but for the overall interpretation of
the resulting structure. A full analysis of the identifiability
of the model space is beyond of the scope of this paper. It is
possible nevertheless to borrow the main results from Silva
et al. (2006) to establish sufficient conditions: ifXm mu-
tually d-separates three of its observed childrenYa, Yb, Yc

plus a fourth observed variable (child ofXm or not), all
of them being mutually dependent, then the coefficients of
Ya, Yb, Yc are identifiable. If every pair{Xm, Xn} jointly
d-separates two children ofXm and two children ofXn,
then correlationσmn is identifiable. If the coefficients of
a givenYi and a givenYj are identifiable, as well as the
correlation of their latent parents inXS (if different), then
their copula coefficient is identifiable.

A more formal analysis and the relationship between pa-
rameter identifiability and structure search is left for future
work. For now, we use these conditions to motivate a pa-
rameter initialization procedure. Given the recent success
on carefully designed initialization methods for complex
non-convex optimization problems in latent variable mod-
eling (Hinton et al., 2006), it is also of interest to propose
such methods for the structured CCA problem.

In this case, we suggest creating a tabu list of coeffi-
cients and triplets of vertices such that no bi-directed edges
among these vertices are allowed at the beginning, and co-
efficients are also not allowed to change over iterations.
This is done by considering, for each latent variableXi,
all subsets of size three among its children. The score of a
triplet {Ya, Yb, Yc} is defined by the log-likelihood of the
model that has{Ya, Yb, Yc} and a fourth observed variable
as children of a single latent variable2. The triplet of the

tribution logP(Y1, Y2, Y3; θ), optimizing logP(Y1 | Y2; θ) +
logP(Y1 | Y3; θ) is not a guarantee thatlogP(Y1 | Y2, Y3; θ)
will increase.

2We do that in two stages: first, we find a latent variableXj

whose children have the highest canonical correlation score with

highest score is considered tabu, and the coefficients ob-
tained by fitting this 4-variable model are used during the
search procedure without modification. After the algorithm
converges, the tabu list is removed and the procedure con-
tinues from that point until no new edge modifications are
introduced. The motivation is assuming that the true model
satisfies the basic identifiability conditions, and the goalis
to identify one relevant triplet for each latent variable.

In a preliminary study, we compared the effect
of the aforementioned initialized procedure in
LEARNSTRUCTUREDCCA-II against a random ini-
tialization by sampling coefficients from independent
standard Gaussians. In 30 synthetic studies, the simpler
initialization performed slightly worse on average in terms
of edge omission and parameter fitting, and errors were
more spread out. It also took longer to converge.

A suggestion for future work is that identifiability condi-
tions can also be weakened, in the spirit of Hoyer et al.
(2008).

4 THE NHS DATASET

The NHS survey contained 37 sections which in principle
could be used as 37 latent variables. However, we filtered
these variables according to the following criteria:

• some sections were applied only to a subset of the
population (e.g., Mental Health staff received a dif-
ferent version of Section 6, concerning training). We
removed those;

• questions with a very high empirical probability of 0
or 1 (> 0.97) were removed to speed the procedure
up;

• some sections had conditional subquestions (e.g.,
Question 8, on appraisals, had three questions that
depended on a positive answer to a fourth question).
Those were removed too;

• sections with fewer than 4 items were also removed in
order to make the problem harder for the initialization
procedure;

• finally, we decided to use the 11 questions relating to
quitting the position (Section 12) and overall job sat-
isfaction (Section 13) in our testing stage. That is,
we did not model them as part of our latent variable
model.

The remaining sections, 9 in total, were used to derive the
partition. Here we list the corresponding sections and ques-
tions derived from the preprocessing, as published by (Care
Quality Comission and Aston University, 2010):

the children onXi. Then the fourth variable is any element in the
union of the children ofXi andXj .



Table 1: Components of a Pairwise Composite Likelihood Score Function

B
(β,Σ,{qmn(·)})
Gm

=
∑
m<n

∑
Yi∈Sm

∑
Yj∈Sn

∫
qmn(Θmn) log

P(Y1:N
mn | Gm, β,Σ, θij)

qmn(Θmn)
d Θmn +

1

|S| − 1

|S|∑
m=1

∑
n6=m

∑
{Yi,Yj}⊂Sm

∫
qmn(Θmn) log

P(Y1:N
mn | Gm, β,Σ,Θmn)

qmn(Θmn)
d Θmn

χ
(β,Σ,{qmn(·)})
Gm

=
∑
m<n

∑
Yi∈Sm

∑
Yj∈Sn

∫
qmn(Θmn) log

P(Y1:N
i ,Y1:N

j | Gm, β,Σ, θij)

qmn(Θmn)
d Θmn +

1

|S| − 1

|S|∑
m=1

∑
n6=m

∑
{Yi,Yj}⊂Sm

∫
qmn(Θmn) log

P(Y1:N
i ,Y1:N

j | Gm, β,Σ,Θmn)

qmn(Θmn)
d Θmn

S3: Flexibility of working, questions 5–9, 11 (e.g., “My
employer offers working reduced hours”)

S4: Types of training provided by the Trust, questions 12–
16 (whether the staff member has taken “Any super-
vised on-the-job training”)

S7: Statements about immediate manager, questions 36–
40 (“My immediate manager... gives me clear feed-
back on my work”)

S14: Statements about responsibilities and workload, ques-
tions 71–76 (“I do not have time to carry out all my
work”)

S15: Relationship to workmates, questions 77–82 (“The
people I work with treat me with respect”)

S16: Statements about the Trust where staff member works,
questions 83–89 (“Care of patients / service users is
my Trust’s top priority”)

S19: Opportunities at work, questions 106–110 (“There are
opportunities for me to progress in my job”)

S20: Statements about working in the NHS, questions 111–
116 (“I understand the national vision for the NHS”)

S22: statements about improving work practices, questions
120–124 (“I am able to make suggestions to improve
the work of my team / department”)

Figure 2 shows the resulting network over the final selected
45 variables. Light blue points do not represent connec-
tions: instead, they highlight the given partition. Yellow
points represent connections between observed variables
that measure different latent variables, and red points con-
nect variables within the same partition set.
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Figure 2: The learned NHS network. Figure best seem in
color.
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