Bayesian Inference for Discrete Mixed Graph Models:
Normit Networks, Observable Independencies and Infinite Mixtures

Ricardo Silva
Gatsby Computational Neuroscience Unit
University College London
rbas@gatsby.ucl.ac.uk

Abstract

Directed mixed graphs are graphical rep-
resentations that include directed and bi-
directed edges. Such a class is motivated
by dependencies that arise when hidden com-
mon causes are marginalized out of a distri-
bution. In previous work, we introduced an
efficient Monte Carlo algorithm for sampling
from Gaussian mixed graph models. An anal-
ogous model for discrete distributions is likely
to be doubly-intractable, in the sense that
even a single Markov Chain Monte Carlo step
might have a computational cost that scales
exponentially with the number of variables.
Instead, we built upon our results on Gaus-
sian distributions to describe algorithms and
priors for discrete binary and ordinal mod-
eling. The models we describe are based on
link functions, where a multivariate Gaussian
distribution encoded by a mixed graph is pro-
jected into a discrete space. In order to ac-
count for flexible discrete distributions, we
embed this model within a Dirichlet process
mixture of Gaussians.

1 CONTRIBUTION

Directed mixed graphs (DMGs) are graphs with di-
rected and bi-directed edges. They are motivated by
considering marginal dependencies that are obtained
out of a directed acyclic graph (DAG) when some vari-
ables are marginalized. DMGs generalize the class of
conditional independencies that can be represented by
a DAG. Any two vertices in a DMG might be con-
nected by more than one edge. An example of such a
graph is depicted in Figure 1.

Acyclic DMGs (ADMGs) do not have directed cy-
cles, i.e., no sequence ¥ — --- — Y with directed
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edges only. Richardson (2003) describes several prop-
erties of acyclic DMGs, including a generalization of d-
separation, called m-separation, which is a sound and
complete procedure for reading independencies off an
ADMG. Richardson and Spirtes (2002) provide a de-
tailed account of a particular type of mixed graphs
(ancestral graphs) which can encode the same condi-
tional independencies represented by any ADMG.

Y1 Y1

Figure 1: Marginalizing variables H; and Hs out of the
DAG in (a) results in the dependency structure repre-
sented by the DMG in (b). Notice that other choices
of DMGs can also represent the same conditional in-
dependencies (Richardson and Spirtes, 2002).

There are standard approaches for parameterizing a
Gaussian distribution according to a DMG (Richard-
son and Spirtes, 2002; Bollen, 1989). Maximum likeli-
hood estimators for Gaussian ancestral graph models
can be obtained by an iterative procedure (Drton and
Richardson, 2004). Sampling algorithms for Bayesian
inference are given by Silva and Ghahramani (2006)

Modeling discrete distributions according to mixed
graphs is still an open problem. A parameterization
and two maximum likelihood estimation algorithms for
multivariate Bernoulli bi-directed graph models (i.e.,
no directed edges allowed) are given by Drton and
Richardson (2005). The only constraints imposed by
such a parameterization are the marginal indepen-
dence constraints entailed by the graph: namely, if two
vertices are not adjacent, then they are marginally in-
dependent. The fact these are the only constraints in



the model implies several desirable statistical proper-
ties, such as allowing for consistent asymptotic approx-
imations using the BIC score (Drton and Richardson,
2005; Richardson and Spirtes, 2002).

However, such algorithms are required to solve, for
each step in an iterative procedure, a constrained op-
timization problem within a polytope of possibly ex-
ponentially many faces (in the number of variables),
even for sparse graphs such as a bi-directed chain. We
expect that doing Bayesian inference for such type of
discrete models is going to be as hard as Bayesian in-
ference for Markov random fields (Murray et al., 2006),
which is doubly-intractable.

Although the original problem (explicitly defined by
independence constraints only) of Bayesian modeling
of discrete DMG models still deserves treatment, in
this paper we will focus on a different parameteriza-
tion of such models. Observed variables are modeled
as discretizations of underlying continuous latent vari-
ables. While such a setup implies constraints that may
be hard to characterize even asymptotically, we will
show that there are practical applications and MCMC
algorithms for such a class. Moreover, by allowing the
underlying continuous variables to follow a nonpara-
metric distribution, we account for a flexible class of
contingency tables. Although the model can be seen
as most natural for binary and ordinal data, by us-
ing an infinite mixture basis, it should be possible in
principle to model any contingency table, as argued by
Kottas et al. (2005).

The paper is organized as follows: Section 2 is a de-
scription of normit link functions for discrete models
and how they can be extended to parameterize DMG
models. We also discuss the choice of normit represen-
tations and Dirichlet process mixtures of such models.
An MCMC algorithm for Bayesian inference is given
in Section 3. Section 4 presents experiments.

2 MODELS FOR NORMIT
NETWORKS

Following (Bollen, 1989; Richardson and Spirtes, 2002)
and many others, a Gaussian DMG is parameterized
as follows. Let G be a DMG with vertices (variables)
Y. For each variable Y; with parents Y(y ), ..., Y(z,;) in
G, we provide a “structural equation”

Vi =i +bja,nYa,) + b)Yy e (1)

where €; is a Gaussian random variable with zero
mean. We will make use of the following notation:
g designates the number of variables (vertices) in our
model; B is a g X ¢ matrix corresponding to the linear
coefficients defined above, where b;; is different from

zero only if Y; is a parent of Y;; V is the ¢ x g covariance
matrix of “error terms” e.

V will in general be a non-diagonal matrix, where, for
any pair {Y;,Y;}, we have that v;; # 0 only if edge
Y; < Y, exists in G. In DMG terminology, if Y; is
connected to Y; by a bi-directed edge, then Y; is a
spouse of Y; (Richardson, 2003).

In our setup, we allow for up to two edges connecting
any pair of vertices (one directed, and one bi-directed),
and we assume the graph is acyclic, i.e., an ADMG.

We will first focus on discrete distributions for bi-
nary variables based on the normit link function (also
known as probit). Namely, for a binary variable Y;

PY; =1Yj1,..., V) = P(Y] > 0) (2)

where Y = p; + B;"Y + ¢; is called the underlying
latent variable for Y;: our observed variable is a dis-
cretization of some hidden continuous variable with a
Gaussian distribution. The name normit follows by
the fact that P(Y; = 1|Yj1,...,Y ) is given by the
cumulative distribution function of the normal Y}".

An extension of this model for ordinal variables is nat-
ural (but less so for multilevel discrete variables). It
also indirectly provides a way of modeling joint distri-
butions of continuous and discrete variables. We refer
to Bartholomew and Knott (1999) for variations on
underlying latent variable models. In Section 4, we
explain how to adapt it to ordinal models and perform
experiments accordingly.

2.1 Going nonparametric

As pointed out by Kottas et al. (2005), the normit
model can be too restrictive. For instance, in a collab-
orative filtering application where one wants to mea-
sure the agreement on assessments by two customers,
an underlying Gaussian model cannot represent raters
that agree strongly on extreme scores (one-star and
five-stars movies, for instance), while simultaneouly
being weakly associated on the intermediate scores.

In order to model flexible contingency tables, Kottas
et al. (2005) propose using Dirichlet process mixtures
(Neal, 2000) of normit models. The setup is as follows.
Let G be a random measure that is distributed as a
Dirichlet process (DP) with parameters o and Gy,

G~ DP(OZ(), Go) (3)

Here, Gy is some base probability measure and «y is
a smoothness factor over Gy (with the limit ag — 0
corresponding to the original normit model).

Let {6, 0®) ... 0™} be the random param-
eters associated with the respective data points
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In the case studied by Kottas et al. (2005), each ©) is
the mean and covariance matrix of an unconstrained
Gaussian', representing the distribution of the under-
lying latents Y*.

Y*(i)|@(i) ~ N(H(i)vz(i)) (5)
Pairs {Y*", Y*W} £ j are independent given ©.

Kottas et al. (2005) describe a Markov chain Monte
Carlo algorithm. Latents Y* are sampled within a
Gibbs sampling scheme, which in this case reduces to
sampling from a univariate truncated Gaussian. Other
algorithms for Dirichlet process mixtures that could be
adapted to this problem are given by Neal (2000).

Introducing independence constraints entailed by
DMG models into each ©(®), however, brings addi-
tional challenges, since they imply non-standard dis-
tributions for the parameters (Silva and Ghahramani,
2006). Moreover, there are two possible approaches
one can take when representing such constraints, as
discussed next.

2.2 Models of observable independencies

A common approach for modeling with structured nor-
mit models is illustrated as follows. Consider the graph
in Figure 2(a). A possible normit model for it, with un-
derlying latents Y* explicitly represented as vertices,
is given graphically in Figure 2(b). Notice that while
the model in (a) encodes that Y7 and Y3 are indepen-
dent given Y3, no conditional independencies among
observed variables exist in (b).

In general, for a given graph G, a respective graphi-
cal representation of a normit model can be built by
first replicating G as a graph G* with underlying la-
tent variables (UVs) in place of each respective orig-
inal vertex. To each vertex Y* in G*, we then add a
single child Y. We call this the Type-I UV model. Al-
though there are arguments for this approach (see, for
instance, the arguments by Webb and Forster (2006)
concerning stability to ordinal encoding), for some ap-
plications one might still want to encode the original
conditional independencies directly.

This alternative is illustrated in Figure 2(c). Starting
from the original graph G (as in Figure 2(a)), the nor-
mit graph model G* shown in the figure is built from
G by the following algorithm:

!The thresholds that are used in ordinal variables with
more then two levels are not random in their case, since the
extra flexibility given by an infinite mixture of Gaussians
allows for fixed thresholds.

1. add to empty graph G* the vertices Y of G, and
for each Y; € Y, add a respective UV Y,;* and the
edge ;' — Yi;

2. for each Y; — Y} in G, add edge YV; — Y;‘ to G*;
3. for each V; < Y; in G, add edge Y;" < Y" to G*;

We call this the Type-II UV model, which has the fol-
lowing property:

Theorem 1 Suppose G is acyclic with verter set Y.
Y and Y; are m-separated given Z C Y\{Y;,Y;} in G
if and only if Y; and Y; are m-separated given Z in G*.

Proof: We first show that there is a one-to-one map-
ping between paths in G and paths in G*. By con-
struction, all bi-directed edges in G* have two UVs as
endpoints, with an one-to-one mapping between each
Y < Y, in G* and each Y; < Y; in G. All directed
edges in G* are of two types: Yy — Y/*, with s # ¢,
or Y — Ys. Therefore, one can show that any path
P* in G* corresponds to an unique path P in G ob-
tained by relabeling each Y* as Y, and by collapsing
any Y — Y edges that might result from this relabel-
ing into a single vertex Y.

A collider in a path is any vertex within a head-to-head
collision in the path, i.e., any vertex Y; where the pre-
ceding and the next vertex in the path are connected
to Y; with an edge (directed or bi-directed) into Y;.
Y; and Y; are m-separated by Z in an acyclic DMG if
and only if there is no active path connecting Y; and
Y;. Like in d-separation, a path is active if all of its
colliders have some descendant in Z, and none of its
non-colliders is in Z (Richardson, 2003). The mapping
between paths P and P* is such that, Y; is a collider
in P if and only if ¥; is in P* and is a collider, or Y;*
is in P* and is a collider. Since by construction any
Y will have the same Y-descendants in G* as Y; has
in G, and Z CY, the result follows. J

In this paper, we will focus on algorithms for Type-
IT models only. The approach here described can be
easily adapted to cover Type-I models. We say that
Type-II models are models of observable independen-
cies, since independencies hold even after marginaliz-

ing all UVs.

2.3 DP mixtures and DMG independencies

If a single latent measure G is used to generate all
parameters, then by integrating out G all conditional
independencies disappear. In this sense, in the mixture
model formulation, our normit models of “observable
independencies” encode independencies only to the ex-
tent where we condition on parameters and the ran-
dom measure G.
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Figure 2: The model in (a) has at least two main representations as a normit network. In (b), the original
structure is given to the underlying variables, with observed variables being children of their respective latents.
In (c), the underlying variable inherits the parents of the original variable and the underlying latents of the

spouses.

Within large families of priors, losing independen-
cies when integrating out parameters is unavoidable,
whether we are dealing with mixtures or single Gaus-
sian models. To see this, let a district of a DMG G
be a maximal subset of vertices such that any two ele-
ments in this set is connected by a path of bi-directed
edges. A vertex not connected to any bi-directed edge
forms a district of size 1. Notice that districts form a
partition of the set of vertices.

Recall that in a Gaussian DMG model, b;; is the pa-
rameter corresponding to edge Y; — Y;.

Proposition 1 Suppose G is acyclic with verter set
Y. In Let G' be the DMG obtained by augmenting G
with a vertex for each parameter b, and a respective
edge bjy — Y;. Then if Y; and Y}, belong to the same
district, {bji, bgy} are not m-separated given Y in G'.

Proof: The sequence of bi-directed edges between Y
and Y}, implies a path between b;; and by, where ev-
ery vertex but the endpoints is a collider in this path.
Since every collider is in Y, this path is active. [J

The implication is that, even if the prior for B is fully
factorized, in general b;; and by, will not be indepen-
dent in the posterior?. Therefore, the predictive dis-
tribution for any two variables with parents and in the
same district cannot be factorized in the same way a
model with fixed parameters can. This is illustrated
in Figure 3. A way of avoiding the rise of such depen-
dencies, if desired, is to exclude them a priori, i.e., by
incorporating a hyperprior that generates factorized
distributions. Concerning mixture models, indepen-
dencies between vertices in different districts can be

2This assumes the posterior distribution will be faithful
to this graph (Spirtes et al., 2000).

directly preserved by using a different random mea-
sure G for each district (a type of “factorial Dirichlet
process”). A treatment of such priors is out of scope
of this paper and suggested as future work. The DMG
graphs here discussed encode independencies given pa-
rameters and mixture components.
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Figure 3: After conditioning on some datapoint, the
prior Gaussian model in (a) assumes the posterior de-
pendency structure as in (b), since Y7,Ys and Yy are
in the same district.

3 DIRICHLET PROCESS
MIXTURES OF NORMIT ADMGS

Before introducing DP mixtures of Type-II models for
binary variables, we will formally describe the mixture
of Gaussians model. The normit case is an adaptation
of it with the same family of priors, as explained in
Section 3.2. The description of the Gaussian case is
also useful to extend the results of Silva and Ghahra-
mani (2006) to the continuous nonparametric case.



3.1 Priors and the Gaussian mixture

Starting from the parametric formulation of Gaussian
models in (1) as a set of linear equations

Y=p+BY +¢ (6)

we have that, for a particular data point Y4 and pa-
rameter set O = {p(@ B V(D1 the conditional
distribution p(Y(®|0(@) is Gaussian with mean.

m©W)=(I-B)'u (7)
and covariance matrix
2(©0@W) = (1 -B)~" v (@ -BD)=T ()

where M~ is the transpose of the inverse of M. This
follows from Equation (6). The shape of this con-
ditional suggests priors based on normal and inverse
Wishart distributions.

In the original parametric formulation of Silva and
Ghahramani (2006) for multivariate Gaussian data,
each non-zero b;; in B is independent a priori of all
other parameters, with prior distribution given by

bji ~ N(kji, i) (9)
A prior for p; is chosen in an analogous way:
pj ~ N(Ajv5) (10)

The error covariance matrix V is given a non-standard
prior based on the inverse Wishart with parame-
ters (0, U), 0 being the “degrees of freedom” and U
any positive definite matrix. This modified inverse
Wishart has a different support, which is restricted to
a particular cone of positive definite matrices M (G).
With respect to a fixed DMG G, this space is com-
posed of matrices with a constant value of zero in en-
tries corresponding to pairs of vertices that are not
connected by a bi-directed edge. This distribution is
called G-Inverse Wishart, as described by Silva and
Ghahramani (2006). We denote it as follows

V ~ G-IWg(5,U) (11)

Let G be a random measure given by a Dirichlet pro-
cess G ~ DP(ag,Gy) for the parameter set © =
{p,B,V}, where the base measure Gy is given by
the product of priors (9), (10) and (11). Following
Neal (2000), we will represent a Dirichlet process mix-
ture by a countably infinite mixture of parameters

{¢1, 02, ¢3, ... } where
¢k = {1y Br, Vi) (12)

and each data point Y4 follows a normal with mean
m(¢. ) and covariance X(¢.w ), {m, X} being analo-
gous to (7, 8). That is, there is a latent indicator ¢(%)
for each data point d such

YD ¢~ Nm(ppw), S(der))  (13)

and for each data point d one has O@ = ¢ ). Al-
though the pool of mixture indicators is infinite, a typ-
ical posterior distribution will have many data points
sharing the same value for ¢, meaning that typically
the observed data is generated by a number of param-
eters much smaller than the number of data points.
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Figure 4: A DP mixture of parameters coming from a
infinite pool ¢ with probabilities given by 7.

A sampling representation of a Dirichlet process mix-
ture is illustrated in Figure 4 as a plate model: one
puts a Dirichlet prior with parameter g for the val-
ues of c. This prior is over the countable infinite space
of indices (say, 1,2,3,...) corresponding to the mix-
ture indicators for the data points. As explained by
Neal (2000), there are several advantages on working
under this DP representation when designing MCMC
algorithms for Bayesian inference.

3.2 Binary models and an MCMUC algorithm

We now describe the DP mixture of normit models
and the corresponding Gibbs sampling algorithm.

By adapting Equation (1), the equations that define
the Type II model are as follows:

Y* =
Y =

n+BY +¢€
1(Y* >0)

where 1(-) is the indicator function (applied element-
wise, in case of a vector), equal to 1 if its argument is
true, and 0 otherwise.

In this algorithm, we will be conditioning on the latent
indicator variables ¢ = {c¢®,c®, ... ¢™}. Also, let
YN = {YD .. Y™} denote our dataset, and let
YN = {y*M . Y*(™1} denote the hidden data for
the corresponding UVs.

Within our DP process, Y*@ given {¢¥, ¢ ), Y@}
is a truncated Gaussian, with parameters (g ) +
B.«Y, V) and support given according to the val-
ues of Y (Y;* > 0 if and only if Y; = 1). Sampling
from this distribution using Gibbs sampling is a sim-
ple procedure (Kottas et al., 2005).



To sample Vi, from its conditional, we will rely on the
following result.

Proposition 2 Let G be an acyclic DMG, and
(1, B, V) be the respective set of parameters that de-
fine a normit model. For a fized (u,B), there is a
bijective function fsu(-) mapping Y* to e. This is not
true in general if G is cyclic.

Proof: If the graph is acyclic, this follows directly by
recursively solving the model equations, starting from
those corresponding to Y;* vertices with no parents.

For cyclic graphs, the following model provides a
counter-example. Let the graph be Y7* — Y, — Y5 —
Yy — Y7". Let the model be Y* = Yo+4€1, Y5 =Y +eo,
i.e., big = bo; =1 and g = 0. Then the two instanta-
tions (Y;* = —0.8,Y5 =0), (Yi* =0.2,Y5 = 1) imply
the same pair (e; = —0.8,e2 = 0). O

Due to this bijection (and the determinism linking Y
to Y*), the density p(Vi | py, Bk, Y, Y™) for some
{Y,Y*} coming from cluster k, is equivalent to

p(Vi | pty; Br, Y* = y7)
= p(Vi |, Br, Y =y*, e = fBu(y"))
= p(Vk | Hk,Bk,E = fBlL(y*))
o ple= fBu(y") | #g: B, Vi)p(Vi | g, Bi)
= ple= fBen, ¥") | Vi)p(Vi)

For the given dataset Y, define S} as the sum of
(YD~ — B YD) (YD —py, —BLY )T over all
d € {1,2,...,n} such that ¢¥ = k. Since p(V]e) o
p(e|V)p(V), where p(e | V) is normal with zero mean
and covariance matrix V, the posterior for Vj given
all other parameters and variables is

Vi | ¥ ~ G-TWg(6 +ny, U+ Sj)

where ny, is the number of data points d in Y¥ such
that ¢(¥ = k. Silva and Ghahramani (2006) describe
an algorithm for sampling from a G-IW distribution.

Let (v);i be then ijth entry of Vi'. The posterior
for bjix € ¢x given the data and all other parameters,
forkec,isa N(sj_i,lcmjik, Sjik) Where

sy = o3+ (034 {Z(Yfﬂ”f o= k}

d

_ ki (d) k| (d) _
mjik—;‘f‘{Z}/j ><Tjd|c()_ }

Jv d

k _ Z -1 *(d) Z d)
Tjd = (U)jtk; Y;f - btpkyzé — Mtk
t pltp#ji
where index ¢ can be seen as running over the other
vertices in the same district as Y; (since v;t,lg is zero

otherwise) and index p can be seen as running over the
Y-parents of Y;* only (since by is zero otherwise).

The posterior for p;r € ¢ is given by a normal
N((s) " mly, s5;) where
/ _

Sjk = UJ

s
1A -1
M = —nkg (v)jt Ltk
J t

_ *d
+ Z {Z(U)jtl <Yt( = thpkyp(d)> | = k}
d t P

Ly (v);ﬁC

For a given data point d, the likelihood of
(YD Y*DY given ¢.a, which we denote by
F(Y@D Y*@) ¢ ) is given by

e 0, if Yj(d) + 1(Yj*(d)) for some j (this event does
not happen, since Y* is obtained by simulation);

e py(e9: V), the density function of a normal
N(0,V) evaluated at @ = (Y*(@ — p, —
Bky(d))(y*(d) —k _Bky(d))T;

This likelihood expression can be plugged into an algo-
rithm for sampling c¢. In our implementation, we use

Algorithm 8 of (Neal, 2000).

4 EXPERIMENTS

We evaluate our algorithm on the task of computing
the predictive log-likelihood of particular models. We
analyze one synthetic and two real-world datasets con-
taining both ordinal and binary variables.

For all experiments we set the priors empirically, for
the purposes of illustration, by assuming the data fol-
lows a multivariate normal distribution. The result-
ing maximum likelihood estimates of regression coef-
ficients and error covariances are used as the mean
parameters. The variance parameters for edge coeffi-
cients bj; are all set to 1. We set 6 = 1 in our G-Inverse
Wishart prior. We set op = 1 as the DP smoothing
parameter. The mapping between an UV Y™* and the
respective observed ordinal variable Y with domain
{y1,y2,...,yr} is set according to a pre-defined set of
thresholds 7 = {79, 71, ..., 7Tr41} such that

Y =y; if and only if 7,1 < Y* < Tj

For all variables, we set 79 = —o00, 7,41 = +00. The
other thresholds are set to correspond to the ordinal
values, i.e., 7; = (y; + yj+1)/2. We encode ordinal
values such that the least and largest values are sym-
metric around zero, with a gap y;j41 —y; = 1.



4.1 SYNTHETIC STUDY

We generated a sample of 2,000 datapoints from the
graphical model depicted in Figure 5(a). This model
is parameterized such that each variable has 10 differ-
ent values. To simplify the data generation, we treat
each of the exogenous variables Y7, Y5, Y3 as multino-
mials with random marginal probabilities, and sample
accordingly. The conditional distribution of {Y4, Y5}
given their respective parents is defined as follows: un-
derlying latent variables are sampled from a mixture of
three equiprobable bivariate Gaussians. The mean of
each Gaussian N; is such that E[Y;]; = b, Y1 +b%5 Yo+
by and E[YZ]; = bi3Y3 + b Coefficients bl are uni-
formly generated in the interval [—2,—1] U [1,2]. The
entries of the covariance of {Y,*, Y2} are generated by
uniformly sampling from [1, 3] until a positive definite
matrix is generated. Notice that this sampling scheme
does not correspond perfectly to a Type-1I model be-
cause of the way {Y7,Y>,Y3} are generated.

Y3 Yq

\// \//

Y4=—Y5 Y4 Y5
(a) (b)

Figure 5: In (a), the DMG we used to generate our
data. In (b), a corresponding minimal DAG (i.e., no
DAG with fewer edges will respect the dependencies
encoded in (a)).

We ran three experiments by using 1,000 points as a
test set, and three training sets of 200, 400 and 1,000
data points. We compare the predictive log-likelihood
of this model against a multinomial Bayesian network
with the prior used in the BDeu score (Heckerman
et al., 1995). This prior depends on a single parameter
w that adds a number of pseudo-counts to the data
according to a uniform distribution.

One can verify that the directed acyclic graph shown
in Figure 5(b) is minimal, in the sense that no edge can
be removed without introducing an independence that
does not exist in the true model of Figure (a). This
model can badly overfit, since the conditional proba-
bility table of Y; given its parents has 1,000 entries
for each value of Y;. Results for the DAG multinomial
model are shown below in Table 1 for a variety of prior
parameters w.

In Table 2, we show results for our model with the
fixed prior and three different runs of 5,000 iterations
(throwing out the first 500 samples of the chain).

# Train | w =10 50 100 500

200 -10.47 | -10.39 | -10.44 | -10.84

400 -10.56 | -10.39 | -10.36 | -10.57

1000 -10.54 | -10.31 | -10.22 | -10.18
Table 1: Predictive log-likelihood for multinomial

DAG model with BDeu prior and different prior pa-
rameters w. The higher w is, the closer to an uniform
distribution the posterior gets.

# Train | Trial 1 | Trial 2 | Trial 3
200 -9.90 -9.89 -9.66
400 -9.80 -9.44 -9.80
1000 -9.35 -9.28 -9.37

Table 2: Predictive log-likelihood for ordinal ADMG
model across different starting points.

It is clear that in this case the nonparametric ADMG
models the distribution much better than a multino-
mial DAG model. Notice how a higher amount of
smoothing improves results for the DAG. However, as
it is typical of mixture models, there is some tendency
of Gibbs sampling to get stuck around some mode of
the posterior distribution. In the future we want to ex-
plore techniques on how to minimize the impact of lo-
cal maxima, such as adapting the split-merge method
of Jain and Neal (2004).

4.2 OTHER EMPIRICAL STUDIES

We applied our approach to model two multivariate
ordinal datasets from the UCI repository. We ran
a standard hill-climbing procedure to obtain a DAG
structure using the BDeu score. This structure was
used to evaluate DAG multinomial models. We then
heuristically expand such a DAG into an ADMG by
i. fitting a Gaussian model by maximum likelihood
according to the DAG; ii. calculating the residual co-
variance between any two vertices that were not adja-
cent in the DAG; iii. sorting all of such pairs by the
absolute value of their residual covariances; iv. adding
bi-directed edges X < Y for all pairs on the top 50%
of such a list. This is a very simple structure learning
algorithm for ADMGs used strictly for the purposes of
illustrating our MCMC algorithm for parameter learn-
ing. A more thorough evaluation of the advantages of
such a representation is planned for the future, where
fast approximations for marginal likelihoods will also
have to be developed to be used in more sophisticated
ADMG structure learning algorithms.

The first dataset we applied our algorithm to was the
Contraceptive Method Choice (cMC). The cMC con-
tains 1473 instances and 10 attributes. We removed



two attributes (age and number of children) which
were not bounded ordinal variables. The correspond-
ing DAG and ADMGs structures for this problem are
shown in Figure 6.
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Y3 Y5 Yo Y7 Yg Yo Yio vy .8

Figure 6: The DAG structure used in the CMC domain.
Variable numbers correspond to those in the dataset
documentation. The figure on the right depicts the
extra bi-directed edges added to the DAG in order to
generate our ADMG model.

For the DAG model, we set the value of w to 10.
Other values give basically the same result. For the
ADMG model, we used an alpha parameter of 0.1,
which gave more stable results across different runs.
Using a 10-fold cross-validation setup, we got that the
average difference in predictive log-likelihood between
our ADMG and the multinomial DAG model was 0.16
with a standard deviation of 0.05. The ADMG model
is better than the DMG, the difference being signif-
icant at the 0.05 level using a z-test. However, the
small difference is an indicative that the sparse DAG
model still modeled the density well enough.

We also did an experiment with the breast cancer
data of the UCI repository and the same experimental
setup. In this case, the difference was of -0.07 with
a standard deviation of 0.11. Although the difference
is not significant, we have an indication that the DP
mixture model at least does not seem to add any signif-
icant bias compared to the unconstrained multinomial
model. In practice, more flexible parameterizations of
the joint (such as the one by Drton and Richardson
(2005) for bi-directed models) might be unnecessary.

5 CONCLUSIONS

Our approach allows flexible modeling of binary and
ordinal data, arguably the first direct Bayesian treat-
ment for discrete DMG models. Combined with the
methods by Albert and Chib (1993), it can in princi-
ple provide a way of modeling non-ordinal multilevel
discrete data. It can also be modified to allow for data
with both discrete and continuous variables.

It would be interesting to investigate how our frame-
work could provide a practical alternative to the
Bayesian Markov random fields formulation of Mur-
ray et al. (2006), by parameterizing such models
through infinite mixtures of normit models (for in-
stance, “Type-1” parametric normit log-linear models

are discussed by Webb and Forster (2006)).

Finally, it is still an open problem how to perform
Bayesian inference with discrete DMG models that en-
code conditional independency constraints only, in the
spirit of the parameterization and maximum likelihood
algorithms of Drton and Richardson (2005).
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